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The injection of CO2 into depleted reservoirs carries the potential for significant
Joule–Thomson cooling, when dense, supercritical CO2 is injected into a strongly
under-pressured reservoir. The resulting low temperatures around the wellbore risk causing
thermal fracturing of the well/near-well region or causing freezing of pore waters or
formation of gas hydrates which would reduce injectivity and jeopardise well and reservoir
integrity. These risks are particularly acute during injection start-up when CO2 is in the gas
stability field. In this paper we present a model of non-isothermal single-phase flow in the
near-wellbore region. We show that during radial injection, with fixed mass injection rate,
transient Joule–Thomson cooling can be described by similarity solutions at early times.
The positions of the CO2 and thermal fronts are described by self-similar scaling relations.
We show that, in contrast to steady-state flow, transient flow causes slight heating of CO2
and reservoir gas either side of the thermal front, as pressure diffuses into the reservoir.
The scaling analysis here identifies the parametric dependence of Joule–Thomson cooling.
We present a sensitivity analysis which demonstrates that the primary controls on the
degree of cooling are reservoir permeability, reservoir thickness, injection rate and
Joule–Thomson coefficient. The analysis presented provides a computationally efficient
approach for assessing the degree of Joule–Thomson cooling expected during injection
start-up, providing a complement to complex, fully resolved numerical simulations.

Key words: porous media, coupled diffusion and flow, geophysical and geological flows

1. Introduction

Carbon capture and storage is an important mitigation method to offset CO2 emissions,
including those from hard-to-abate industries such as steel and cement (Bickle 2009;
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Figure 1. Pressure–temperature, p − T , phase diagram for CO2 showing typical reservoir and well-head
conditions. Note that depleted reservoirs fall within the gas stability field of CO2. The density contours are
constructed using data from the NIST web-book (Linstrom & Mallard 2001, webbook.nist.gov).

Bui et al. 2018; Krevor et al. 2023). Depleted oil and gas reservoirs within sedimentary
basins represent a global potential storage resource of up to 1000 Gt CO2 (Benson et al.
2012). Depleted reservoirs benefit from being proven secure storage sites for buoyant
fluids, being well-characterised from previous oil and gas activities and having large
pressure margins for safe storage (Barrufet, Bacquet & Falcone 2010; Loizzo et al. 2010).
Together, these factors reduce storage risks. For many mature petroleum regions, such as
the North Sea, depleted reservoirs lie close to major sources of emissions (Ramírez et al.
2010; Bentham et al. 2014). The possibility to reuse existing well infrastructure and to take
advantage of smaller injection-pressure requirements also promise to reduce the costs of
CO2 storage. Despite these benefits, injection into highly depleted reservoirs is yet to be
demonstrated at a large scale, with all commercial-scale carbon storage projects currently
utilising deep saline aquifers.

Depleted reservoirs with limited connectivity with surrounding aquifers are
characterised by below-hydrostatic pressure as a result of past fossil fuel production.
Typical oil and gas reservoirs within sedimentary basins occur at depth ranges of
700–4500 m (Gluyas & Hichens 2003; Hannis et al. 2017), but can have abandonment
pressures as low as 0.35–0.8 MPa (MacRoberts 1962). Unlike deep saline aquifers, which
occur at similar depth ranges, depleted oil and gas reservoirs fall within the gas stability
field of CO2, as shown in figure 1.

While pressure depletion increases the pressure margin for safe storage (Barrufet
et al. 2010), injection of compressed high-pressure CO2 can cause severe cooling of the
near-wellbore region, which leads to a number of technical challenges. This phenomenon
is referred to as the Joule–Thomson effect, and describes the adiabatic cooling (or
heating depending on the sign of the Joule–Thomson coefficient) due to expansion and
depressurisation of a fluid as it flows through a pressure gradient. Although this effect
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Transient Joule–Thomson cooling during CO2 injection

is localised, there is concern that the cooling and associated thermal stresses during
initial injection could cause thermal fracturing (Vilarrasa, Rinaldi & Rutqvist 2017)
and/or freezing of pore waters (Fan, Xu & Wu 2020) and the formation of gas hydrates
(Sun & Duan 2005; Oldenburg 2007; Hoteit, Fahs & Soltanian 2019). Together these
processes threaten to reduce injectivity in the near-wellbore region (Almenningen et al.
2019) and may jeopardise near-wellbore stability and well integrity (Paluszny et al.
2020). Current methods to mitigate Joule–Thomson cooling involve heating of CO2 and
subsequent injection in the gas phase using multiple injectors. This method will be applied
for the Porthos project in the North Sea (Neele et al. 2019, www.porthosco2.nl), but
is both expensive and emissions intensive. Injection of cold, dense liquid CO2 would
considerably improve the operational viability of future projects. Understanding the risks
of Joule–Thomson cooling, and developing new mitigation approaches, is therefore crucial
for facilitating cold CO2 injection into depleted reservoirs and to enable safe, large-scale
storage in depleted reservoirs.

There is particular concern about cooling during the start of injection, when the
reservoir pressure is at its lowest point. On injection, the pressure will behave transiently,
with a pressure wave propagating from the wellbore into the reservoir (Dake 1983; Bear
2012). The pressure differential between the wellbore and far-field reservoir will increase
until the pressure wave reaches the outer boundary of the reservoir, at which point the
pressure will build up at a relatively constant rate throughout the reservoir such that the
pressure field can be characterised by a pseudo-steady-state solution (Dake 1983; Bear
2012). In deep saline aquifers, the compressibility of the pore fluids is low. This results in
a pressure wave that migrates quickly into the reservoir, such that the steady-state regime
is established rapidly – within a month for a reservoir of radius 2 km – relative to the
time scale of injection (Zhou et al. 2008; Mathias et al. 2011b). In depleted aquifers,
the low-pressure reservoir gas is significantly more compressible. We therefore expect the
pressure wave to propagate more slowly into the reservoir, leading to a prolonged transient
phase – between 5 and 10 times longer than for an equivalent-sized reservoir – during
which the differential pressure between the wellbore and far-field reservoir increases.
As the maximum degree of cooling scales with this pressure differential, reservoir
temperatures continue to decrease until the pressure wave reaches the outer boundary.
To constrain the maximum degree of cooling, it is therefore important to understand the
early transient behaviour of the system.

Joule–Thomson cooling has been modelled in a number of numerical studies
(Oldenburg 2007; André, Azaroual & Menjoz 2010; Singh, Goerke & Kolditz 2011; Han
et al. 2012; Singh et al. 2012; Mathias, McElwaine & Gluyas 2014; Ziabakhsh-Ganji &
Kooi 2014; Creusen 2018). Oldenburg (2007) showed that, for a large pressure differential
of 5 MPa between injection well and reservoir, Joule–Thomson cooling could cause the
temperature to drop by up to 20 ◦C, but he concluded that the cooling was unlikely to
lead to freezing or formation of gas hydrates. However, with the exception of Creusen
(2018) and Mathias et al. (2014), these studies have focused on low injection rates of
3–6 kg s−1, and initial reservoir pressures >5 MPa. While these conditions are relevant to
CO2 sequestration with enhanced gas recovery (Oldenburg, Stevens & Benson 2004), they
are not relevant to prospective sequestration in ultra-depleted reservoirs which have very
low reservoir pressures of 0.5–4 MPa and, for economic feasibility, require high injection
rates in the range 1–4 Mt yr−1 (equivalent to 30–125 kg s−1) (Neele et al. 2019).

Analytical or semi-analytical solutions to the flow, depressurisation and cooling of CO2
are useful tools for understanding the general scaling behaviour of the system and for
screening out injection regimes that produce prohibitively large Joule–Thomson cooling.
Mathias et al. (2010) developed an analytical reference solution for Joule–Thomson
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cooling under the assumption of constant fluid properties and a steady-state pressure
field. Their solutions give analytic expressions for the position of the thermal front and
the degree of cooling, and qualitatively agree with numerical models. However, the
assumption of steady-state pressure and fixed density are not consistent with the transient
response of the system that is expected during injection start-up and shut-in, when the
pressure field changes dynamically and the rate of pressure change varies with distance and
time. Developing a simplified framework for understanding the initial transient response
that occurs within the first month to year of injection will therefore prove useful.

