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Abstract. We consider the system

—Apeytt = if (v) + pih(u) in Q
—Ayv = Aag(u) + oy (v) in Q,
u=v=0 on 92

where p(x), g(x) € C'(R") are radial symmetric functions such that sup|Vp(x)| <
00, sup |Vg(x)| < oo and 1 < inf p(x) < supp(x) < oo, 1 < inf g(x) < sup¢g(x) < oo,
where —A,yu = —div(|VulPD2Vu), —A v = —div(|Vu[79=2Vv), respectively are
called p(x)-Laplacian and ¢(x)-Laplacian, A1, A, u and u, are positive parameters
and Q = B(0, R) C R" is a bounded radial symmetric domain, where R is sufficiently
large. We prove the existence of a positive solution when

o S M) )

u4>+oo ul~ -1

=0,

for every M > 0, lim,,_, | % =0 and lim,_, ’;(7 = 0. In particular, we do not

assume any sign conditions on £(0), g(0), h(0) or y(O)
AMS Subject Classification. 35J60, 35B30, 35B40.

1. Introduction. The study of differential equations and variational problems
with non-standard p(x)-growth conditions has been a new and interesting topic. Many
results have been obtained on this kind of problem, for example, [3-8, 10, 11, 13]. In
[6, 7] Fan and Zhao give the regularity of weak solutions for differential equations
with non-standard p(x)-growth conditions. Zhang in [12] investigated the existence of
positive solutions of the system

—Apyu = f(v) %n Q
_Aq(x)v = g(”) m Q, (1)
u=v=0 on 992
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where p(x) € C!(R") is a function and Q Cc RV is a bounded domain. The
operator — A = —div(|Vul'~2Vu) is called p(x)-Laplacian. Especially, if p(x) = p
(a constant), (1) is the well-known p-Laplacian systems. There are many papers on the
existence of solutions for p-Laplacian elliptic systems, for example, [1-9].
In [9] the authors consider the existence of positive weak solutions for the following
p-Laplacian problems:

—Apu=f(v) inQ
—Apv=gu) inQ. 2)
u=v=_0 on 92

The first eigenfunction is used for constructing the subsolution of p-Laplacian problems
successfully. On the condition of

tim LMEDTD oy,

u—+00 up—l

the authors show the existence of positive solutions for problem (2).
In this paper, we mainly consider the existence of positive solutions of the system

—Dpeou = Mf(v) + pih(u) %n Q
=Dy = Aogu) + pay(v) inQ, 3)
u=v=_0 on 9Q

where p(x), g(x) € C'(RN) are functions, A1, A, t1 and p, are positive parameters and
Q C R" is a bounded domain.

In order to deal with p(x)-Laplacian problems, we need some theories on spaces
LP9(Q), and WP (Q) and properties of p(x)-Laplacian which we will use later (see
[8]). If @  RY is an open domain, then

Co(Q) = {h|he CQ), h(x)>1forx € Q,
ht = sup,cq M(x), h™ = infycq h(x), for any 1 € C(2),
LP0(Q) = {ulu is a measurable real-valued function, [, [ul’™dx < oc}.

Throughout the paper, we will assume that p, ¢ € C(2) and

1 < infycpy p(x) < sup, gy p(x) < N,

1 < infycpy g(x) < sup,pv g(x) < N.
We can introduce the norm on I/ (2) by
Ul = inf {2 > O] [ |42 dx < 1,

and (I7M(R), || »(v)) becomes a Banach space, which we call generalised Lebesgue
space.

The space (L”™(R), |.|p(x) is a separable, reflexive and uniformly convex Banach
space (see [8, Theorem 1.10, 1.14]).

The space W!'?M(Q) is defined by

Wro(Q) = {u € IP(Q)]|Vu| € LPY(Q)},
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and it can be equipped with the norm

lull = lulpe) + | Vilpy, Yue WHE(Q).

We denote by W, ”™() the closure of C3°(R) in W'?™(Q). W'#()(Q) and W,”™(Q)
are separable, reflexive and uniformly convex Banach spaces (see [8, Theorem 2.1]). We
define that if

(L(u), v) = [pv IVulP™=2VuVu dx, Yu, v e WHPN(Q),

then L : W'PM(Q) — (W'PM(Q))* is a continuous, bounded and strictly monotone
operator and is also a homeomorphism (see [4, Theorem 3.11]). If u,v e
WO1 PO(Q), (u, v) is called a weak solution of (3) which satisfies

[ w2 ax= [ Guf) + wibpedr.  ve € @)
Q Q

[ 1vu2vovsay= [ Gage + ey ds, Ve e W@,
Q Q

We make the following assumptions

H.1)  p(x),q(x) e CY(RY) are radial symmetric and sup|Vp(x)| < oo, sup |
Vg(x)| < oo.

