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Abstract

This work concerns stochastic differential equations with jumps. We prove convergence
for solutions to a sequence of (possibly degenerate) stochastic differential equations with
jumps when the coefficients converge in some appropriate sense. Then some special
cases are analyzed and some concrete and verifiable conditions are given.
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1. Introduction

Stochastic differential equations (SDEs) with jumps appear naturally in various applied
fields, and more and more people pay attention to them. For example, [6] systematically
discusses the martingale problems of SDEs with jumps. Qiao and Zhang [16] proved that,
under non-Lipschitz conditions, for almost all sample points ω, the solutions to a certain SDE
with jumps form a homeomorphism flow. Later, [13, 14] studied the exponential ergodicity
and Euler–Maruyama approximation for SDEs with jumps and non-Lipschitz coefficients.
Recently, [4] established the equivalence between SDEs with jumps and the corresponding
non-local Fokker–Planck equations under only linear growth conditions.

In this paper, we study limit theorems for SDEs with jumps, i.e. convergence for solutions
to a sequence of stochastic differential equations with jumps when the coefficients converge in
some appropriate sense. More precisely, we fix a T > 0 and consider the following sequence
of SDEs with jumps:

dXn
t = bn(t, Xn

t ) dt + σ n(t, Xn
t ) dBt + γ n

∫
U

g(t, Xn
t−, u) N(dt, du), t ∈ [0, T], (1)

where (Bt) is an m-dimensional Brownian motion and N(dt, du) is a Poisson random measure
with intensity dt ν(du). Here, ν is a finite measure defined on (U,U), where (U,U) is any
measurable space. The coefficients bn : [0, T] ×R

d �→R
d, σ n : [0, T] ×R

d �→R
d×m are Borel

measurable functions, {γ n} is a sequence of real numbers, and g : [0, T] ×R
d ×U �→R

d is
Borel measurable. Then, when bn → b, an → a, and γ n → γ in some sense as n → ∞, where
an(t, x) = (σ nσ n∗)(t, x), a(t, x) = (σσ ∗)(t, x), and σ ∗ denotes the transpose of the matrix σ ,
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2 H. QIAO

we will prove that the solutions of (1) converge to that of the following equation in some
suitable sense:

dXt = b(t, Xt) dt + σ (t, Xt) dBt + γ

∫
U

g(t, Xt−, u) N(dt, du), t ∈ [0, T], (2)

where b : [0, T] ×R
d �→R

d and σ : [0, T] ×R
d �→R

d×m are Borel measurable and γ is a real
number.

This problem was initially proposed by Stroock and Varadhan in 1979 [21]. From then on,
similar problems have been discussed by many experts in various formulations [1–3, 7, 9, 10,
15, 17, 18, 22, 23]. For the case of g = 0, [21] proved that if a and b are locally bounded
measurable functions which are continuous in x for each t ∈ [0, T], and for any R> 0,

sup
n∈N

sup
t∈[0,T]

sup
x∈BR

(‖an(t, x)‖ + |bn(t, x)|)<∞,

lim
n→∞

∫ T

0
sup
x∈BR

(‖an(t, x) − a(t, x)‖ + |bn(t, x) − b(t, x)|) dt = 0,

where BR := {x ∈R
d, |x|� R}, a martingale solution of (1) converges weakly to a unique mar-

tingale solution of (2) in [21, Chapter 11] (see Definition 2 for the definition of a martingale
solution). Then [10] showed that the convergence holds in the L1 sense when b, bn, σ , and σ n

are growing linearly in x, and

lim
n→∞ sup

t∈[0,T]
sup
x∈BR

(‖σ n(t, x) − σ (t, x)‖ + |bn(t, x) − b(t, x)|) = 0.

Later, [17] required that b, bn, σ , and σ n are growing linearly in x and that a and an are non-
degenerate, and established the convergence in the distributional sense. Recently, [3] obtained
convergence in the distributional sense under bounded conditions by means of the superpo-
sition principles. We mention that in [3, 10, 17, 18, 21], boundedness, non-degeneracy, or
uniform convergence of b, bn, σ , and σ n are required.

For the case treated here, [7] systematically studied the problem and obtained limit theorems
of SDEs driven by càdlàg processes under Lipschitz conditions. The following SDEs were
considered in [22]: for d = 1,

dXn
t = bn(t, Xn

t ) dt + σ n(t, Xn
t−) dMn

t , dXt = b(t, Xt) dt + σ (t, Xt) dBt,

where {Mn} is a sequence of square-integrable martingales. It was proved that if {Mn} has good
convergence, bn and σ n are uniformly bounded and bn(t, x) → b(t, x), σ n(t, x) → σ (t, x), Xn

converges to X in the distributional sense. Later, [10, 23] generalized the result in [22] to pure
jump SDEs and SDEs with jumps, respectively. Recently, [2] established the convergence of
Markov transition semigroups for SDEs with jumps when the coefficients are smooth enough.
Note that the results in [1, 2, 7, 10, 22, 23] cannot be applied to (1) and (2).

In this paper, our first aim is to remove boundedness, non-degeneracy, and uniform conver-
gence of b, bn, σ , and σ n, and establish a limit theorem under some pretty weak conditions.
Thus, our result can cover some results in [3, 10, 17, 21]. Besides, [15] presented a limit the-
orem for SDEs driven by Lévy processes when the coefficients satisfy some weak conditions.
However, no concrete and verifiable conditions are given there. Therefore, our second aim is
to analyze some special cases and give some concrete and verifiable conditions.
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Limit theorems of stochastic differential equations with jumps 3

Our motivation is twofold. First, this sort of theorem would be of interest because the
study of the asymptotic behavior of stochastic processes satisfying an SDE with jumps is
often reduced to this kind of limit theorem. Second, we offer some weak conditions of con-
vergence for the martingale solutions to (1). In particular, we give concrete and verifiable
conditions under which the martingale solutions to (1) converge to that of an SDE with pure
jumps (Corollary 1), that of an SDE without jumps (Proposition 3), and that of an ordinary
differential equation (Proposition 4). Thus, it is convenient to apply these limit theorems to
approximation theory and statistics [7].

The paper is arranged as follows. In the next section we introduce some concepts such
as weak solutions and martingale solutions of SDEs with jumps, weak solutions of Fokker–
Planck equations, and their relationship. The main results are stated in Section 3, and the main
theorem is proved in Section 4. In Section 5, we analyze some special cases and give some
concrete and verifiable conditions.

The following convention will be used throughout the paper: C with or without indices will
denote different positive constants whose values may change from one place to another.