In this paper we show that, under certain conditions, the transient Joule–Thomson
effect in the near-wellbore region can be described by similarity solutions which give
the pressure and temperature fields as a function of time and radial distance from the
well. We begin in §§ 2 and 3 by outlining the conservation equations for mass and energy
of non-isothermal single-phase flow during injection of CO2 into a methane (CH4)-filled
reservoir. This leads to governing equations for the pressure and temperature field around
the well in addition to equations for the positions of the CO2 and thermal fronts. We
solve these governing equations for the case of a radially spreading injection within a
cylindrical reservoir in § 4. Following Mathias et al. (2010), analytical reference solutions
for steady-state flow are derived along with an analytical reference solution for a diffusive
pressure field. We then show that the transient pressure and temperature fields away from
the well can be described by similarity solutions, with the front positions described by
self-similar scaling relations. In § 5 we present numerical solutions for the spreading CO2
with comparison with the steady-state solutions in addition to an analysis of the parametric
controls. Finally we discuss the results in § 6, and finish with some concluding remarks
in § 7.

2. Model description

We consider the injection of CO2 into a reservoir comprising a homogeneous, isotropic and
incompressible rock matrix. The pore space is initially filled with CH4 and an immobile
residual water fraction. The CO2 is then injected from the wellbore and flows into the
reservoir, displacing the ambient CH4. The CO2 and CH4 are miscible, however, for
simplicity we neglect dispersive mixing within the gas phase (Hughes et al. 2012) and
assume a sharp front between CO2-rich and CH4-rich gas regions. Dissolution of CO2
and CH4 and water evaporation are also neglected. There is only single-phase gas flow
with a constant relative permeability because the water is at irreducible saturation. This
is a reasonable assumption because the gas–water contact in depleted gas reservoirs at
abandonment is typically far from the well, such that the region around the well has high
gas saturation. An example of this is the P18-2 reservoir, where CO2 injection is planned as
part of the Porthos project (Neele et al. 2019). Neglecting variable saturation also greatly
simplifies the model, permitting a focus on the interplay between pressure and temperature
diffusion away from the wellbore.

Buoyancy and capillary forces are neglected in order to focus more narrowly on
depressurisation around the wellbore, such that the flow is assumed to be driven by
injection pressure only (Benham, Neufeld & Woods 2022). This assumption is reasonable
in a CH4-filled reservoir as viscous forces can be shown to dominate over buoyancy forces
in the near-wellbore region at low pressure (Nordbotten & Celia 2006). Vapour-phase CO2
is slightly denser than CH4 (Linstrom & Mallard 2001) leading to slight density under-ride.
Modelling by Mathias et al. (2014), which accounted for the difference in fluid properties
and gravitational forces, demonstrated that the front is semi-vertical on the scale of the
reservoir. Furthermore, despite work showing a small dependence of relative permeability
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Transient Joule–Thomson cooling during CO2 injection

on fluid composition (Ren et al. 2000), here, we assume that the relative permeabilities
of CO2 and CH4 are equal. The density of CO2 and CH4 are dependent on pressure and
temperature. We assume all fluid properties of CO2 and CH4 are equivalent and equal to
those of CO2. Note that this is equivalent to CO2 injection into a CO2-filled reservoir.

The compressibility and expansivity of residual water and rock have been shown to
have negligible effect on the pressure and temperature fields (Singh et al. 2011, 2012). We
therefore neglect these effects and assume the volume fractions of water and rock remain
constant. Note that rocks in real sedimentary reservoirs are, to some extent, compressible.
The following analysis could readily be extended to incorporate matrix compressibility, but
it is neglected here for simplicity of presentation. The rock and all fluid components are
assumed to be in local thermodynamic equilibrium. Here, we focus on the thermal effects
caused by Joule–Thomson cooling. We therefore do not consider the thermal effects of
water vaporisation or CO2 dissolution – this assumption does not significantly change the
behaviour of the system. Models from Creusen (2018) show that while water vaporisation
produces around 2 ◦C of additional cooling, CO2 dissolution has negligible thermal effect
in the near-wellbore region. Neglecting partial miscibility of CO2 and water means that
we also do not model the formation of a dry-out zone or salt precipitation around the
wellbore. While these are expected to slightly modify the pressure field, these effects are
beyond the scope of this work. We refer to other studies that have focused on these effects
(Zeidouni, Pooladi-Darvish & Keith 2009; Mathias et al. 2011a; Hosseini, Mathias &
Javadpour 2012).

A schematic of the injection is shown in figure 2. While the near-well fluid flow is often
approximately radial, injection into a channel may lead to linear flow. For simplicity, we
will initially use rectilinear coordinates. The injection well is at xW , and the injected CO2
front occurs at xC(t). Injection of a cold fluid into a warm porous reservoir leads to the
development of a thermal front at xT(t), across which the temperature of the fluid adjusts
to that of the formation (Jupp & Woods 2003; Rayward-Smith & Woods 2011). Due to
local thermal equilibrium between the fluid and the immobile solid matrix, the transient
thermal front always travels slower than the injected CO2 front. This thermal inertia is due
to the significant heat capacity of the solid grains within the reservoir, which heat up the
fluid as it advects through the pore space. Joule–Thomson cooling is superimposed on top
of the advected temperature field, with heat conduction having the effect of smearing out
the thermal front, as shown in figure 2. The minimum temperature Tmin = Tw − ΔTJT ,
is therefore a function of both Joule–Thomson cooling and the bottom-hole temperature
Tw, where �TJT is the maximum Joule–Thomson cooling, which occurs just before the
thermal front.

3. Governing equations

Given the assumptions described above, conservation of mass, Darcy’s law (conservation
of momentum) and conservation of energy may be expressed as

φf
∂ρf

∂t
+ ∇ · (ρf u) = 0, (3.1)

u = −kkr

μ
∇p, (3.2)

ρf

(
φf

∂Uf

∂t
+ u · ∇Uf

)
+ φwρw

∂Uw

∂t
+ φsρs

∂Us

∂t
= ∇ · (kT∇T) − ∇ · ( pI · u) , (3.3)
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Figure 2. Schematic diagram showing injection of CO2 into a low-pressure, gas-filled reservoir. Here, xW , xT
and xC denote the edge of the wellbore, the positions of the thermal front and CO2 front, respectively. Schematic
temperature fields are shown in red subject to: (i) fluid advection only (dashed), (ii) fluid advection, heat
conduction and Joule–Thomson cooling (solid). Here �TJT denotes the maximum Joule–Thomson cooling.

where the pressure, p, and temperature, T , are functions of position, x, and time, t. The
CO2-CH4 fluid phase (which we will refer to as the ‘fluid’), water and solid rock are
denoted by subscripts f , w and s respectively. The volume fractions of each phase φi fully
occupy the space,

∑
i φi = 1. The phase densities are ρi, μ is the fluid viscosity, u is

the Darcy velocity, k and kr are the reservoir permeability and relative permeability of
the fluid respectively, Ui are the specific internal energies and kT is the effective thermal
conductivity of the bulk medium. While this could include both thermal conductivity and
thermal dispersivity, the effect of mechanical dispersion on heat transport is thought to be
negligible within the Darcian range (Bear 2013). The final term in (3.3) describes the work
done by the fluid due to expansion and viscous dissipation.

To close the conservation equations we use the definition of internal energy for the
fluid, water and rock, which relates changes in internal energy to changes in temperature,
pressure and density:

dUf = cpf (dT + μJT dp) − 1
ρf

dp + p

ρ2
f

dρf , (3.4)

dUw = cpw dT, (3.5)

dUs = cps dT, (3.6)

where cpi are the isobaric heat capacities of the different phases, μJT = ∂T/∂P|H =
(αf T − 1)/ρf cpf is the Joule–Thomson coefficient of the fluid, which describes the change
in temperature when a real gas flows from high pressure to low pressure at constant
enthalpy and αf is defined below. The sign of μJT for CO2 and CH4 within the p − T range
of interest are always positive, meaning that expansion produces cooling. It is important
to note that Joule–Thomson cooling is an inherently irreversible process and arises from
work done due to both fluid expansion and pressure changes as the fluid flows from regions
of high to low pressure.