(H.2) @ = B(0, R) = {x]||x| < R}isa ball, where R > 0 is a sufficiently large constant.
(H.3) f. g, h,y :[0,00) — Rare C', monotone functions such that

1My 100 £(1) = 1My o0 g(t0) = iy o0 A1) = limy_s o0 1 (1) = +00.

1
(H.4) lim,_, ;o [ ) _ ) for every M > 0.

w1

. hi .
(HL5) Timy s yo0 22 = lim, o0 22 = 0.

We shall establish the following theorem.

2. Main results.
THEOREM 1. If (H.1)-(H.5) hold, then (3) has a positive solution.

Proof. We shall establish Theorem 1 by constructing a positive subsolution (¢1, ¢»)
and supersolution (zi, z2) of (3), such that ¢; < z; and ¢, < z;. That is, (¢1, ¢2) and
(z1, z2) satisfy

/ V1 P92V, - VEdx < Ay / P& dx + / hn) & dx,
Q Q Q

/ |V | 1972V - VE dx < ?»2/ g(p) & dx + Mz/ y(¢2) & dx,
Q Q Q

and

/Q VP92V, - VEdx = Ay /Q P dx+ /Q hn) & dx,
/ |V |12V, - VE dx > ?»2/ g(p1)Edx+ Mz/ y($2) & dx,
Q Q Q

forall & € Wg’p(x)(Q) with & > 0. Then (3) has a positive solution.
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Step 1. We construct a subsolution of (3).

Denote
_ inf p(x) — 1 _R—a
T AGup|Vp[+ 1) T2
inf g(x) — 1 R—a
)= —F

~ 4sup [Vg()[ + 1)’
and let ky > 0 such that f(u), g(u), h(u), y(u) > —ky forall u > 0, and let

e k=R _ 1 2R, < r< R

J
etk _ 1+f2R1(kea1k) p(r) 1 [(21?\1)’: 1 sin (81(}’— 2R) + %)ko()vl‘f'll«l)]pm*l dr,
¢1(V)= 2R1—%<}’<2R1,

ek _ 1+f2Rl (kealk) p(, |:(2R1)V sin (81(}’—2R1)+ )ko()tl +Ml)]
T dr,r <2R| —

where R; is sufficiently large and ¢, is a small positive constant which satisfies

Rlsle—%,
1

and let

e k=R _ 1 2R, < r< R

e —1+4 IZRZ(keMk) GE [(2R2) sin (e2(r — 2R2) + % )ko()vz-i-uz)]"”ﬁ dr,
2Ry — 5~ <r<2R
$2(r) = 27 2 >

PCI o f2R2 (kgazk) Fea [(2R’) sin (82(r —2Ry) + )ko()»z + Mz)]
T dr,r <2Ry — 5~

where R; is sufficiently large and ¢; is a small positive constant which satisfies

Ry <2R, — l
282
In the following, we will prove that (¢, ¢,) is a subsolution of (3).
Since
e k=R _ 1, 2Ry <r <R,
i
o) | e T [ 2RI sin (61 = 2R) + 3)ko(ha + )] 7
! 2R — 5= <1 < 2Ry,
0, 0<r<2R —
and
e k=R _ 2R2 <r <R,
2Ry) 1
/ — (ke " [ZRE Gin (e(r — 2Rs) + Z)ko(ha + p2)] @ di,
$20)=12R, - Z <r<2R,
£ —
0, 0<r=<2R— -,
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itis easy to see that ¢y, ¢» > 0 are decreasing and ¢y, ¢ € CY([0, R]), ¢1(x) = ¢1(Ix]) €
C1(£2) and $a(x) = ¢a(Ix]) € C'(<2).
Let r = |x|. By computation,

— A1 = —div(IVe1 () POV (x) = =g (PO () /N
so then
(ke =R k(p(r) — 1) + p/(r) Ink — kp' ()(r — R) + 21,
2R1 <r<R,
e1 (RN (ke kPRI cos (1(r — 2Ry) + T) (b1 + 1),
2R — & <r<2R,0, 0<r<2R —=Z