2. Preliminaries

2.1. Notation

We introduce some notation to be used throughout. We use | · | and ‖ · ‖ for the norms of
vectors and matrices, respectively. Let 〈·, ·〉 be the scalar product in R

d.
C2(Rd) represents the space of continuous functions on R

d that have continuous partial
derivatives of order up to two, and C2

b(Rd) is the subspace of C2(Rd) consisting of func-
tions whose derivatives up to order two are bounded. C2

c (Rd) is the collection of all functions
in C2(Rd) with compact supports, and C∞

c (Rd) denotes the collection of all real-valued C∞
functions with compact supports.

Let B(Rd) be the Borel σ -field on R
d. Let P(Rd) be the space of all probability measures

on B(Rd), equipped with the topology of weak convergence. Let P1(Rd) be the collec-
tion of all the probability measures μ on B(Rd) satisfying μ(| · |) := ∫

Rd |x|μ(dx)<∞.
Let L∞([0, T],P1(Rd)) be the collection of all measurable families (μt)t∈[0,T] of probability
measures on B(Rd) satisfying supt∈[0,T] μt(| · |)<∞.

2.2. Weak solutions and martingale solutions for SDEs with jumps

In this subsection we introduce the concepts of weak solutions and martingale solutions for
SDEs with jumps, and point out their relationship.

First of all, consider the following SDE with jumps:

dXt = b(t, Xt) dt + σ (t, Xt) dBt +
∫
U

f (t, Xt−, u) N(dt, du), t ∈ [0, T], (3)

where f : [0, T] ×R
d ×U �→R

d is Borel measurable. We recall the definition of weak solu-
tions to (3). Although [8] is a good reference for the definition below, it does not deal with
SDEs with jumps.

Definition 1. (Weak solutions) By a weak solution to (3) we mean a septuple {(�, F, P;
(Ft)t∈[0,T]), (B,N, X)}, where (�,F, P; (Ft)t∈[0,T]) is a complete filtered probability space,
(Bt) is an (Ft)-adapted Brownian motion, N(dt, du) is an (Ft)-adapted Poisson random mea-
sure, independent of (Bt), with intensity dt ν(du), and (Xt) is an (Ft)-adapted process such that,
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4 H. QIAO

for all t ∈ [0, T],

P

( ∫ t

0

(
|b(s, Xs)| + ‖σσ ∗(s, Xs)‖ +

∫
U

| f (s, Xs−, u)| ν(du)

)
ds<∞

)
= 1

and Xt = X0 + ∫ t
0 b(s, Xs) ds + ∫ t

0 σ (s, Xs) dBs + ∫ t
0

∫
U

f (s, Xs−, u) N(ds, du), P-almost surely.
If two weak solutions to (3), {(�, F, P; (Ft)t∈[0,T]), (B,N, X1)} and {(�, F, P; (Ft)t∈[0,T]),

(B,N, X2)} with X1
0 = X2

0, satisfy X1
t = X2

t , t ∈ [0, T], P-almost surely, we say that pathwise
uniqueness holds for (3).

If any two weak solutions to (3) with the same initial distribution have the same law, we
say that uniqueness in law holds for (3).

It is known that pathwise uniqueness implies uniqueness in law for (3).
Let DT := D([0, T],Rd) be the collection of càdlàg functions from [0, T] to R

d. A generic
element in DT is denoted by w. We equip DT with the Skorokhod topology, and DT is a Polish
space. For any t ∈ [0, T], set et : DT �→R

d such that et(w) = wt, w ∈ DT . Let Bt := σ {ws : s ∈
[0, t]}, B̄t := Caps>tBs, and B := BT . For φ ∈ C2

b(Rd), set

(Atφ)(x) := bi(t, x)∂iφ(x) + 1

2
aij(t, x)∂ijφ(x), (Btφ)(x) :=

∫
U

[φ(x + f (t, x, u)) − φ(x)] ν(du).

In the following, we define martingale solutions of (3) (cf. [8, 21]).

Definition 2. (Martingale solutions) For μ0 ∈P(Rd), a probability measure P on (DT ,B) is
called a martingale solution of (3) with the initial law μ0 at time 0, if:

(i) P ◦ e−1
0 =μ0;

(ii) For any φ ∈ C2
c (Rd), Mφ

t := φ(wt) − φ(w0) − ∫ t
0 (Asφ + Bsφ)(ws) ds is a (B̄t)t∈[0,T]-

adapted martingale under the probability measure P.

The uniqueness of the martingale solutions to (3) means that, for any s ∈ [0, T] and any
μs ∈P(Rd), if P̂, P̃ are two martingale solutions to (3) with the initial law μs at the time s,
then P̂= P̃.

Next, we make the following assumptions:
Hb,σ There is a constant C1 such that, for all (t, x) ∈ [0, T] ×R

d, |b(t, x)| + ‖σ (t, x)‖�
C1(1 + |x|).

Hf There is a constant C2 such that, for all (t, x) ∈ [0, T] ×R
d,

∫
U

|f (t, x, u)|2 ν(du) �
C2(1 + |x|)2.

H′
f By the Hölder inequality, it is easy to see that

∫
U

|f (t, x, u)| ν(du) � C(1 + |x|).
The relationship between martingale solutions and weak solutions is as follows.

Proposition 1. Assume that Hb,σ and Hf hold.

(i) For any μ0 ∈P(Rd), the existence of a weak solution (Xt)t∈[0,T] to (3) with LX0 =μ0
is equivalent to the existence of a martingale solution P to (3) with the initial law μ0.
Moreover, LXt = P ◦ e−1

t for any t ∈ [0, T].

(ii) The uniqueness of martingale solutions P to (3) is equivalent to the uniqueness in law
of weak solutions (Xt)t∈[0,T] to (3).

Since the proof of Proposition 1 is direct, we omit it (cf. [24, Theorem 5.6]).
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2.3. Weak solutions of Fokker–Planck equations

In this subsection we introduce weak solutions of the Fokker–Planck equations (FPEs) and
state some of their properties.

Consider the FPE associated with (3):

∂tμt = (At + Bt)
∗μt, (4)

where (At + Bt)∗ is the adjoint operator of At + Bt in C2
b(Rd), and (μt)t∈[0,T] is a family of

probability measures on R
d. Weak solutions of (4) are defined as follows.