To write the governing equations in terms of p and T , we also need an equation of state
for the fluid phase, which specifies ρf = ρf ( p, T). In its most general form this can be
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Transient Joule–Thomson cooling during CO2 injection

expressed as

ρf ( p, T) = ρr exp
[∫ p

pr

βf dp −
∫ T

Tr

αf dT
]

, (3.7)

where ρr is the density at the reference pressure, pr, and temperature, Tr. The isothermal
compressibility and isobaric thermal expansivity are defined as

βf = 1
ρf

∂ρf

∂p
, αf = − 1

ρf

∂ρf

∂T
, (3.8a,b)

respectively, where in general βf and αf may be arbitrary functions of p and T . Substituting
these definitions and Darcy’s law into (3.1) and (3.3) and expanding the derivatives allows
us to rewrite the conservation equations as a set of coupled nonlinear hyperbolic–parabolic
partial differential equations for p and T:

βf
∂p
∂t

− αf
∂T
∂t

= kkr

φf μ

[
∇p · (βf ∇p − αf ∇T

)+ ∇2p
]
, (3.9)

ρcp
∂T
∂t

− φf αf T
∂p
∂t

= ρf cpf
kkr

μ
∇p · (∇T − μJT∇p) + kT∇2T, (3.10)

where ρcp = φf ρf cpf + φwρwcpw + φsρscps is the average bulk volumetric heat capacity.
Here, we have assumed for simplicity that kkr, μ and kT do not vary significantly within the
reservoir. The different sources of heat on the right-hand side of (3.10) are heat advection
from fluid flow, Joule–Thomson cooling due to flow through a pressure gradient and heat
conduction. The second term on the left-hand side of (3.10) describes the work done due
to expansion/compression in response to transient pressure changes. In contrast to the
Joule–Thomson effect, this is a function of the properties of the bulk medium rather than
those of the fluid alone.

For CO2 in the gaseous state, compressibility βf varies by a factor of ∼5 between 1
and 5 MPa at 40 ◦C while thermal expansivity αf varies by a factor of ∼2 (Linstrom
& Mallard 2001). The p − T dependence of compressibility and expansivity, and to a
lesser extent viscosity, therefore introduce an additional nonlinearity into the equations.
Even for an isothermal system, this precludes direct analytic solution of the pressure field.
A number of authors (e.g. Tartakovsky 2000; Mukhopadhyay, Yang & Yeh 2012; Mathias
et al. 2014) have used the pseudo-pressure concept of Al-Hussainy, Ramey & Crawford
(1966) which relies on tabulated values of integrated fluid properties. For simplicity of the
following analysis, in the following section we assume that βf and αf are constant over the
relevant p − T range, such that density is described by

ρf ( p, T) = ρr exp
[
βf ( p − pr) − αf (T − Tr)

]
. (3.11)

A similar analysis as presented here could be carried out in which βf and αf are allowed
to be p − T-dependent. While this would yield more rigorous prediction of the p − T
trajectories, it does not substantially alter the presented results.

3.1. Pressure and temperature diffusivity
Equations (3.9) and (3.10) for p and T appear as advection–diffusion equations with
coupled source terms. The pressure equation, (3.9), is predominantly diffusive, with a
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pressure diffusivity given by

Dp = kkr

φμβf
, (3.12)

such that the higher the permeability and the lower the porosity, viscosity and
compressibility, the faster pressure diffuses into the reservoir. The length scale of pressure
decay is time-dependent, and is given by

Lp =
(

kkrt
φμβf

)1/2

. (3.13)

Thermal diffusivity is given by

DT = kT

ρcp
, (3.14)

leading to a thermal diffusion length scale

LT =
(

kTt
ρcp

)1/2

. (3.15)

Thermal diffusion is small in contrast to the pressure diffusion, DT � Dp, and hence
temperature is advection dominated, meaning that the system admits sharp temperature
fronts. As heat advection is controlled by the pressure gradient, we expect the advection
length scale of the temperature field to be set by the pressure diffusion length scale Lp. For
representative parameter values, we find that

L2
p

L2
T

= Dp

DT
= kkrρcp

φμβf kT
= O(103 − 106) � 1. (3.16)

Thermal diffusivity therefore has the effect of regularising the local structure of the
thermal front, but does not control the long range structure of the temperature field.

3.2. Front positions
The injected CO2 and resident CH4 have so far been modelled as a combined fluid phase
with the same properties. Neglecting dispersion and mixing, the concentration of injected
CO2 in this fluid phase c may be described by

∂c
∂t

+ u
φf

· ∇c = 0, (3.17)

where the concentration of CH4 is given by 1 − c. The injected CO2 extends to the front
at xC(t) and therefore propagates at the local fluid velocity which is given by Darcy’s law:

∂xC

∂t
= u

φf
= − kkr

φf μ
∇p
∣∣∣∣
xC

. (3.18)

This expression could equivalently be derived by equating the mass flux through the well
to the change in injected CO2 mass within the reservoir

d
dt

∫ xC,t

xW ,t
ρf dr = − kkr

φf μ
ρf ∇p

∣∣∣∣
xW

, (3.19)

where xW is the position of the well. Applying the chain rule and substituting conservation
of mass, this leads to expression (3.18).
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High-pressure
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Low-pressure

depleted reservoir 

CO2

Q
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rC(t) rT (t)

CO2
CH4

Figure 3. Schematic diagram of a radial CO2 injection into a cylindrical CH4-filled reservoir with
thickness H. The CO2 and thermal front are denoted rC and rT , respectively.

Neglecting thermal diffusion results in a jump discontinuity in the temperature field
at the thermal front created during cold CO2 injection. The position of the thermal front
xT(t) can be derived by restricting the temperature equation, (3.10), to the purely advective
component

∂T
∂t

+ Γ
u
φf

· ∇T = 0, (3.20)

where Γ = φf ρf cpf /ρcp is the fractional volumetric heat capacity of the fluid. The speed
at which the thermal front xT(t) propagates is therefore given by the fluid velocity scaled
by Γ , such that

∂xT

∂t
= Γ

u
φf

= − Γ
kkr

φf μ
∇p
∣∣∣∣
xT

. (3.21)

4. Application to radial flow in a confined reservoir

We apply this model to the injection geometry illustrated in figure 3, which considers
a radially spreading injection within a confined reservoir of thickness H. As we are
considering the initial transient response before the pressure wave reaches the outer
boundaries of the reservoir, the reservoir is modelled as infinite. The injection well, of
radius rW , penetrates the full thickness of the formation. The radial positions of the CO2
and thermal fronts are rC(t) and rT(t) respectively. The governing equations in terms of
the radial distance r are then given by

βf
∂p
∂t

− αf
∂T
∂t

= kkr

φf μ

[
∂p
∂r

(
βf

∂p
∂r

− αf
∂T
∂r

)
+ 1

r
∂

∂r

(
r
∂p
∂r

)]
, (4.1)

ρcp
∂T
∂t

− φf αf T
∂p
∂t

= ρf cpf
kkr

μ

∂p
∂r

(
∂T
∂r

− μJT
∂p
∂r

)
+ kT

r
∂

∂r

(
r
∂T
∂r

)
. (4.2)

A constant mass flux inner boundary condition can be defined at the wellbore rW ,
along with a fixed bottom-hole temperature Tw. Here we define the problem on an
infinite domain, such that the outer boundary maintains the initial reservoir pressure and
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temperature (p0, T0) as r → ∞. The boundary and initial conditions are then

∂p
∂r

(rW , t) = − μQ
2πrWHkkrρf

, T(rW , t) = Tw, (4.3a,b)

p(∞, t) = p0, T(∞, t) = T0, (4.4a,b)

where Q is the mass injection rate through the well (kg s−1). Note that this represents
an idealised injection scenario. During actual injections, the bottom-hole CO2 conditions
depend on CO2 properties at the well head and on the dynamics of flow within the well.
These are likely to vary over time leading to time-dependent boundary conditions.

4.1. Analytical reference solutions

4.1.1. Pressure diffusion
Given low fluid compressibility and small pressure gradients, ρf can be assumed constant
and (3.9) can be linearised by neglecting the first and second terms on the right-hand side.
Assuming temperature changes are negligible, this leads to the classical pressure diffusion
equation (Dake 1983; Bear 2012)

∂p
∂t

= kkr

φf μβf

1
r

∂

∂r

(
r
∂p
∂r

)
. (4.5)

Note that in scenarios in which pressure gradients are very high, such as near the
wellbore in radially spreading injections, or for fluids with high βf , this linearisation is
not appropriate. Comparison of the approximate pressure solution to (4.5) with the fully
coupled equations will allow us to explore the effect of the nonlinear terms. Because the
temperature and pressure fields vary over a length scale Lp ∝ t1/2, it is instructive to seek
a similarity solution (Barenblatt & Isaakovich 1996) using the similarity variable

η(r, t) = r
(
4Dpt

)−1/2 = r
(

4kkrt
φμβf

)−1/2

. (4.6)

Use of η transforms (4.5) into an ordinary differential equation for the structure of the
pressure field:

p′′ +
(

2η + 1
η

)
p′ = 0, (4.7)

where the primes denote derivatives with respect to η. Integrating and applying the
constant mass flux inner boundary condition gives

p′ = − μQ
2πHkkrρf η

exp(η2
W − η2), (4.8)

where ηW is the value of η at the wellbore. As the well has a finite and fixed radius, rW ,

