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Abstract. We consider the system

⎧⎨
⎩

−�p(x)u = λ1f (v) + μ1h(u) in �

−�q(x)v = λ2g(u) + μ2γ (v) in �,

u = v = 0 on ∂�

where p(x), q(x) ∈ C1(RN) are radial symmetric functions such that sup |∇p(x)| <

∞, sup |∇q(x)| < ∞ and 1 < inf p(x) ≤ sup p(x) < ∞, 1 < inf q(x) ≤ sup q(x) < ∞,

where −�p(x)u = −div(|∇u|p(x)−2∇u),−�q(x)v = −div(|∇v|q(x)−2∇v), respectively are
called p(x)-Laplacian and q(x)-Laplacian, λ1, λ2, μ1 and μ2 are positive parameters
and � = B(0, R) ⊂ RN is a bounded radial symmetric domain, where R is sufficiently
large. We prove the existence of a positive solution when

lim
u→+∞

f (M(g(u))
1

q−−1 )
up−−1

= 0,

for every M > 0, limu→+∞
h(u)

up−−1 = 0 and limu→+∞
γ (u)

uq−−1 = 0. In particular, we do not
assume any sign conditions on f (0), g(0), h(0) or γ (0).

AMS Subject Classification. 35J60, 35B30, 35B40.

1. Introduction. The study of differential equations and variational problems
with non-standard p(x)-growth conditions has been a new and interesting topic. Many
results have been obtained on this kind of problem, for example, [3–8, 10, 11, 13]. In
[6, 7] Fan and Zhao give the regularity of weak solutions for differential equations
with non-standard p(x)-growth conditions. Zhang in [12] investigated the existence of
positive solutions of the system

⎧⎨
⎩

−�p(x)u = f (v) in �

−�q(x)v = g(u) in �,

u = v = 0 on ∂�

(1)
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where p(x) ∈ C1(RN) is a function and � ⊂ RN is a bounded domain. The
operator −�p(x)u = −div(|∇u|p(x)−2∇u) is called p(x)-Laplacian. Especially, if p(x) ≡ p
(a constant), (1) is the well-known p-Laplacian systems. There are many papers on the
existence of solutions for p-Laplacian elliptic systems, for example, [1–9].

In [9] the authors consider the existence of positive weak solutions for the following
p-Laplacian problems:

⎧⎨
⎩

−�pu = f (v) in �

−�pv = g(u) in �.

u = v = 0 on ∂�

(2)

The first eigenfunction is used for constructing the subsolution of p-Laplacian problems
successfully. On the condition of

lim
u→+∞

f (M(g(u))
1

p−1 )
up−1

= 0, ∀M > 0,

the authors show the existence of positive solutions for problem (2).
In this paper, we mainly consider the existence of positive solutions of the system

⎧⎨
⎩

−�p(x)u = λ1f (v) + μ1h(u) in �

−�q(x)v = λ2g(u) + μ2γ (v) in �,

u = v = 0 on ∂�

(3)

where p(x), q(x) ∈ C1(RN) are functions, λ1, λ2, μ1 and μ2 are positive parameters and
� ⊂ RN is a bounded domain.

In order to deal with p(x)-Laplacian problems, we need some theories on spaces
Lp(x)(�), and W 1,p(x)(�) and properties of p(x)-Laplacian which we will use later (see
[8]). If � ⊂ RN is an open domain, then

C+(�) = {h | h ∈ C(�), h(x) > 1 for x ∈ �},
h+ = supx∈� h(x), h− = infx∈� h(x), for any h ∈ C(�),
Lp(x)(�) = {u|u is a measurable real-valued function,

∫
�

|u|p(x)dx < ∞}.

Throughout the paper, we will assume that p, q ∈ C+(�) and

1 < infx∈RN p(x) ≤ supx∈RN p(x) < N,

1 < infx∈RN q(x) ≤ supx∈RN q(x) < N.

We can introduce the norm on Lp(x)(�) by

|u|p(x) = inf
{
λ > 0

∣∣ ∫
�

∣∣ u(x)
λ

∣∣p(x)dx ≤ 1
}
,

and (Lp(x)(�), |.|p(x)) becomes a Banach space, which we call generalised Lebesgue
space.

The space (Lp(x)(�), |.|p(x)) is a separable, reflexive and uniformly convex Banach
space (see [8, Theorem 1.10, 1.14]).

The space W 1,p(x)(�) is defined by

W 1,p(x)(�) = {
u ∈ Lp(x)(�)||∇u| ∈ Lp(x)(�)

}
,
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and it can be equipped with the norm

‖u‖ = |u|p(x) + |∇u|p(x), ∀u ∈ W 1,p(x)(�).

We denote by W 1,p(x)
0 (�) the closure of C∞

0 (�) in W 1,p(x)(�). W 1,p(x)(�) and W 1,p(x)
0 (�)

are separable, reflexive and uniformly convex Banach spaces (see [8, Theorem 2.1]). We
define that if

(L(u), v) = ∫
RN |∇u|p(x)−2∇u∇v dx, ∀u, v ∈ W 1,p(x)(�),

then L : W 1,p(x)(�) → (W 1,p(x)(�))∗ is a continuous, bounded and strictly monotone
operator and is also a homeomorphism (see [4, Theorem 3.11]). If u, v ∈
W 1,p(x)

0 (�), (u, v) is called a weak solution of (3) which satisfies
∫

�

|∇u|p(x)−2∇u∇ξ dx =
∫

�

(λ1f (v) + μ1h(u))ξdx, ∀ξ ∈ W 1,p(x)
0 (�),

∫
�

|∇v|q(x)−2∇v∇ξ dx =
∫

�

(λ2g(u) + μ2γ (v))ξ dx, ∀ξ ∈ W 1,p(x)
0 (�).