Definition 3. A measurable family (μt)t∈[0,T] of probability measures is called a weak solution
of the non-local FPE (4) starting from μ0 at time 0 if, for any R> 0 and t ∈ [0, T],

∫ t

0

∫
Rd

1BR (x)

(
|b(s, x)| + ‖a(s, x)‖ +

∫
U

|f (s, x, u)| ν(du)

)
μs(dx) ds<∞, (5)

where 1BR is the indicator function of BR (i.e. 1BR (x) = 1 for x ∈ BR, and 0 for x /∈ BR)
and, for all φ ∈ C2

c (Rd) and t ∈ [0, T], μt(φ) =μ0(φ) + ∫ t
0 μs(Asφ + Bsφ) ds, where μt(φ) :=∫

Rd φ(x)μt(dx). The uniqueness of weak solutions to (4) means that if, for any s ∈ [0, T] and
any μs ∈P(Rd), (μ̂t)t∈[s,T] and (μ̃t)t∈[s,T] are two weak solutions to (4) starting from μs at
time s, μ̂t = μ̃t for any t ∈ [s, T].

We claim that this definition makes sense. That is, under (5) we have
∫ t

0 |μs(Asφ +
Bsφ)| ds<∞ for all φ ∈ C2

c (Rd). Indeed, for any φ ∈ C2
c (Rd), we assume that the support

of φ is in some ball BR. Then
∫ t

0
|μs(Asφ + Bsφ)| ds �

∫ t

0

∫
Rd

[
|bi(s, x)∂iφ(x)| + 1

2
|(σσ ∗)ij(s, x)∂ijφ(x)|

+
∫
U

|φ(x + f (s, x, u)) − φ(x)| ν(du)

]
μs(dx) ds

� ‖φ‖C2
c (Rd)

∫ t

0

∫
Rd

1BR(x)

(
|b(s, x)| + ‖a(s, x)‖

+
∫
U

|f (s, x, u)| ν(du)

)
μs(dx) ds

+ ‖φ‖C2
c (Rd)

∫ t

0

∫
Rd

1Bc
R
(x)ν(U)μs(dx) ds<∞.

If a weak solution (μt)t∈[0,T] of the non-local FPE (4) is absolutely continuous with respect
to the Lebesgue measure, there exists a measurable family of non-negative functions (vt)t∈[0,T]
with

∫
Rd vt(x) dx = 1 such that μt(dx) = vt(x) dx for any t ∈ [0, T]. Thus, (vt)t∈[0,T] satisfies, in

the distributional sense,
∂tvt = −∂i(bivt) + ∂ij(aijvt) + B∗

t vt. (6)

Set

L+ :=
{

v = (vt)t∈[0,T] : vt � 0,
∫
Rd

vt(x) dx = 1 for all t ∈ [0, T],

and sup
t∈[0,T]

( ∫
Rd

|x|vt(x) dx

)
<∞

}
.
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6 H. QIAO

If there exists a v ∈ L+ satisfying (6) in the distributional sense, we say that (6) has a weak
solution in L+. Later, we will assume that (6) has a unique weak solution in L+, i.e. for any s ∈
[0, T] and any non-negative measurable function vs with

∫
Rd vs(x) dx = 1 and

∫
Rd |x|vs(x)dx<

∞, if v̂ and ṽ are two weak solutions of (6) in L+ starting from vs at time s, then v̂t(x) = ṽt(x)
for all x ∈R

d and for any t ∈ [s, T].

Proposition 2. Assume that Hb,σ and H′
f hold. If, for any μ0(dx) = v̄0(x) dx ∈P1(Rd), there

exists a measurable family of non-negative functions (vt)t∈[0,T] with
∫
Rd vt(x) dx = 1 and

v0(x) = v̄0(x) such that v is a weak solution of the non-local FPE (6), then v ∈ L+.

Since the proof of Proposition 2 is similar to that for [4, Remark 1.3(ii)], we omit it.

2.4. The superposition principle for (3) and (4)

It is well known that, for any μ0 ∈P(Rd), if P is a martingale solution to (3) with the initial
law μ0, by simple computation it holds that (P ◦ e−1

t ) is a weak solution of (4) starting from
μ0. The natural question is whether the converse result is right. The answer is affirmative. The
following theorem describes in detail the relationship between martingale solutions to (3) and
weak solutions to (4).

Theorem 1. ([19, Corollary 1.9]) Suppose that Hb,σ and Hf hold.

(i) For any μ0 ∈P(Rd), the existence of a martingale solution P to (3) with the initial law
μ0 is equivalent to the existence of a weak solution (μt)t∈[0,T] to (4) starting from μ0.
Moreover, P ◦ e−1

t =μt for any t ∈ [0, T].

(ii) The uniqueness of the martingale solutions P to (3) is equivalent to the uniqueness of
the weak solutions (μt)t∈[0,T] to (4).

Remark 1. Theorem 1 is usually called a superposition principle.

3. Main results

First of all, we take f (t, x, u) = γ g(t, x, u) for γ ∈R. So, (3) and FPE (6) become

dXt = b(t, Xt) dt + σ (t, Xt) dBt + γ

∫
U

g(t, Xt−, u) N(dt, du), t ∈ [0, T], (7)

∂tvt = −∂i(bivt) + ∂ij(aijvt) + B∗
t vt, (8)

where (Btφ)(x) := ∫
U

[φ(x + γ g(t, x, u)) − φ(x)] ν(du) for φ ∈ C2
b(Rd). Consider the follow-

ing sequence of SDEs with jumps: for any n ∈N,

dXn
t = bn(t, Xn

t ) dt + σ n(t, Xn
t ) dBt + γ n

∫
U

g(t, Xn
t−, u) N(dt, du), t ∈ [0, T], (9)

where bn : [0, T] ×R
d �→R

d and σ n : [0, T] ×R
d �→R

d×m are Borel measurable functions,
and {γ n} is a real sequence. We study the relationship between martingale solutions of (7) and
of (9) when bn → b, an → a, γ n → γ in some sense, where an := σ nσ n∗.

The main result in this section is the following theorem.

Theorem 2. Suppose that bn, b, σ n, and σ satisfy Hb,σ uniformly, g satisfies Hf , and (7) has
a unique martingale solution. For any μ0(dx) = v0(x) dx ∈P1(Rd), let Pn, P be martingale
solutions of (9) and (7) with the initial law μ0, respectively. Assume that
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(i) bn → b, an → a in L1
loc([0, T] ×R

d), γ n → γ as n → ∞;

(ii) P
n ◦ e−1

t is absolutely continuous with respect to the Lebesgue measure on R
d

and vn
t (x) denotes the density, i.e. vn

t (x) := (Pn ◦ e−1
t )(dx)/dx for any t ∈ [0, T], and

supx∈Rd |vn
t (x)|� CT.

Then P
n → P in P(DT ).

The proof of Theorem 2 is given in the next section.

Remark 2. Here we recall that the uniqueness of martingale solutions for (9) is not needed.
Also, we mention that condition (ii) cannot be weakened, otherwise {Pn} does not converge
to P.

Remark 3. If γ n = γ = 0, bn, b, σ n, and σ are locally bounded and Theorem 2 reduces to [21,
Theorem 11.1.4]. Therefore, Theorem 2 is more general.