ηW(t) = rW

(
4kkrt
φμβf

)−1/2

, (4.9)

and hence ηW → 0 as t → ∞. Because we have assumed that βf is small and ρf is
relatively constant within the reservoir, we can integrate (4.8) again and apply the far-field
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Transient Joule–Thomson cooling during CO2 injection

outer boundary condition (4.3a,b) to give the similarity solution

p = p0 − μQ
4πHkkrρf

eη2
W Ei

(
−η2

)
, (4.10)

where ρf is the average fluid density and Ei( y) is the exponential integral. We assume a
self-similar CO2 front position, given by

rC(t) = ηC

(
4kkrt
φμβf

)1/2

, (4.11)

where ηC is a numerical constant to be determined. The position of the front can be found
by substituting this expression for rC(t) and (4.8) into the expression for the front position
(3.18), which gives

ηC =
(

μβf Q
4πHkkrρf

exp(η2
W − η2

C)

)1/2

. (4.12)

4.1.2. Steady-state Joule–Thomson cooling
Mathias et al. (2010) presented an analytical solution for Joule–Thomson cooling, which
can be derived if the pressure field is assumed to be in steady state and uncoupled to
the temperature field. A truly steady-state pressure field requires mass flux through the
outer boundaries to equal that at the injection well. This is a non-physical condition
for a cylindrical reservoir with an impermeable caprock, in which the radial symmetry
is preserved. However, a pseudo-steady-state condition can be established in a closed
reservoir when the pressure wave reaches the outer impermeable boundaries of the
reservoir. In this regime ∂p/∂t is approximately constant and small over the whole
reservoir such that ∂p/∂r at a given radius does not vary substantially with time (Dake
1983; Bear 2012). The pressure field near the well in the pseudo-steady-state regime can
therefore be approximated by

∂

∂r

(
r
∂p
∂r

)
� 0, (4.13)

which on imposition of the constant mass flux inner boundary condition gives

∂p
∂r

= − μQ
2πHkkrρf r

, (4.14)

where ρf is the average fluid density. Note that, for small r, this steady-state pressure
gradient is the same as the linearised pressure diffusion solution above. If at a given time
the wellbore pressure is known to be pW(t) and the reservoir properties can be assumed to
be constant, integrating again gives the pressure field as described by Thiem’s equation:

p = pW(t) − μQ
2πHkkrρf

ln
(

r
rW

)
, (4.15)

which is recovered from (4.10) as r → 0. The radial position of the CO2 front, rC, is found
by substituting (4.14) into (3.18) and integrating with respect to time, giving

rC =
(

Qt
πHφρf

+ r2
W

)1/2

�
(

Qt
πHφρf

)1/2

. (4.16)

The temperature field is calculated by coupling this pressure field to a transient
temperature equation. Assuming ∂p/∂t is small and neglecting heat conduction,
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substituting (4.14) into (4.2) gives

∂T
∂t

= − cpf Q
ρcp2πHr

(
∂T
∂r

+ μJTμQ
2πHkkrρf r

)
. (4.17)

Mathias et al. (2010) solved the temperature equation by applying a Laplace transform.
An alternative derivation using intermediate asymptotics is shown in Appendix A, which
gives the following solution:

T(r, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tw − μJTμQ
2πHρf kkr

ln
(

r
rW

)
, r < rT ,

T0 + μJTμQ
4πHρf kkr

ln
(

1 − cpf Qt
ρcpπHr2

)
, r > rT ,

(4.18)

where rT is the radial position of the thermal front, which is given by

rT =
[

cpf Qt
ρcpπH

+ r2
W exp

(
4πHkkrρf (Tw − T0)

μJTμQ

)]1/2

. (4.19)

When Tw = T0, as reported by Mathias et al. (2010), the front condition is

rT ≈
[

cpf Qt
ρcpπH

+ r2
W

]1/2

, (4.20)

which could equivalently have been derived by substituting the pressure gradient (4.14)
into the condition for the thermal front (3.21). Because Tw < T0 in most injection
scenarios, at long times the front condition is better approximated by

rT ≈
(

cpf Qt
ρcpπH

)1/2

= Γ 1/2rC, (4.21)

where Γ = φf ρf cpf /ρcp is the fractional volumetric heat capacity. Unlike for the transient
pressure field solution above, in which the t1/2 dependence arises from the diffusive length
scale of the problem, the t1/2 dependence of the front positions in the steady-state case
arises geometrically due to radial spreading. The maximum degree of Joule–Thomson
cooling �TJT occurs at the thermal front and is given by

�TJT = Tw − T(rT) = μJTμQ
2πHρf kkr

ln
(

rT

rW

)
= μJT( pW − p(rT)). (4.22)

In the steady-state case, Joule–Thomson cooling is therefore simply given by μJT
multiplied by the pressure drop between the well and thermal front. As the thermal front
propagates into the reservoir at a distance ∼t1/2 through a static logarithmic pressure field,
the degree of cooling increases logarithmically with time.

4.2. Transient Joule–Thomson cooling
Given these reference solutions, we now examine the fully coupled model for transient
Joule–Thomson cooling. This allows us to quantify the effect of the nonlinear terms
and temperature coupling on the pressure field, and the effect of pressure transience on
Joule–Thomson cooling.
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Transient Joule–Thomson cooling during CO2 injection

The consideration of pressure transience requires the solution of the full governing
equations, (4.1) and (4.2). A scaling analysis of these equations suggests self-similar
solutions in terms of non-dimensional variables for pressure, temperature, radial extent
and well radius:

P = βf ( p − p0) , T = αf (T − T0) ,

η = r
(

4kkrt
φμβf

)−1/2

, ηW = rW

(
4kkrt
φμβf

)−1/2

, (4.23a–d)

where η is the similarity variable, and ηW is a time-dependent variable introduced through
the fixed wellbore radius. The initial reservoir pressure and temperature are p0 and T0,
respectively, and βf and αf are assumed constant. Substituting the above relations into
(4.1) and (4.2) we obtain

ηW

η

(
∂P
∂ηW

− ∂T
∂ηW

)
+ ∂P

∂η
− ∂T

∂η
= − 1

2η

[
∂P
∂η

(
∂P
∂η

− ∂T
∂η

)
+ 1

η

∂

∂η

(
η
∂P
∂η

)]
,

(4.24)

ηW

η

(
∂T
∂ηW

− A ∂P
∂ηW

)
+ ∂T

∂η
− A∂P

∂η

= − 1
2η

[
Γ

∂P
∂η

(
∂T
∂η

− J ∂P
∂η

)
+ 1

Pe
1
η

∂

∂η

(
η
∂T
∂η

)]
. (4.25)

Equivalent equations for a fluid with variable βf and αf are given in Appendix B.
The solutions to these equations are self-similar in the far field, but have a slow
time dependence in the near-wellbore region due to the requirement to match onto the
fixed wellbore radius. The general solutions are therefore P(η, ηW) and T (η, ηW). The
governing equations are subject to the scaled boundary conditions

P(∞) = 0, T (∞) = 0,
∂P
∂η

(ηW) = − χ

ηW
, T (ηW) = TW . (4.26a–d)

The non-dimensional parameters

Γ = φρf cpf

ρcp
, J = αf μJT

βf
=

(
∂T
∂p

∣∣∣∣
H

)
f(

∂T
∂p

∣∣∣∣
ρ

)
f

, A =
φα2

f T

βf ρcp
=

(
∂T
∂p

∣∣∣∣
S

)
f +w+s(

∂T
∂p

∣∣∣∣
ρ

)
f

,

Pe = ρcpkkr

kTφμβf

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.27a–d)

depend on fluid and reservoir properties. As defined above, Γ is the volumetric heat
capacity ratio of the fluid to the bulk porous medium, J is the scaled Joule–Thomson
coefficient of the fluid which controls the magnitude of Joule–Thomson cooling due to
flow of the fluid down a pressure gradient, A is the scaled isentropic temperature gradient
of the bulk medium which controls the temperature response to transient pressure changes
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and Pe is the thermal Péclet number. The non-dimensional parameters

χ = μβf Q
2πHkkrρf

, TW = αf (Tw − T0) , (4.28a,b)

depend on the boundary conditions at the wellbore.
Note that, as above for the linearised pressure solution, when the domain is rescaled

in terms of η, the finite well radius causes the position of the inner boundary to be
time-dependent, ηW = ηW(t), with ηW → 0 as t → ∞. The finite well radius therefore
introduces an additional time dependence close to the well. Due to the fixed wellbore
temperature, we can make the observation that

