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ON KLOOSTERMAN SUMS WITH OSCILLATING
COEFFICIENTS

BY
D. HAJELA, A. POLLINGTON AND B. SMITH

ABSTRACT. An estimate for Kloosterman sums with oscillating
coefficients is presented. Precisely we show: for any € > 0 and a, b

positive integers with (a, b) = 1 we have,
Ta J(log n)5/2 (log n)1|/5b3/10
gﬂ 'L(k)e(;) < "b( p72 + s

(kb)=1,kk =1(modb)

Similar techniques may be used to estimate other Kloosterman sums
with oscillating coefficients which are not smooth.

1. Introduction. In this note, we obtain some bounds on Kloosterman sums
with oscillating coefficients. Precisely, we obtain an estimate for

(1.1) > u(k)e(%)

_ k=n
kk =1(modb),(k,p) =1
where (a, b) = 1. The Theorem we prove about such sums is:
THEOREM. For any € > 0 and a, b, positive integers with (a, b) = 1 we have,

Ea . (10 n)5/2 (10 n)l]/5b3/10
D R o

where x, (k) = 1 for (k, b) = 1 and 0 else, and kk = 1 (mod b).

The interest in estimating Kloosterman sums of this type stems from
applications to additive problems when estimating similar types of Kloosterman
sums, but with smooth coefficients. We refer to [2], [5] for various examples.
The technique that is used for proving the above estimate is an application of
Vaughan’s identity [6] along with an estimate for incomplete Kloosterman sums
due to Hooley [4] which follows from Weil’s estimate for Kloosterman
sums. The estimate of Hooley [4] that we shall need is

(1.2) > xb(k)e(’—‘,;‘f) < b"*"4a, b)"?

k=n
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for n = b (henceforth we shall write x(k) instead of x,(k) when there is no

confusion). It is readily seen that the above technique adapts to many other
Kloosterman sums with non-smooth coefficients. Therefore, we have restricted
ourselves to the above theorem. The notation is standard and is as in [3].

We are grateful to Henryk Iwaniec and Andrew Odlyzko for some
discussions. We would also like to thank the referee for some suggestions which
lead to a better formulation of the theorem.

2. Proof of the Result. We prove the theorem mentioned in the intro-
duction.

Proor. Let
A ) = OGO )

By Vaughan’s identity,

ZALyY) =S+ 8 =5 — S
y=EN

where

So = 2 M1,y

yEW

Si= 2 X 2 wdANdz )

d=W y=N/d z=N/yd

S, = 2 2 2 wdNdzy)

d=W y=W z=N/yd

S3 = 2 2 Tx>\(x7 )’)
x>W y>W
xy=N

o= X wd)

dix,d=w

Here W is a parameter chosen later. Clearly S, < W. To estimate S,

S, = dg,w wd)xd) 2 (2 x(Z)x(y)u(y))e(lf_Z—a)

k=N/d \yz=k

- ngW Mdxd) > x(k)(_% ey ))"(k__:ﬁ)

=N/d

< ldgw u(d)x(d)e(%‘f)l < W
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To estimate S,, we have used the estimate

> 9’% < (log n),

k=n

-
$;= 33 x(Z)( 3 u(d)u(y)x(k))e(ﬁ’b—z)

k=W? z=N/k

y
VYEWIEW

S wod)

Z
Z=N/k b

< X dk)
k=w?
(k,by=1

N
<, d(k (— + b‘/“‘)
k§ZW2 ( )kb

(by (1.2) and evaluating Ramanujan sums)
N 2 172+epy2
<, ;(log NY +b W< log W

To estimate S5, we let

A={Wo=j=k2W < N=2w?

Sy = 3 > Txx(X)x(y)u(y)e(a—:K)

Y<xZ=2Y W<y=N/x

where Y € 4. Thus

Sy = X S(Y).

YeAd

Since 7, < d(x), we have by the Cauchy-Schwartz inequality,

snP (S dw) 3| S aomod )

x=2Y Y<x=2Y 'W<y=N/x

2

Upon applying Hooley’s estimate [4] (see (1.2) of this paper) and the evaluation
of Ramanujan sums in the third line of the estimate that follows,

> > x(y)u(y)e(a—;j_*y-)l2

Y<x=Z22Y '"W<y=N/x
(a?c(ji — 2))!
2 d——
b

< 2 X
Y<x=2Y

VYEN/Y 2EN/Y

Vb7 — 7
« 3 3 b,y — 7) + B2 T — )2
VEN/Y tSN/Y b
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< 3 z(ﬂ n 1)(Yk " bl/2+ekl/2)
yEN/Y kb \Yk b
> 2 piria+e | YK Yk pl/2+e 112

VEN/Y klp b k”2

N N
<, X —db) + —);b”z Tt oyp + bt

y=N/Y

N? N ot N+
L —— + b+ Nb+ —b' e

Yb € Y
=.N_2bfl+i/2+z fb_)

Y b Y N N

Above, we have used the elementary estimate [3], that for « = O,

2 2 <, ba+(
kb

Next applying the estimate [1], page 140,
> dA(x) < Y(log Y)Y

x=2Y
we have,
1 b2 v b
2.1 S(Y) > <, NX(lo N3b‘(—+———+—+—)
(2.1) | S(Y) I© <, N°(log N) ) 7 IR
Hence, we have the estimate for Sj,
2 IS(Y) |
Yed
1 pl/4 Y12 pi/2
3/2
< N(log NY"°b* YEA P72 + Y172 + N + N2
logN = b4 1 b2
3/2
<, N(log N) b‘( 172 + 7 + 7 Nl/zlog N)
1 pl/4 pl/2
5/2
< N(log N) b‘(b]/z + W2 + N1/2)

Putting the estimates on S, S, S, and S; together we have,

—a
(2.2) EN u(k)x(k)e(kl;)

52 ] bt b 12+ep2
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Let W = [N*°(log N)*3b"/1%). Then,

N(log N)5/2b6+1/4

w72 + B2t 1og W <« N¥3(log N)!1/3p3/10+¢

Thus (2.2) becomes,
k
(2.3) s u(k)x(k)e(—a)
k=N b

<<( N(lOg N)5/2b£—]/2 + Nl/2(10g N)5/2b1/2+5
+ N4/5(10g N)“/5b3/10+(

We may assume that b = N?3, otherwise the estimate in (2.3) is trivial.
Then,

NI/Z(log N)5/2b]/2+( = N4/5(10g N)|1/5b3/10+€

and using this in (2.3) completes the proof.
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