If (8) has a unique weak solution in L+, (7) has a unique martingale solution by Theorem 1.
Thus, our result can cover [3, Theorem 3.7].

Next, we give an example to explain that bn, σ n usually happen.

Example 1. Assume that d = m, b : [0, T] ×R
d �→R

d and σ : [0, T] ×R
d �→ S+(Rd) are con-

tinuous and satisfy Hb,σ , γ ∈R, g satisfies Hf and (7) has a unique martingale solution. Let P
be the unique martingale solution of (7) with the initial law μ0 = v0(x) dx ∈P1(Rd). Set

bn
i (t, x) :=

∫
Rd
ϕn(x − y)bi(t, y) dy,

an
ij(t, x) :=

∫
Rd
ϕn(x − y)aij(t, y) dy, i, j = 1, 2, . . . , d,

σ n(t, x) := √
2an(t, x), an(t, x) = (an

ij(t, x)),

γ n := n

n + 1
γ,

where ϕ ∈ C∞
c (Rd) is a non-negative mollifier with the support in B1 and

∫
Rd ϕ(x) dx = 1,

ϕn(x) = ndϕ(nx). We also assume that Pn is a martingale solution of the corresponding (9) with
the initial law μ0, Pn ◦ e−1

t is absolutely continuous with respect to the Lebesgue measure
on R

d, and vn
t (x) denotes the density, i.e. vn

t (x) := (Pn ◦ e−1
t )(dx)/dx for any t ∈ [0, T], and

supx∈Rd |vn
t (x)|� CT . So, bn, σ n, γ n, and an satisfy the conditions of Theorem 2. Therefore,

P
n → P in P(DT ).

4. Proof of Theorem 2

The proof is divided into two parts. In the first part we prove that {Pn}n∈N is tight in P(DT ).
Then the convergence for a subsequence of {Pn}n∈N to P is established in the second part.

Proof of Theorem 2. Step 1. We prove that {Pn}n∈N is tight in P(DT ).
By Aldous’ tightness criterion (see also [7, Theorem 4.5, p. 356]), it is sufficient to check

that

(i′) limK→∞ supn P
n(supt∈[0,T] |wt|>K) = 0;
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(ii′) For any stopping time τ , limθ→0 supn sup0�τ<τ+θ�T P
n(|wτ+θ − wτ |� N) = 0 for all

N > 0.

Since, for any n ∈N, Pn is a martingale solution of (9) with the initial law μ0, Proposition 1
yields that there exists a weak solution {(�̂n, F̂

n
, P̂n; (F̂

n
t )t∈[0,T]), (B̂n, N̂n, X̂n)} of (9) with

LX̂n
t
= P

n ◦ e−1
t and LX̂n

0
=μ0. So, by Definition 1, for any t ∈ [0, T],

X̂n
t = X̂n

0 +
∫ t

0
bn(s, X̂n

s ) ds +
∫ t

0
σ n(s, X̂n

s ) dB̂n
s +

∫ t

0

∫
U

γ ng(s, X̂n
s , u) N̂n(ds, du). (10)

Moreover, the Burkholder–Davis–Gundy inequality implies that

E
P̂

n
(

sup
s∈[0,t]

|X̂n
s |

)
�E

P̂
n |X̂n

0 | +E
P̂

n
( ∫ t

0
|bn(r, X̂n

r )| dr

)
+E

P̂
n
(

sup
s∈[0,t]

∣∣∣∣
∫ s

0
σ n(r, X̂n

r ) dB̂n
r

∣∣∣∣
)

+E
P̂

n
( ∫ t

0

∫
U

|γ n||g(r, X̂n
r , u)| N̂n(dr, du)

)

�μ0(| · |) +E
P̂

n
( ∫ t

0
|bn(r, X̂n

r )| dr

)
+ CE

P̂
n
( ∫ t

0
‖σ n(r, X̂n

r )‖2 dr

)1/2

+E
P̂

n
( ∫ t

0

∫
U

|γ n||g(r, X̂n
r , u)| ν(du) dr

)

�μ0(| · |) +E
P̂

n
( ∫ t

0
C(1 + |X̂n

r |) dr

)
+ CE

P̂
n
( ∫ t

0
C(1 + |X̂n

r |)2 dr

)1/2

,

and E
P̂

n(
sups∈[0,t] (1 + |X̂n

s |))� 1 +μ0(| · |) + C(t + t1/2)EP̂
n(

sups∈[0,t] (1 + |X̂n
s |)). By tak-

ing t0 with C(t0 + t1/20 )< 1
2 , we obtain that E

P̂
n(

sups∈[0,t0] |X̂n
s |)� 2μ0(| · |) + 1. On

[t0, 2t0], [2t0, 3t0], . . . , [[T/t0]t0, T], in the same way we deduce that

E
P̂

n
(

sup
t∈[0,T]

|X̂n
t |

)
� 2[T/t0]+1μ0(| · |) + 2[T/t0]+1 − 1, (11)

where [T/t0] denotes the largest integer no more than T/t0. Thus, it follows from (11) that
{Pn}n∈N satisfies (i′).

Next, we go back to (10). For any stopping time τ and θ > 0 with 0 � τ < τ + θ � T ,

X̂n
τ+θ − X̂n

τ =
∫ τ+θ

τ

bn(s, X̂n
s ) ds +

∫ τ+θ

τ

σ n(s, X̂n
s ) dB̂n

s +
∫ τ+θ

τ

∫
U

γ ng(s, X̂n
s , u) N̂n(ds, du).

By similar deduction to previously, we have

E
P̂

n |X̂n
τ+θ − X̂n

τ |�E
P̂

n
∫ τ+θ

τ

C(1 + |X̂n
s |) ds + CE

P̂
n
( ∫ τ+θ

τ

C(1 + |X̂n
s |)2 ds

)1/2

� CE
P̂

n
(

sup
s∈[0,T]

(1 + |X̂n
s |)

)
(θ + θ1/2)

� C(2[T/t0]+1μ0(| · |) + 2[T/t0]+1)(θ + θ1/2),

where the last inequality is based on (11). By some elementary computations, {Pn}n∈N satisfies
(ii′). Thus, {Pn}n∈N is relatively weakly compact. That is, there exists a weak convergence
subsequence still denoted as {Pn}n∈N.
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Step 2. We show that a limit point of {Pn}n∈N is P.
Assume that a limit point of {Pn}n∈N is P̄. Since P is the unique martingale solution of (7)

with the initial law μ0, we only need to prove that P̄ is also a martingale solution of (7) with the
initial law μ0. That is, it is sufficient to check that for 0 � s< t � T and a bounded continuous
B̄s-measurable functional χs : DT �→R,