∂T
∂ηW

� − ∂T
∂η

∣∣∣∣
η→ηW

, as ηW → 0. (4.29)

As observed for the reference solution, the fixed mass injection rate causes the pressure
at the wellbore to buildup at a rate inversely proportional to ηW , such that the long time
solution provides the envelope of the earlier time solutions. In other words, in the absence
of temperature coupling, the pressure field is fully self-similar. This means that

∂P
∂ηW

� 0, as ηW → 0. (4.30)

Substituting the above approximations into (4.24) and (4.25) gives

P ′ −
(

1 − ηW

η

)
T ′ = − 1

2η

[
P ′ (P ′ − T ′)+ 1

η

(
ηP ′)′] , (4.31)

(
1 − ηW

η

)
T ′ − AP ′ = − 1

2η

[
ΓP ′ (T ′ − JP ′)+ 1

Pe
1
η

(
ηT ′)′] , (4.32)

where the primes now denote derivatives with respect to η.
To isolate the effect of temperature coupling on the pressure field, we can additionally

consider the solution to the pressure field under isothermal conditions. Employing the
same approximations as above, this is described by

P ′ = P ′2 + 1
η

(
ηP ′

i
)′

, (4.33)

subject to the boundary conditions

P ′(ηW(t)) = − χ

ηW
, P(∞) = 0. (4.34a,b)

4.2.1. Front positions
In the limit η � ηW the effect of the finite well radius diminishes such that the solution
is completely self-similar with respect to the variable η. Hence, the conditions (3.18) and
(3.21) for the front positions xC(t) and xT(t) can be rewritten in terms of η to give

ηC = − 1
2
P ′
∣∣∣∣
ηC

, ηT = − Γ

2
P ′
∣∣∣∣
ηT

, (4.35a,b)

where ηC and ηT are the values of η at the CO2 and thermal fronts, respectively.
Rearranging the temperature equation, (4.32), we also identify a stationary point in the
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Transient Joule–Thomson cooling during CO2 injection

temperature solution which represents a temperature maximum at

ηM = − ΓJ
2A P ′

∣∣∣∣
ηM

. (4.36)

Because the conditions (4.34a,b)–(4.36) are only dependent on P , given a self-similar
pressure field, the fronts will be defined for fixed values of ηC, ηT and ηM . This has the
significant benefit that solutions to (4.34a,b) and (4.36) give the positions of the fronts for
all time according to

rC = ηC

(
4kkrt
φμβf

)1/2

, rT = ηT

(
4kkrt
φμβf

)1/2

, rM = ηM

(
4kkrt
φμβf

)1/2

. (4.37a–c)

Furthermore, given a self-similar pressure field, the pressures at the fronts, PC, PT and
PM , are constant in time.

4.2.2. Numerical approach
We solve (4.31) and (4.32) numerically in python using the scipy.integrate.solve_bvp
library, which implements a fourth-order implicit Runge–Kutta method. Due to the time
dependence of the inner region, the equations are solved for each time interval of interest,
with the inner boundary conditions imposed at ηW(t). The far-field boundary is imposed
at a finite η that is sufficiently large that pressure and temperature gradients are negligible.
Varying the position of the outer boundary can be shown to not influence the final
solutions.

5. Results

To illustrate the transient Joule–Thomson cooling effect, solutions are calculated for
injection into a 2 MPa reservoir with an ambient temperature of 75 ◦C. We consider a
constant rate CO2 injection at 30 kg s−1 (corresponding to ∼1 MtCO2 yr−1) which is
relevant to the high injection rates used at CO2 sequestration sites such as the Sleipner
project (Furre et al. 2017). Solutions are calculated for injection temperatures of 25 ◦C and
75 ◦C to represent a cold and heated injection, respectively.

The reference reservoir and fluid properties are given in table 1. The fluid
thermophysical properties ρr, βf , αf , cpf and μ are assumed to be constant and
are calculated using the CoolProp library (Bell et al. 2014) which implements the
Span-Wagner equation of state for pure CO2. We use a reference pressure pr of 3 MPa
and temperature Tr equal to that of the wellbore Tw. Density ρf is a function of p and
T as given in (3.11). This leads to values of the non-dimensional parameters Γ , A, Pe
and χ which vary as a function of p and T . Reference values for all the non-dimensional
parameters at pr and Tr are given in table 1.

The solutions for the cold injection are plotted as a function of η in figure 4 at time
intervals up to 1 year, which is the time at which the pressure field would start to interact
with the outer boundary of a reservoir with a radius of 2 km. We find that the pressure
diffuses smoothly into the reservoir, while the temperature has a sharp advective front
which lags behind the injected CO2 front due to the thermal inertia of the porous system.
Because the fluid density is a function of p and T we see that it decreases into the reservoir
due to decreasing p, and exhibits a sharp drop across the thermal front due to the increase
in T at the thermal front. The positions of the CO2 front, the thermal maximum and the
thermal front occur at constant values of η for all time. The temperature is self-similar in
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Reservoir properties

Initial reservoir pressure p0 2 MPa
Initial reservoir temperature T0 75 ◦C
Well radius rW 0.1 m
Reservoir thickness H 50 m
Porosity φ 0.3
Permeability k 10−13 m2

Relative permeability kr 1
Thermal conductivity kT 3 W m−1 K−1

Rock density ρs 2700 kg m−3

Rock heat capacity cps 750 J kg−1 K−1

Injection rate Q 30 kg s−1

Wellbore (injection) temperature Tw (25, 75) ◦C

CO2 Thermophysical properties

Reference pressure pr 3 MPa
Reference temperature Tr (25, 75) ◦C
Reference fluid density ρr (64.1, 50.3) kg m−3

Heat capacity cpf (1170, 1040) J kg−1 K−1

Joule–Thomson coefficient μJT (11.0, 7.36) × 10−6 K Pa−1

Compressibility βf (4.12, 3.69) × 10−7 Pa−1

Thermal expansivity αf (6.14, 3.98) × 10−3 K−1

Viscosity μ (1.55, 1.78) × 10−5 Pa s

Reference non-dimensional variables (pr, Tr)

Volumetric heat capacity ratio Γ (0.0157, 0.0110)

Scaled Joule–Thomson coefficient J (0.165, 0.0794)

Scaled isentropic temperature gradient A (5.68, 3.13) × 10−3

Thermal Péclet number Pe (2.51, 2.43) × 104

Scaled wellbore pressure gradient χ (0.0949, 0.125)

Scaled wellbore temperature TW (−0.307, 0)

Table 1. Reference reservoir properties, fluid properties and non-dimensional variables.

the far field, but is time-dependent behind the thermal front due to the finite well radius.
The maximum amount of cooling increases with time as the pressure drop between the
well and thermal front increase. The expanded region shows the small amount of heating
ahead of the thermal front due to transient compression of the fluid ahead of the thermal
front, with a temperature maximum that lags slightly behind the CO2 front. In this case
the transient heating is of the order of 0.25 ◦C.

The uncoupled pressure field in addition to the reference analytical solution to the
linearised pressure equation are plotted for comparison. the analytical solution assumes
a fixed density which we set to the reference density ρr. We can evaluate the effect of
the nonlinear terms in the pressure equation by comparing the uncoupled p field with
the analytical reference solution. The analytical p field decreases logarithmically with η,
while the uncoupled pressure field has more curvature, developing a convex-up shape.
This is due to compressibility of the CO2 which causes ρf to increase as p builds up
around the wellbore. For fixed mass injection rate, higher ρf of injected CO2 causes a
reduction in the volumetric injection rate, and therefore a reduction in the pressure gradient
at the wellbore over time. The effect of temperature coupling on the pressure field can
be evaluated by comparing the uncoupled pressure field with the fully coupled model.
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Figure 4. Example transient solutions, calculated using the reference fluid and reservoir properties (see
table 1), for pressure, temperature, density and CO2 fraction in the mobile fluid phase, plotted against the
similarity variable η. Solutions are calculated for a cold injection with Tw = 25 ◦C. The dotted and dashed
lines in the top plot show the uncoupled and linearised pressure field solutions at 1 year. The positions of ηW (t)
at the various times are marked by ‘x’. The positions of ηT , ηM , and ηC are marked by the vertical blue, orange
and grey lines, respectively.

The far-field pressure solution is the same as the uncoupled pressure solution, but close to
the well it deviates from the uncoupled pressure field due to the sudden jump in ρf at the
thermal front which reduces the near-well pressure gradient in the coupled model. Note
that the time dependence of the inner pressure field due to temperature coupling is small.