261 26

— Ay =

If & is sufficiently large, when 2R; < r < R, then we have

Ink N -1
ot = [0 p) — 1= sup Vp (7 + R=7) 4 2| <~k

»
As ay is a constant dependent only on p(x), if k is big enough, such that
—kay < —(h + 1)k,
then we have
—BpwP1 = —(A1 + ndko < Mf(d2) + mih(ér), 2Ry < |x| < R. 4)
If k is sufficiently large, then
fe* =1y =1, h(e™* —1) > 1, gle™  — 1) > 1, y(e™* — 1) > 1,

where k is dependent on f, 4, g, y and p, ¢ and independent on R. Since

Ay = &1 <_1> (ke PRI (o (81(r —2R) + %) (1 + 1)
r
< 81()\1 —+ [,Ll)szp+€u'kp+, 2R1 - % < |X| = 2Rl,
1

let
g = 27 NPT ek’
Then we have

T
—ANpo®1 < A+ 1 < A f(d2) + wih(er), 2R, — % < x| <2Ri.  (5)

Obviously,

T
—Npy®1 =0 < Ay 4 w1 < Aif(d2) + mih(er),  |1x] < 2Ry — %, (6)

Since ¢1(x) € C'(R2), combining (4), (5) and (6), we have

—Npod1 < Aif(¢2) + wrh(gr), for a.e x e S.
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Similarly we have
— Ay P2 < Aag(P1) + 12y (42), for ae xeQ.

Since ¢1(x), ¢2(x) € CL(Q), it is easy to see that (¢;, ¢) is a subsolution of (3).
Step 2. We construct a supersolution of (3).
Let z; be a radial solution of

—Apwz1(x) = (A +udp, in Q, z1=0 on 9Q.
We denote that if z; = z;(r) = z1(]x]|), then z; satisfies

—NNAPO22Y =Y 0 . 21(R) =0, £1(0) = 0,

and so
1
A T
Z/l - _ V( 1";/“1)“ r (7)
and
z —/R r(A 4 pu ot
1= A I
We denote that if 8 = B((A; + p1)) = maxo<,<g z1(r), then
Rlr(ng + ot Ryr
B((A1 + p1)i) =/ s 3 e dr = ((n +M1)M)'ﬁ/ ‘— " dr,
0 N 0 N

where ¢ € [0, 1]. Since fOR |4 17071 dr is a constant, then there exists a positive constant
C > 1 such that

1 1 1
E((M +pu)p)r < (g 4+ pp) = 0111;55;21(7) < C((M +p)w)=—". (®)

We consider

—Apwz1 = (M + uu in Q
—Ayw22 = (A2 + u2)g(B(A + pnp))  in 2,
Zl = Ip = 0 on 02

and then we shall prove that (z;, z;) is a supersolution for (3).
For & € WHP¥(Q) with & > 0 it is easy to see that

/ |Vz,|1972V 2, . VEdx = /(kz + 12)g(B((A1 + pm1)w))é dx
Q Q
> [ hag(a)Edx + / 128 (B((h1 + )W) dx.
Q Q

By (H.5) for u large enough, we have

gB((A1 + ) = v ([(h2 + w2)(g(B((A1 + Ml).u)))]"%‘) > y(22).
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Hence
fQ |Vzo| 1972V 2, - VEdx > /Q)»zg(m)édx + /Q 2y (22)§ dx. )
Also
fQ |Vz P92V 2, - VEdx = /Q(M + p1)ué dx.
Similar to (8), we have
max 22() = Cl0a + u2)g(B(Ghr + )] T 7.

By (H.4) and (H.5), when w is sufficiently large, according to (8), we have

1 p-l
M+ pp = [Eﬂ(()»l + Ml)/’«)i|

= uf [ €02 + ) (@B + )T T |+ wih(B(Gh1 + 1))
> Mf(22) + wih(zy),

and so
/ V2 P92V, - Vedx / MfGEdx + / ph(z1)E dx (10)
Q Q Q

According to (9) and (10), we can conclude that (z1, z) is a supersolution of (3).
Let u be sufficiently large; then from (7) and the definition of (¢, ¢»), it is easy to see
that ¢; < z; and ¢, < z;. This completes the proof. OJ
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