∫
DT

[
φ(wt) − φ(ws) −

∫ t

s
(Arφ + Brφ)(wr) dr

]
χs(w) P̄(dw) = 0 for all φ ∈ C2

c (Rd). (12)

Next, note that Pn ◦ e−1
t → P̄ ◦ e−1

t in P(Rd) and P
n ◦ e−1

0 =μ0 = P̄ ◦ e−1
0 . Thus, by (ii),

there exists a v̄ = (v̄t)t∈[0,T] with v̄t(x) � 0 for all x ∈R
d and

∫
Rd v̄t(x) dx = 1 for any t ∈

[0, T] such that P̄ ◦ e−1
t (dx) = v̄t(x) dx and limn→∞

∫
Rd ψ(x)vn

t (x) dx = ∫
Rd ψ(x)v̄t(x) dx for

any ψ ∈ Cb(Rd) and v̄0(x) = v0(x). Also, by (11), supn supt∈[0,T]
∫
Rd |x|vn

t (x) dx � C. By suit-
able approximation, we have supt∈[0,T]

∫
Rd |x|v̄t(x) dx<∞. In the following, set νt,x(dz) :=

ν(dg−1(t, x, ·)(z)), and Btφ(x) = ∫
Rd [φ(x + γ z) − φ(x)] νt,x(dz). Thus, based on [4, Lemma

4.1] and our Lemma 1, we know that, for any ε > 0 and the coefficients b, a, there exist
b̃ : [0, T] ×R

d �→R
d, ã : [0, T] ×R

d �→ S+(Rd), where S+(Rd) is the set of non-negative
symmetric definite d × d real matrices, and a family of measures ν̃·,· such that

(i′′) b̃, ã are continuous and compactly supported;

(ii′′) for any φ ∈ C2
c (Rd), (t, x) �→ B̃tφ(x) is continuous, where B̃tφ(x) := ∫

Rd [φ(x + γ z) −
φ(x)] ν̃t,x(dz), and supt∈[0,T],x∈Rd |B̃tφ(x)|<∞;

(iii′′) we have

∫ T

0

∫
Rd

(
|b(t, x) − b̃(t, x)| + ‖a(t, x) − ã(t, x)‖

1 + |x| + |Btφ(x) − B̃tφ(x)|
)

v̄t(x) dx dt< ε.

Also, the operators with respect to b̃, ã, and ν̃·,· are denoted as ˜At + B̃t.
Now, we treat (12). Inserting ˜At + B̃t, we get

∣∣∣∣
∫

DT

[
φ(wt) − φ(ws) −

∫ t

s
(Arφ + Brφ)(wr) dr

]
χs(w) P̄(dw)

∣∣∣∣
�

∣∣∣∣
∫

DT

[
φ(wt) − φ(ws) −

∫ t

s
( ˜Arφ + B̃rφ)(wr) dr

]
χs(w) P̄(dw)

∣∣∣∣
+

∣∣∣∣
∫

DT

[ ∫ t

s
(( ˜Arφ + B̃rφ)(wr) − (Arφ + Brφ)(wr)) dr

]
χs(w) P̄(dw)

∣∣∣∣
=: I1 + I2. (13)

To deal with I1, we recall that Pn is a martingale solution of (9) with the initial law μ0, which
implies that

∫
DT

[
φ(wt) − φ(ws) −

∫ t

s
(A n

rφ + B n
rφ)(wr) dr

]
χs(w) Pn(dw) = 0,
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where A n
r + B n

r denotes the generator of (9). So,

∣∣∣∣
∫

DT

[
φ(wt) − φ(ws) −

∫ t

s
( ˜Arφ + B̃rφ)(wr) dr

]
χs(w) Pn(dw)

∣∣∣∣
=

∣∣∣∣
∫

DT

[ ∫ t

s
((A n

rφ + B n
rφ)(wr) − ( ˜Arφ + B̃rφ)(wr)) dr

]
χs(w) Pn(dw)

∣∣∣∣
� C

∫
DT

∫ t

s
|(A n

rφ + B n
rφ)(wr) − ( ˜Arφ + B̃rφ)(wr)| dr Pn(dw)

� C
∫ t

s

∫
Rd

[
|(bn

i (r, x) − b̃i(r, x))∂iφ(x)| + 1

2
|(an

ij(r, x) − ãij(r, x))∂ijφ(x)|

+ |B n
rφ(x) − Brφ(x)| + |Brφ(x) − B̃rφ(x)|

]
vn

r (x) dx dr

� C
∫ t

s

∫
Rd

[
|(bn

i (r, x) − b̃i(r, x))∂iφ(x)| + 1

2
|(an

ij(r, x) − ãij(r, x))∂ijφ(x)|

+
∫
Rd

|φ(x + γ nz) − φ(x + γ z)| νr,x(dz) + |Brφ(x) − B̃rφ(x)|
]

vn
r (x) dx dr

� C
∫ t

s

∫
Rd

[
|(bn

i (r, x) − b̃i(r, x))∂iφ(x)| + 1

2
|(an

ij(r, x) − ãij(r, x))∂ijφ(x)|

+ ‖φ‖C2
c (Rd)

∫
Rd

1|x+γ z|�M|γ n − γ ||z| νr,x(dz)

+
∫
Rd

1|x+γ z|>M|φ(x + γ nz)| νr,x(dz) + |Brφ(x) − B̃rφ(x)|
]

vn
r (x) dx dr,

(14)

where the fact that supp(φ) ⊂ BM for M> 0 is applied in the last inequality. As n → ∞, based
on (i), (i′′), (ii′′), and limn→∞

∫
Rd ψ(x)vn

t (x) dx = ∫
Rd ψ(x)v̄t(x) dx for any ψ ∈ Cb(Rd), (14)

yields that

I1 � C
∫ t

s

∫
Rd

[
|(bi(r, x) − b̃i(r, x))∂iφ(x)| + 1

2
|(aij(r, x) − ãij(r, x))∂ijφ(x)|

+ |Brφ(x) − B̃rφ(x)|
]

v̄r(x) dx dr

� C
∫ t

s

∫
Rd

[
|b(r, x) − b̃(r, x)| + 1

2
‖a(r, x) − ã(r, x)‖1|x|�M

+ |Brφ(x) − B̃rφ(x)|
]

v̄r(x) dx dr

� C
∫ t

s

∫
Rd

[
|b(r, x) − b̃(r, x)| + ‖a(r, x) − ã(r, x)‖

1 + |x| + |Brφ(x) − B̃rφ(x)|
]

v̄r(x) dx dr

<Cε, (15)

where we used 1|x|�M � (1 + M)/(1 + |x|) and (iii′) in the third and fourth inequalities,
respectively.
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We now treat I2. By similar deduction to (15), we can obtain

I2 � C
∫

DT

∫ t

s
|( ˜Arφ + B̃rφ)(wr) − (Arφ + Brφ)(wr)| dr P̄(dw)

� C
∫ t

s

∫
Rd

[
|(bi(r, x) − b̃i(r, x))∂iφ(x)| + 1

2
|(aij(r, x) − ãij(r, x))∂ijφ(x)|

+ |Brφ(x) − B̃rφ(x)|
]

v̄r(x) dx dr<Cε. (16)

Combining (15) and (16) with (13), we get that
∣∣∣∣
∫

DT

[
φ(wt) − φ(ws) −

∫ t

s
(Arφ + Brφ)(wr) dr

]
χs(w) P̄(dw)

∣∣∣∣<Cε.