The solutions for both the cold and hot injection are plotted as a function of r in figure 5.
Also shown for comparison are the analytic steady-state solutions. In a transient flow
model the fluid density varies both spatially and temporally due to varying p and T leading
to an ambiguity in the choice of density to use for the steady-state flow solutions when
comparing the two models. Steady-state solutions for three different ρf , corresponding
to the wellbore densities at the three time intervals, are therefore shown. The choice of
density significantly affects the estimate of Joule–Thomson cooling, with the lower and
upper bounds of �TJT here differing by ∼5 ◦C. As previously noted by Mathias et al.
(2014), using the steady-state approximation with the wellbore ρf under-predicts both
�TJT and the CO2 front position rC. Despite this, the choice of ρf for the steady-state
solutions has a negligible effect on the estimated position of the thermal front rT , and the
steady-state models agree with the positions calculated from the transient models. This
can be understood from expressions (4.16), (4.20) and (4.22) for the steady-state CO2 front,
thermal front and maximum Joule–Thomson cooling, respectively. The expressions for the
CO2 front and the degree of Joule–Thomson cooling explicitly depend on the ρf , whereas
the position of the thermal front is dependent on the bulk volumetric heat capacity, ρcp,
which is dominated by the heat capacity of the rock, and thus has a weaker dependence on
ρf .

The transient solutions in figure 5 show a saw-tooth pattern in the near-wellbore
temperature field. This is due to the decrease in pressure gradient caused by the decreasing
volumetric injection rate over time as ρf at the wellbore increases. This results in gradual
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Figure 5. Example transient solutions, calculated using the reference fluid and reservoir properties (see
table 1), for pressure, temperature, density and CO2 fraction in the mobile fluid phase, plotted against the
radial distance r. Solutions are calculated for (a) a cold injection at 25 ◦C, and (b) a hot injection at 75 ◦C. The
steady-state solutions, calculated using the wellbore densities at the three time intervals, are plotted in dashed
lines for comparison.

heating in the region behind the thermal front due to pressurisation. Here, we have
assumed a constant value of μJT . Taking the pressure dependence of μJT into account, the
near-wellbore heating would be more significant than modelled here. This is because μJT
decreases with increasing pressure, which would introduce greater curvature to the inner
temperature solution. The transient pressure increase additionally causes minor heating
ahead of the thermal front as the pressure wave diffuses into the reservoir. The transient
heating is not captured in the steady-state models, as density is assumed to be constant.

5.1. Effects of pressure transience
During the early stages of injection, pressure at any point in the reservoir increases over
time due to pressure build up and pressure diffusion into the reservoir. To further explore
the effects of this pressure transience it is useful to consider the rate of of change of
pressure, temperature and density in both the solid and fluid frames. The rate of change
in the fluid frame is given by the material derivative with respect to the fluid velocity
D/Dt = (∂d/∂t + u/φ · ∇). In figure 6 the rates are plotted as a function of η so that the
profiles at different times can be compared.

In the solid frame, pressure increases over time throughout the reservoir as shown in
in figure 6(a). The pressurisation rate is highest at the start of injection and decreases
logarithmically with time. The rate of temperature change in the solid frame, is plotted in
figure 6(b). As noted above, the region behind the thermal front undergoes compressive
heating. Rapid cooling occurs at the thermal front as the solid loses heat to the cold
injected fluid. Note that while the degree of cooling increases with time, the rate of
cooling is highest at the start of the injection. Ahead of the thermal maximum, the
CO2 and reservoir gas again undergo slight compressive heating. The rate of temperature
cycling is important when assessing the risks associated with Joule–Thomson cooling
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Figure 6. Plots of (a) the rate of pressure buildup in the solid frame ∂p/∂t, (b) the rate of temperature change
∂T/∂t, (c) the rate of fluid density increase ∂ρf /∂t, (d) the material derivative of pressure in the fluid frame
Dp/Dt, (e) the material derivative of temperature DT/Dt and ( f ) the material derivative of fluid density
Dρf /Dt. All rates are calculated for a cold injection at 25 ◦C. The thermal front, temperature maximum and
CO2 front are marked by blue, red and grey vertical lines, respectively.

including permeability reduction and formation of gas hydrates. This is because the
kinetics of hydrate formation (Farhang, Nguyen & Hampton 2014) and the time-dependent
creep of reservoir rocks (Brzesowsky et al. 2014) mean that both of these processes are
rate-dependent.

Density responds to changes in both pressure and temperature. In figure 6(c) we see that
the pressure effect dominates such that at a given point in the reservoir, the fluid density
always increases with time. The effect of temperature can be seen at the thermal front,
where dρ/dt peaks due to the sudden temperature drop as the cold front advects.

Figure 6(d) shows that Dp/Dt is negative in the fluid frame near the wellbore due to
the high fluid velocity around the well, but becomes positive in the far field where both
the fluid velocity and pressure gradient are lower. The transition from depressurisation to
pressurisation in the fluid frame occurs at the CO2 front. Transient pressure increase does
work on the fluid causing isentropic heating. The small heated region around the CO2 front
is thus caused by pressure diffusion into the reservoir where the CO2 is nearly immobile.
Behind the CO2 front, the fluid is flowing faster than the pressure field is diffusing into
the reservoir such that the fluid experiences depressurisation as it flows. This explains why
the steady-state approximation can be used close to the wellbore: in this region fluid flow
is so fast that the pressure field appears static in the fluid frame. In figure 6(e) we see that
the fluid undergoes Joule–Thomson cooling in response to the depressurisation around the
wellbore. However, the heat content of the solid rock heats the injected fluid and retards
the thermal effect. This is observed as heating of the fluid as it crosses the thermal front.
The magnitudes of both Dp/Dt and DT/Dt decrease logarithmically with time.

Figure 6( f ) shows the material derivative of the fluid density, which from conservation
of mass is equivalent to density multiplied by the divergence of the fluid velocity:

Dρ

Dt
= ∂ρf

∂t
+ u

φ
· ∇ρf = −ρf

φ
∇ · u. (5.1)
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Figure 7. Phase diagram of CO2 with contours of J = αf μJT/βf calculated using the CoolProp library (Bell
et al. 2014) for pure CO2. At the critical point (αf , βf ) → ∞ such that J = 1.

Therefore, if ∇ · u > 0, the fluid expands as it flows, while if ∇ · u < 0, the fluid contracts.
We see that a transition from expansion to contraction occurs at the CO2 front and is
attributable to the pressurisation ahead of the CO2 front. Behind the CO2 front the fluid
undergoes expansion, with the expansion rate peaking at the thermal front due to heating
of the fluid. Behind the thermal front the fluid also undergoes expansion. Given that

Dρ

Dt
= ρf

(
βf

Dp
Dt

− αf
DT
Dt

)
, (5.2)

this is because the effect of pressure decrease outweighs that of temperature decrease due
to Joule–Thomson cooling. Applying the steady-state approximation near the wellbore

Dρ

Dt
≈ ρf u

φ

(
βf

∂p
∂r

− αf μJT
∂p
∂r

)
, (5.3)

we see that, for pressure to dominate the density field near the wellbore, we must have the
condition

αf μJT

βf
= J < 1. (5.4)

Whether or not this is the case depends on the fluid properties. As shown in figure 7,
for CO2 J ≤ 1, meaning that CO2 will always expand when flowing into a low-pressure
reservoir. However, expansion would be minimal for injection near the critical point where
(αf , βf ) → ∞.

5.2. Parametric controls
The behaviour of the non-dimensional pressure and temperature fields is controlled by the
non-dimensional parameters Γ , J , A and Pe in addition to the boundary conditions χ
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Figure 8. Sensitivity analysis showing parametric controls on pressure and temperature fields of (a) volumetric
heat capacity Γ , (b) scaled isentropic temperature gradient A, (c) scaled Joule–Thomson coefficient J ,
(d) Thermal Péclet number Pe, (e) scaled wellbore pressure gradient χ , ( f ) wellbore temperature Tw. The
black lines show the reference case for injection at 75 ◦C, and the coloured lines are runs with independently
varied parameter values. In plots (a–f ) only a single parameter is changed at a time.

and TW . These parameters are functions of the thermodynamic properties of the injected
CO2 and the reservoir properties and injection conditions. The modes of variability can be
observed by varying the parameters independently, as shown in figure 8.

Increasing Γ increases the heat capacity of the rock and shifts the position of the thermal
front forwards; this slightly increases the degree of cooling. Increasing A increases the
amount of compressive heating ahead of the thermal front, but has negligible effect on the
degree of Joule–Thomson cooling. Increasing J significantly increases the temperature
gradient behind the thermal front and increases the maximum amount of Joule–Thomson
cooling �TJT . Increasing Pe sharpens the thermal front and slightly increases �TJT at the
front. As shown, these parameters have negligible effect on the pressure field.

The parameter χ which controls the pressure boundary condition is the only one that has
an appreciable effect on the pressure field. Increasing χ increases the wellbore pressure
gradient and the rate of pressure buildup. This increases the degree of Joule–Thomson
cooling and shifts the thermal front forwards. It also increases the curvature of the pressure
field, due to an increased dominance of the nonlinear terms in the pressure equation.
Note here that the effect of increasing Q has an equivalent effect to increasing the fluid
viscosity μ or to decreasing the formation thickness H or the permeability k. Decreasing
the temperature boundary condition shifts the temperature field behind the thermal front
to lower temperatures. As this increases the density behind the thermal front, It slightly
reduces the wellbore pressure gradient.

This parameter variation assumes that each parameter can be varied independently.
From an examination of the functional forms of the parameters, which are shown
in figure 8, we see that some parameters actually depend on the same reservoir
and thermophysical properties. Varying any particular property therefore leads to a
combination of the modes of variability shown. For example as porosity φ appears in
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both Γ and A, a larger φ of the reservoir would shift the thermal front forwards, as
well as increasing the amount of compressive heating. The permeability k is also strongly
dependent on φ. Increasing k would decrease χ and therefore decrease Joule–Thomson
cooling and potentially shift the thermal front backwards. Which effect is dominant
requires full numerical simulation. The analysis presented here is, however, useful in
providing an understanding of the effect the different properties and variables have.

The importance of the different parametric controls in controlling Joule–Thomson
cooling depends on the effects shown in figure 8 in addition to the range in values that
the parameters are likely to show. Because permeability k and formation thickness H
for different reservoirs can vary by up to an order of magnitude, there is scope for χ

to vary by up to two orders of magnitude. It is therefore the most important parameter in
controlling both the pressure response of the reservoir and the degree of Joule–Thomson
cooling. For small, low permeability reservoirs, the injection rate Q can be reduced
to limit pressure buildup. Variation in parameters Γ , A and J are controlled by the
thermophysical properties of the injected CO2. The p and T dependence of these properties
introduces additional nonlinearity into the system. While we have not modelled this here,
the appropriate scaling for a system with fully variable thermodynamic properties is given
in Appendix B. Contours of the equivalent non-dimensional variables Γ , A, J and χ (as
defined in Appendix B) are plotted on the phase diagram of CO2 in figure 9. Parameters Γ

and A attain high values around the critical point. As pressure and temperature vary away
from the reservoir, the near-critical p − T conditions are likely to only exist over a small
radial extent. The parameter J on the other hand varies by up to an order of magnitude
between the gas and liquid stability fields due to variation in μJT . We therefore expect
much greater Joule–Thomson cooling for a given pressure gradient when injecting in the
gas stability field as is the case when injecting into depleted and ultra-depleted reservoirs.
Although the fluid density ρf and viscosity μ trade-off against each other, the parameter χ

is also slightly higher, for given injection rate and reservoir properties, in the gas stability
field than the liquid field. This further contributes to higher degrees of Joule–Thomson
cooling for gas injections.

6. Discussion

Joule–Thomson cooling poses significant risks for injection into highly depleted
reservoirs. The reduced-order models presented here show cooling of up to 12 ◦C below
that of the wellbore temperature when injecting in the gas stability field. These models
are, however, best used as a means of understanding the fundamental physics involved
in Joule–Thomson cooling, rather than for developing quantitative operating procedures,
for which numerical simulations incorporating the full dependence of thermodynamic
properties on reservoir variables can be used. As observed here, the early transient
period of injection, in which the pressure wave is propagating into the reservoir, leads
to a self-similar pressure field with CO2 and thermal fronts which can be described
parametrically by self-similar scaling relations. At late times, the maximum degree of
Joule–Thomson cooling increases approximately ∝ ln(t1/2). Therefore, while the cooling
rate is most dramatic at the start of injection, the lowest temperatures are predicted to occur
at later times. As the greatest degree of cooling occurs immediately behind the thermal
front, the cold region expands out as an annulus away from the wellbore as illustrated
in figure 5. The risks associated with very low temperatures, including freezing of pore
waters, and formation of gas hydrates are therefore expected to occur immediately behind
the thermal front. Because the pressure gradient is greatest in the region closest to the
wellbore, the risks associated with the clogging of pore-space and the accompanying
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Figure 9. The p − T phase diagram of CO2 showing the liquid–gas phase transition in the solid black line,
and the critical pressure and temperature in the dashed black lines. Contours of (a) Γ , (b) A, (c) J and (d) χ

calculated using the CoolProp library.

permeability reduction, such as failure of the caprock, are somewhat mitigated by the
lowest temperatures occurring at greater radial distances where pressure gradients are
lower.

Transient cooling continues until the point when the pressure wave interacts with
the boundaries of the reservoir. Due to heterogeneities within geological reservoirs this
pressure boundary could correspond to a sealed fault or a region of lower permeability
arising from lithological variation. The effect of a closed outer boundary was not simulated
here, but it may be anticipated that once the pressure field impinges on the outer boundary,
the pressure will build up across the whole reservoir resulting in compressive heating.

The p − T trajectories of the reference models with injection temperatures of 25 ◦C and
75 ◦C are plotted in figure 10. The open circles mark the wellbore p − T conditions. Note
that the wellbore temperature Tw remains constant due to the fixed temperature boundary
condition imposed, while the pressure increases over time due to pressure build-up at the
well. The closed circle marks the far-field reservoir conditions, which remain fixed over
time. The radial Joule–Thomson cooling paths have a characteristic ‘hooked’ shape. From
the wellbore they initially trace a linear path with positive p − T slope. This represents the
region behind the thermal front. Neglecting the effect of transient compressive heating, the
temperature gradient is approximated by ∂T/∂p ≈ μJT . The linear slope of this segment
therefore arises from the use of a constant value of μJT . The p − T dependence of μJT
would actually create curvature of these paths. Following this initial linear slope, there is
a quasi-isobaric increase in temperature, which corresponds to heating of the CO2 across
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Figure 10. The p − T phase diagram of CO2, with the liquid–gas phase transition in solid black line, and the
critical pressure and temperature marked in dashed black lines. The phase boundaries for CO2 and CH4-hydrate
and pure H2O ice are marked, with the freezing window shaded in blue. The p − T trajectories for the low-T
(TW = 25◦C) and high-T (TW = 75 ◦C) injections are shown at 3 different times. The dashed lines show a
low-T injection with a higher injection rate. The wellbore pressure and temperature are marked by the open
circles and the far-field reservoir conditions are marked by the closed circle.

the thermal front. An important result from this work is that at late times, the pressure at
the thermal front is approximately constant over time. This is due to the self-similarity of
both the pressure field and the thermal front position, as observed in figure 4. Following
the rapid temperature increase there is a smooth transition to an approximately isothermal
pressure drop until the far-field reservoir pressure is reached. The p − T path actually
slightly over-shoots the reservoir temperature due the compressive heating around the CO2
front, however, this is hard to discern in the plots shown here.

We have also plotted the stability fields for CO2 and CH4-hydrates using data from Sun
& Duan (2005), in addition to the water–ice phase transition for pure water using data
from the Engineering Toolbox (www.engineeringtoolbox.com). Gas hydrates are a type of
crystalline ice composed of CO2 or CH4 molecules enclosed within a solid H2O lattice. As
an example we have plotted the p − T trajectory of a low-T injection in which the injection
rate Q is doubled to 60 kg s−1. All other parameters are as given in table 1. In this example,
the greater pressure buildup causes the p − T conditions to enter into the hydrate stability
field after 1 year of injection, resulting in a partially frozen annulus. Freezing of pore
water and formation of gas hydrates causes a reduction in permeability. This has the effect
of restricting fluid flow and reducing the pressure diffusivity, which would cause a buildup
of pressure behind the low-permeability annular hydrate zone. The extent of permeability
reduction caused by hydrate formation would depend on both the pore volume occupied
by hydrates (Almenningen et al. 2019), and their pore-scale distribution (Kleinberg et al.
2003). In the limit of severe permeability reduction, the cooled annular region would act as
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a sealed barrier, with the effect of restricting the radial extent of the reservoir. Since CO2
hydrates are >70 wt% H2O (Sun & Kang 2016), in practice, the volume fraction of hydrate
that can form depends on the availability of water. In dry gas reservoirs, in which gas
saturation is high, permeability reduction is unlikely to be significant. Furthermore, CO2
injection is a drying process which creates a dry-out front around the wellbore. However,
because the dry-out front propagates into the reservoir more slowly than the thermal front
(Creusen 2018), it can be assumed that there will be some water available for hydrate
formation within the low-temperature region. To date there is no literature modelling the
dynamic and geomechanical consequences of hydrate formation in depleted reservoirs.
Further work targeted at specific case studies is required to understand the potential effects
of hydrate formation. Since the effect of hydrate formation on injectivity and reservoir
stability is yet to be assessed, a conservative injection strategy is to ensure that pressure
and temperature in the near-wellbore region remain outside of the hydrate formation
window.