Letting ε→ 0, we finally have (12). The proof is complete. �

Lemma 1. For any ε > 0, there is a family of measures ν̃·,· such that, for any φ ∈ C2
c (Rd),

(i) (t, x) �→ B̃tφ(x) is continuous and supt∈[0,T],x∈Rd |B̃tφ(x)|<∞;

(ii)
∫ T

0

∫
Rd |Btφ(x) − B̃tφ(x)|v̄t(x) dx dt< ε.

Proof. The method comes from [19, Lemma 3.8]. By [6, Lemma 14.50, p. 469], there is
a measurable function ht,x(θ ) : [0, T] ×R

d × [0,∞) �→R
d ∪ {∞} such that, for t ∈ [0, T] and

x ∈R
d, νt,x(A) = ∫ ∞

0 1A(ht,x(θ )) dθ for all A ∈ B(Rd). So, for any φ ∈ C2
c (Rd),

Btφ(x) =
∫
Rd

[φ(x + γ z) − φ(x)] νt,x(dz) =
∫ ∞

0
[φ(x + γ ht,x(θ )) − φ(x)] dθ .

Next, by the theory of functional analysis, we know that there exists a sequence of measur-
able functions {hn

t,x(θ ), n ∈N} such that, for any θ � 0 and n ∈N, (t, x) �→ hn
t,x(θ ) is continuous

with compact support, |hn
t,x(θ )|� |ht,x(θ )|, and

lim
n→∞

∫ T

0

∫
Rd

∫ ∞

0

(|hn
t,x(θ ) − ht,x(θ )|2 ∧ 1

)
v̄t(x) dθ dx dt = 0.

Thus, for any ε > 0 there exists an N ∈N such that

∫ T

0

∫
Rd

∫ ∞

0

(|hN
t,x(θ ) − ht,x(θ )|2 ∧ 1

)
v̄t(x) dθ dx dt< ε. (17)

Now, for t ∈ [0, T] and x ∈R
d, set ν̃t,x(A) := ∫ ∞

0 1A
(
hN

t,x(θ )
)

dθ for all A ∈ B(Rd), and (t, x) �→
ν̃t,x(A) is continuous. So, for any φ ∈ C2

c (Rd),

(t, x) �→ B̃tφ(x) =
∫
Rd

[φ(x + γ z) − φ(x)] ν̃t,x(dz)

is continuous. Also, note that

|B̃tφ(x)|�
∫ ∞

0
|φ(

x + γ hN
t,x(θ )

) − φ(x)| dθ � C
∫ ∞

0

(|γ hN
t,x(θ )| ∧ 1

)
dθ .
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Since hN
t,x(θ ) has a compact support in (t, x), supt∈[0,T],x∈Rd |B̃tφ(x)|<∞. Thus, (i) is proved.

For (ii), we know that

|Btφ(x) − B̃tφ(x)|
�

∫ ∞

0
|φ(x + γ ht,x(θ )) − φ

(
x + γ hN

t,x(θ )
)| dθ

� C
∫ ∞

0

(
1Bl (ht,x(θ ))1BR+|γ |l (x) + 1Bc

l∨((|x|−R)/|γ |) (ht,x(θ ))
)(|hN

t,x(θ ) − ht,x(θ )| ∧ 1
)

dθ

� C

( ∫ ∞

0

(
1Bl (ht,x(θ ))1BR+|γ |l (x) + 1Bc

l∨((|x|−R)/|γ |) (ht,x(θ ))
)

dθ

)1/2

×
( ∫ ∞

0

(|hN
t,x(θ ) − ht,x(θ )|2 ∧ 1

)
dθ

)1/2

� C
(
1BR+|γ |l (x)νt,x(Bl) + νt,x

(
Bc

l∨((|x|−R)/|γ |)
))1/2

( ∫ ∞

0

(|hN
t,x(θ ) − ht,x(θ )|2 ∧ 1

)
dθ

)1/2

� C

( ∫ ∞

0

(|hN
t,x(θ ) − ht,x(θ )|2 ∧ 1

)
dθ

)1/2

,

where l> 0 is a constant, and supp(φ) ⊂ BR and νt,x(Rd)<∞ are used in the second and fifth
inequalities, respectively. Therefore, the Hölder inequality implies that∫ T

0

∫
Rd

|Btφ(x) − B̃tφ(x)|v̄t(x) dx dt

� C
∫ T

0

∫
Rd

( ∫ ∞

0

(|hN
t,x(θ ) − ht,x(θ )|2 ∧ 1

)
dθ

)1/2

v̄t(x) dx dt

� CT1/2
( ∫ T

0

∫
Rd

∫ ∞

0

(|hN
t,x(θ ) − ht,x(θ )|2 ∧ 1

)
dθ v̄t(x) dx dt

)1/2

� CT1/2ε1/2,

where (17) is used in the last inequality. The proof is complete. �

5. Special cases

In this section we analyze some special cases for (7) and (9) and give some concrete and
verifiable conditions.

5.1. γ �= 0, g(t, x, u) = u

In this subsection we take U ∈ B(Rd) and g(t, x, u) = u, and assume that, for any p � 1,∫
U

|u|2(1 + |u|)p ν(du)<∞. Thus, (7) and (9) become

dXt = b(t, Xt) dt + σ (t, Xt) dBt + γ

∫
U

u N(dt, du), t ∈ [0, T], (18)

dXn
t = bn(t, Xn

t ) dt + σ n(t, Xn
t ) dBt + γ n

∫
U

u N(dt, du), t ∈ [0, T]. (19)

The following theorem characterizes the relationship between martingale solutions of (18) and
of (19).

Theorem 3. Suppose that bn, b, σ n, and σ satisfy Hb,σ uniformly and, for some q> 1,
|�b| ∈ L1([0, T], Lq

loc(Rd)), (∂ibi)− ∈ L1([0, T], L∞(Rd)), and ‖�σ‖2 ∈ L1([0, T], L∞(Rd)).
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For μ0(dx) = v0(x) dx ∈P1(Rd) with
∫
Rd v0(x)r(1 + |x|2)(r−1)d dx<∞ for some r> 1, let

P
n, P be martingale solutions of (19) and (18) with the initial law μ0, respectively. Assume

that

(i) bn → b, an → a in L1
loc([0, T] ×R

d), γ n → γ as n → ∞;

(ii) P
n ◦ e−1

t is absolutely continuous with respect to the Lebesgue measure on R
d

and vn
t (x) denotes the density, i.e. vn

t (x) := (Pn ◦ e−1
t )(dx)/dx for any t ∈ [0, T], and

supx∈Rd |vn
t (x)|� CT.

Then P
n → P in P(DT ).

Proof. By Theorem 2, we only need to prove that (18) has a unique martingale solution.
First of all, we can take a complete filtered probability space

(
�̌, F̌, P̌; (F̌t)t∈[0,T]

)
, an

(F̌t)-adapted Brownian motion (B̌t) and an (F̌t)-adapted Poisson random measure Ň(dt, du)
independent of (B̌t) with intensity measure dt ν(du). We consider the equation

X̌t(x) = x +
∫ t

0

(
b(s, X̌s(x)) −

∫
U

γ u ν(du)

)
ds +

∫ t

0
σ (s, X̌s(x)) dB̌s

+
∫ t

0

∫
U

γ u ˜̌N(ds du), x ∈R
d, t ∈ [0, T], (20)

where ˜̌N(ds du) := Ň(ds du) − ν(du) ds is the compensated martingale measure of Ň(ds du).
By [24, Theorem 4.2], there exists a weak solution X̌t(x) of (20) satisfying

sup
t∈[0,T]

Ě

( ∫
Rd

|ψ(X̌t(x))|r∗
ρ(dx)

)
� C‖ψ‖r∗

Lr∗
ρ

for all ψ ∈ C∞
c (Rd), (21)

where C is independent of ψ , Ě denotes the expectation under the probability measure P̌, and

1

r
+ 1

r∗ = 1, ρ(dx) = 1

(1 + |x|2)d
dx, ‖ψ‖r∗

Lr∗
ρ

:=
∫
Rd

|ψ(x)|r∗
ρ(dx).

Next, we choose an F̌0-measurable d-dimensional random vector X̌0 such that P̌ ◦ X̌−1
0 =

μ0. Thus, X̄· := X̌·(X̌0) solves the equation

X̄t = X̌0 +
∫ t

0

(
b(s, X̄s) −

∫
U

γ u ν(du)

)
ds +

∫ t

0
σ (s, X̄s) dB̌s +

∫ t

0

∫
U

γ u ˜̌N(ds du). (22)

Moreover, it follows from the Hölder and Jensen inequalities that, for any ψ ∈ C∞
c (Rd),∣∣∣∣

∫
Rd
ψ(x) LX̄t

(dx)

∣∣∣∣ = |Ěψ(X̄t)|
= |Ě[Ě[ψ(X̌t(x)) | x = X̌0]]|
=

∣∣∣∣
∫
Rd

Ě[ψ(X̌t(x))]v0(x) dx

∣∣∣∣
�

( ∫
Rd

|Ě[ψ(X̌t(x))]|r∗
ρ(dx)

)1/r∗( ∫
Rd

v0(x)r(1 + |x|2)rd ρ(dx)

)1/r

�
(
Ě

∫
Rd

|ψ(X̌t(x))|r∗
ρ(dx)

)1/r∗( ∫
Rd

v0(x)r(1 + |x|2)(r−1)d dx

)1/r

� C‖ψ‖Lr∗
ρ
,
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where the last inequality is based on (21). By the theory of functional analysis, we know that
there exists a vt(·)(1 + | · |2)d ∈ Lr

ρ such that

∫
Rd
ψ(x)vt(x)(1 + |x|2)d ρ(dx) =

∫
Rd
ψ(x)vt(x) dx =

∫
Rd
ψ(x) LX̄t

(dx).

So, [8, Problem 4.25, p. 325] gives LX̄t
(dx) = vt(x) dx for any t ∈ [0, T]. By Proposition 1 and

Theorem 1, v solves the following FPE in the distribution sense:

∂tvt = −∂i(bivt) + ∂ij(aijvt) +
∫
U

[vt( · −γ u) − vt(·)] ν(du).

Moreover, using μ0(dx) = v0(x) dx ∈P1(Rd) and Proposition 2, we conclude that v ∈ L̂+,
where

L̂+ :=
{

v = (vt)t∈[0,T] : vt � 0,
∫
Rd

vt(x) dx = 1 for any t ∈ [0, T], and

sup
t∈[0,T]

( ∫
Rd

vt(x)r(1 + |x|2)(r−1)d dx

)
<∞, sup

t∈[0,T]

( ∫
Rd

|x|vt(x) dx

)
<∞

}
.

Finally, note that, by [24, Theorem 4.2], (22) has a pathwise unique weak solution with the
initial distribution μ0 at time 0. So, for any time s ∈ [0, T] and μs(dx) := vs(x) dx ∈P1(Rd)
with

∫
Rd vs(x)r(1 + |x|2)(r−1)d dx<∞, by the same deduction as in [24, Theorem 4.2] we

obtain that (22) has a pathwise unique weak solution with the initial distribution μs at time
s. From this and Proposition 1, we know that (18) has a unique martingale solution. The proof
is complete. �

Here we recall that σ in Theorem 3 can be degenerate. Let σ = 0; (18) becomes

dXt = b(t, Xt) dt + γ

∫
U

u N(dt, du), t ∈ [0, T]. (23)

We immediately have the following result.

Corollary 1. Suppose that bn, b, and σ n satisfy Hb,σ uniformly and, for some q> 1, |�b| ∈
L1([0, T], Lq

loc(Rd)), (∂ibi)− ∈ L1([0, T], L∞(Rd)). For any μ0(dx) = v0(x) dx ∈P1(Rd) with∫
Rd v0(x)r(1 + |x|2)(r−1)d dx<∞ for some r> 1, let Pn, P be martingale solutions of (19) and

(23) with the initial law μ0, respectively. Assume that

(i) bn → b, an → 0 in L1
loc([0, T] ×R

d), γ n → γ as n → ∞;

(ii) P
n ◦ e−1

t is absolutely continuous with respect to the Lebesgue measure on R
d

and vn
t (x) denotes the density, i.e. vn

t (x) := (Pn ◦ e−1
t )(dx)/dx for any t ∈ [0, T], and

supx∈Rd |vn
t (x)|� CT.