As demonstrated in the sensitivity analysis, the key parameters controlling the degree of
cooling are permeability, reservoir size, injection rate and the Joule–Thomson coefficient.
As the minimum temperature is given by Tmin = TW − �TJT , the wellbore temperature
TW is also important. For moderate to low fluid compressibility, the minimum temperature
reached can be approximated by the analytical solution for steady-state flow, which gives

Tmin = TW − μJTμQ
4πHρf kkr

ln
(

cpf Qt
ρcpπHr2

w
+ 1

)
. (6.1)

This highlights the parametric controls. Thus, high injection rates, low permeabilities
and very low injection temperatures should be avoided. Care should also be taken when
injecting CO2 in the gas stability field.

Figure 10 also shows the CO2 liquid–gas phase transition. The models presented
here for the early transient phase of injection remain within the gas stability field. As
noted in § 5.2, the high Joule–Thomson coefficient and low density of CO2 gas are
expected to cause more significant pressure buildup and Joule–Thomson cooling than
when injecting liquid CO2. In all of the models presented here pressure buildup is
insufficient to cause p − T conditions to enter the liquid stability field within the first
year of injection. However, sustained high mass injection rates are likely to result in a
liquid–gas phase transition either within the well, or within the reservoir. In an adiabatic
system, we expect the p − T path to be buffered along the phase boundary such that there
is a finite region in which liquid and gas coexist. Self-consistent inclusion of the phase
transition therefore requires equations for multiphase flow, as well as the thermodynamic
effects of the latent heat of vaporisation and volume change of reaction. The relative
thermal effects of latent heat of vaporisation and Joule–Thomson cooling are yet to be
explored.

In this analysis we have considered injection into a homogeneous reservoir. Sedimentary
rocks are highly heterogeneous on both large and small scales, and are often
comprised of layers of varying permeability reflecting lithological variation, bedding
planes, cross-bedding and variable mineralisation. The influence of spatially correlated
heterogeneity on CO2 plume migration and trapping efficiency has been extensively
studied (e.g. Lengler, De Lucia & Kühn 2010; Benham, Bickle & Neufeld 2021) and
fluid flow has been shown to be focused within high-permeability layers. One way
to apply the models presented here to understand Joule–Thomson cooling within a
layered heterogeneous medium is to consider a horizontally layered rock in which the
vertical permeability kv = 0, such that flow is only in the horizontal plane. The pressure
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diffusivity Dp = kkr/φμβf is lower in low-permeability layers, such that the speed of
the pressure propagation scales ∼k1/2. From the analytical pressure diffusion solution
and the sensitivity analysis, we also know that the pressure gradient scales ∼k−1. For
the same injection rate across all layers, pressure build-up and near-wellbore pressure
gradients will be larger in the low permeability layers. This will result in enhanced
Joule–Thomson cooling and a greater probability of hydrate formation in low-permeability
layers. An interesting repercussion is therefore that Joule–Thomson cooling could reduce
permeability in low-permeability layers and further enhance heterogeneity. This would
increase flow localisation in high-permeability layers. Note, however, that this neglects
vertical fluid flow, sometimes referred to as pressure leakage. In practice vertical
thicknesses are small compared with lateral reservoir extent, meaning that pressure could
equilibrate quickly across layers. The pressure diffusivity is therefore more likely to be set
by the average permeability across all layers.

7. Conclusions

The results here explore the thermal effects of compressible flow during CO2 injection into
depleted gas-filled reservoirs. During the early transient injection phase, when the pressure
wave is propagating into the reservoir, before having interacted with the outer boundary,
the pressure and temperature fields can be described by similarity solutions. Pressure and
temperature propagate radially into the reservoir ∝ t1/2. The rate of propagation is set by
the diffusivity of the pressure field which depends on the fluid compressibility. The CO2
front and thermal front, which lags behind the CO2 front, also scale with the pressure
diffusion length scale.

Unlike steady-state flow, transient injection causes both heating and cooling.
Joule–Thomson cooling occurs due to flow down the pressure gradient, which leads to
rapid cooling of the reservoir across the thermal front. Transient pressure increase causes
slight warming of the reservoir around the CO2 front, and behind the thermal front, after
the thermal front has passed. The models presented provide a tool for understanding
the fundamental physics of Joule–Thomson cooling, and for determining the important
parametric controls. Safe injection requires that temperature and pressure remain outside
the hydrate stability field. In accordance with previous studies, we find that the crucial
parameters controlling the minimum temperatures reached are injection rate, wellbore
temperature, reservoir permeability and thickness, Joule–Thomson coefficient and fluid
density.

Improved understanding of the p − T behaviour during injection into depleted reservoirs
requires inclusion of the liquid–gas phase transition, as well as the full p − T dependence
of the thermodynamic properties. Future work should focus on these effects.
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Appendix A

For a steady-state radial injection, the temperature field is described by (4.17). Close to the
well, radial distance and temperature can be scaled as follows:

λ = r
rW

, T = 2πHkkrρf (T − T0)

μJTμQ
, TW = 2πHkkrρf (TW − T0)

μJTμQ
. (A1a–c)

Substituting these variables into (4.17) leads to

ρcp2πHr2
W

cpf Q
∂T
∂t

= 1
λ

(
∂T
∂λ

+ 1
λ

)
. (A2)

In the limit rW → 0, the temperature field close to the well is approximated by

∂T
∂λ

= −1
λ
. (A3)

Integrating and applying the constant wellbore temperature boundary condition gives

T = TW − ln(λ), (A4)

which can be expressed dimensionally as

T = TW − μJTμQ
2πHkkrρf

ln
(

r
rW

)
. (A5)

Far from the well, we expect the solution to be self-similar with respect to the similarity
variable ζ , defined as

ζ = ρcp2πHr2

cpf Qt
. (A6)

Substituting this into (4.17) leads to

∂T
∂ζ

= 1
ζ(ζ − 2)

. (A7)

Integrating and applying the far-field boundary condition gives

T = 1
2

ln
(

ζ − 2
ζ

)
, (A8)

which can be expressed dimensionally as

T = T0 + μJTμQ
4πHkkrρf

ln
(

1 − cpf Qt
ρcpπHr2

)
. (A9)

Solutions (A5) and (A9) can be matched across the thermal front, such that the position
of the thermal front, rT , is given by equating (A5) and (A9), which leads to

rT =
[

cpf Qt
ρcpπH

+ r2
W exp

(
4πHkkrρf (Tw − T0)

μJTμQ

)]1/2

. (A10)
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Appendix B

For fluids with variable compressibility βf and expansivity αf we may use the following
scalings:

P = βr ( p − p0) , T = αr (T − T0) ,

η = r
(

4kkrt
φμβr

)−1/2

, ηW = rW

(
4kkrt
φμβr

)−1/2

, (B1a–d)

where βr and αr are the reference compressibility and expansivity, respectively.
Substituting the above relations into (4.1) and (4.2) and assuming the solutions are in
steady state with respect to η we obtain

β̃fP ′ −
(

1 − ηW

η

)
α̃fT ′ = − 1

2η

[
P ′
(
β̃fP ′ − α̃fT ′

)
+ 1

η

(
ηP ′)′] , (B2)

(
1 − ηW

η

)
T ′ − AP ′ = − 1

2η

[
ΓP ′ (T ′ − JP ′)+ 1

Pe
1
η

(
ηT ′)′] , (B3)

subject to the boundary conditions, as given in (4.26a–d). The non-dimensional
parameters for fluids with variable βf and αf are then

Γ = φρf cpf

ρcp
, J = αrμJT

βr
, A = φαrαf T

βrρcp
, Pe = kkrρcp

kTφμβf
,

β̃f = βf

βr
, α̃f = αf

αr
, χ = μβrQ

2πHkkrρf
, TW = αr (Tw − T0) ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B4a–h)

where the additional parameters β̃f and α̃f describe the p − T variation of βf and αf .
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