Then P
n → P in P(DT ).

Remark 4. This corollary means that SDEs with jumps can converge to SDEs with pure jumps
in some sense.
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5.2. σ �= 0, γ = 0

In this subsection we take σ �= 0, γ = 0, and require that σ n, σ are independent of the space
variable x. Thus, (7)–(9) become

dXt = b(t, Xt) dt + σ (t) dBt, t ∈ [0, T], (24)

∂tvt = −∂i(bivt) + ∂ij(aijvt), (25)

dXn
t = bn(t, Xn

t ) dt + σ n(t) dBt + γ n
∫
U

g(t, x, u) N(dt, du), t ∈ [0, T]. (26)

The following proposition describes the relationship between martingale solutions of (24) and
of (26).

Proposition 3. Suppose that bn, b, σ n, σ , and {γ n} are uniformly bounded, g satisfies Hf , and
b ∈ L1([0, T], BVloc(Rd,Rd)), ∂ibi ∈ L1

loc([0, T] ×R
d), (∂ibi)− ∈ L1([0, T], L∞(Rd)). For any

μ0(dx) = v0(x) dx ∈P1(Rd) with ‖v0‖∞ <∞, let Pn, P be martingale solutions of (26) and
(24) with the initial law μ0, respectively. Assume that

(i) bn → b in L1
loc([0, T] ×R

d), an → a in L1
loc([0, T]), γ n → 0 as n → ∞;

(ii) P
n ◦ e−1

t is absolutely continuous with respect to the Lebesgue measure on R
d

and vn
t (x) denotes the density, i.e. vn

t (x) := (Pn ◦ e−1
t )(dx)/dx for any t ∈ [0, T], and

supx∈Rd |vn
t (x)|� CT.

Then P
n → P in P(DT ).

Proof. By [3, Theorem 4.12] and Proposition 2, (25) has a unique weak solution in

L̃+ :=
{

v = (vt)t∈[0,T] : vt � 0,
∫
Rd

vt(x) dx = 1 for any t ∈ [0, T], and

sup
t∈[0,T]

‖vt(·)‖∞ <∞, sup
t∈[0,T]

∫
Rd

|x|vt(x) dx<∞
}
,

which together with Theorem 1 implies that (24) has a unique martingale solution. Thus, the
remaining proof is similar to that of Theorem 2, and is omitted it to save space. �

Remark 5. This proposition means that SDEs with jumps can converge to SDEs without
jumps in some sense. Note that the result in [5] can be regarded as a discrete version of
Proposition 3.

5.3. σ = 0, γ = 0

In this subsection we take σ = 0, γ = 0, and require that σ n are independent of the space
variable x. Thus, (7) and (9) become

dXt = b(t, Xt) dt, t ∈ [0, T], (27)

dXn
t = bn(t, Xn

t ) dt + σ n(t) dBt + γ n
∫
U

g(t, x, u) N(dt, du), t ∈ [0, T]. (28)
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That is, (27) becomes an ordinary differential equation. Then a martingale solution of (27)
is a measure on C([0, T],Rd) concentrated on integral curves of b [3, Lemma 3.8]. So,
the following proposition presents the relationship between martingale solutions of (28) and
of (27).

Proposition 4. Suppose that bn, b, σ n, and {γ n} are uniformly bounded, g satisfies Hf , and
that b ∈ L1([0, T], BVloc(Rd,Rd)), ∂ibi ∈ L1

loc([0, T] ×R
d), and (∂ibi)− ∈ L1([0, T], L∞(Rd)).

Let μ0(dx) = v0(x) dx ∈P1(Rd) with ‖v0‖∞ <∞, and P
n, P be martingale solutions of (28)

and (27) with the initial law μ0, respectively. Assume that

(i) bn → b, an → 0 in L1
loc([0, T] ×R

d), γ n → 0 as n → ∞;

(ii) P
n ◦ e−1

t is absolutely continuous with respect to the Lebesgue measure on R
d

and vn
t (x) denotes the density, i.e. vn

t (x) := (Pn ◦ e−1
t )(dx)/dx for any t ∈ [0, T], and

supx∈Rd |vn
t (x)|� CT.

Then P
n → P in P(DT ).

Since the proof is similar to that of Proposition 3, we omit it.

Remark 6. This proposition means that SDEs with jumps can converge to ordinary differential
equations in some sense. Moreover, if we take γ n = 0, bn = b, and

σ n = 1√
n

⎛
⎜⎜⎜⎝

1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . .

...

0 0 0 · · · 1

⎞
⎟⎟⎟⎠

d×m

,

Proposition 4 is just right [3, Corollary 3.9].
If σ n = 0 and bn, b, g are independent of t, (28) and (27) fall into the framework in [11,

12]. Comparing Proposition 4 with [12, Theorem 2.11], we find that our conditions are weaker
and then our result is weaker.
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[18] ROZKOSZ, A. AND SLOMIŃSKI, L. (1997). On stability and existence of solutions of SDEs with reflection at
the boundary. Stoch. Process. Appl. 68, 285–302.

[19] RÖCKNER, M., XIE, L. AND ZHANG, X. (2020). Superposition principle for non-local Fokker–Planck
operators. Prob. Theory Relat. Fields 178, 699–733.

[20] STROOCK, D. W. (1975). Diffusion processes associated with Lévy generators. Z. Wahrscheinlichkeitsth. 32,
209–244.

[21] STROOCK, D. W. AND VARADHAN, S. R. S. (1979). Multidimensional Diffusion Processes (Grundlehren
Math. Wiss. 233). Springer, Berlin.

[22] YAMADA, K. (1984). A stability theorem for stochastic differential equations and application to stochastic
control problems. Stochastics 13, 257–279.

[23] YAMADA, K. (1986). A stability theorem for stochastic differential equations with application to storage
processes, random walks and optimal stochastic control problems. Stoch. Process. Appl. 23, 199–220.

[24] ZHANG, X. (2013). Degenerate irregular SDEs with jumps and application to integro-differential equations of
Fokker–Planck type. Electron. J. Prob. 18, 1–25.

https://doi.org/10.1017/jpr.2025.17 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2025.17

	Introduction
	Preliminaries
	Notation
	Weak solutions and martingale solutions for SDEs with jumps
	Weak solutions of Fokker"2013`Planck equations
	The superposition principle for (3) and (4)

	Main results
	Proof of Theorem 2
	Special cases
	"026E30F gamma"026E30F neq 0, g(t,x,u)=u
	"026E30F sigma"026E30F neq 0, "026E30F gamma=0
	"026E30F sigma=0, "026E30F gamma=0

	Acknowledgements
	Funding information
	Competing interests
	References