We make the following assumptions

(H.1) p(x), q(x) ∈ C1(RN) are radial symmetric and sup |∇p(x)| < ∞, sup |
∇q(x)| < ∞.
(H.2) � = B(0, R) = {x||x| < R} is a ball, where R > 0 is a sufficiently large constant.
(H.3) f, g, h, γ : [0,∞) → R are C1, monotone functions such that

limu→+∞ f (u) = limu→+∞ g(u) = limu→+∞ h(u) = limu→+∞ γ (u) = +∞.

(H.4) limu→+∞
f (M(g(u))

1
q−−1 )

up−−1 = 0, for every M > 0.

(H.5) limu→+∞
h(u)

up−−1 = limu→+∞
γ (u)

uq−−1 = 0.

We shall establish the following theorem.

2. Main results.

THEOREM 1. If (H.1)–(H.5) hold, then (3) has a positive solution.

Proof. We shall establish Theorem 1 by constructing a positive subsolution (φ1, φ2)
and supersolution (z1, z2) of (3), such that φ1 ≤ z1 and φ2 ≤ z2. That is, (φ1, φ2) and
(z1, z2) satisfy∫

�

|∇φ1|p(x)−2∇φ1 · ∇ξ dx ≤ λ1

∫
�

f (φ2) ξ dx + μ1

∫
�

h(φ1) ξ dx,

∫
�

|∇φ2|q(x)−2∇φ1 · ∇ξ dx ≤ λ2

∫
�

g(φ1) ξ dx + μ2

∫
�

γ (φ2) ξ dx,

and ∫
�

|∇φ1|p(x)−2∇φ1 · ∇ξ dx ≥ λ1

∫
�

f (φ2) ξ dx + μ1

∫
�

h(φ1) ξ dx,

∫
�

|∇φ2|q(x)−2∇φ1 · ∇ξ dx ≥ λ2

∫
�

g(φ1) ξ dx + μ2

∫
�

γ (φ2) ξ dx,

for all ξ ∈ W 1,p(x)
0 (�) with ξ ≥ 0. Then (3) has a positive solution.
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Step 1. We construct a subsolution of (3).
Denote

a1 = inf p(x) − 1
4(sup |∇p(x)| + 1)

, R1 = R − a1

2
,

a2 = inf q(x) − 1
4(sup |∇q(x)| + 1)

, R2 = R − a2

2
,

and let k0 > 0 such that f (u), g(u), h(u), γ (u) ≥ −k0 for all u ≥ 0, and let

φ1(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e−k(r−R) − 1, 2R1 < r ≤ R,

ea1k − 1 + ∫ 2R1

r (kea1k)
p(2R1)−1

p(r)−1
[ (2R1)N−1

rN−1 sin
(
ε1

(
r − 2R1) + π

2

)
k0(λ1+μ1

)] 1
p(r)−1 dr,

2R1 − π
2ε1

< r ≤ 2R1,

ea1k − 1 + ∫ 2R1

2R1− π
2ε1

(kea1k)
p(2R1)−1

p(r)−1
[ (2R1)N−1

rN−1 sin
(
ε1(r − 2R1) + π

2

)
k0(λ1 + μ1)

]
1

p(r)−1 dr, r ≤ 2R1 − π
2ε1

,

where R1 is sufficiently large and ε1 is a small positive constant which satisfies

R1 ≤ 2R1 − π

2ε1
,

and let

φ2(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e−k(r−R) − 1, 2R2 < r ≤ R,

ea2k − 1 + ∫ 2R2

r (kea2k)
q(2R2)−1

q(r)−1
[ (2R2)N−1

rN−1 sin
(
ε2(r − 2R2) + π

2

)
k0(λ2+μ2)

] 1
q(r)−1 dr,

2R2 − π
2ε2

< r ≤ 2R2,

ea2k − 1 + ∫ 2R2

2R2− π
2ε2

(kea2k)
q(2R2)−1

q(r)−1
[ (2R2)N−1

rN−1 sin
(
ε2(r − 2R2) + π

2

)
k0(λ2 + μ2)

]
1

q(r)−1 dr, r ≤ 2R2 − π
2ε2

,

where R2 is sufficiently large and ε2 is a small positive constant which satisfies

R2 ≤ 2R2 − π

2ε2
.

In the following, we will prove that (φ1, φ2) is a subsolution of (3).
Since

φ′
1(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−k(r−R) − 1, 2R1 < r ≤ R,

−(kea1k)
p(2R1)−1

p(r)−1
[ (2R1)N−1

rN−1 sin
(
ε1(r − 2R1) + π

2

)
k0(λ1 + μ1)

] 1
p(r)−1 dr,

2R1 − π
2ε1

< r ≤ 2R1,

0, 0 ≤ r ≤ 2R1 − π
2ε1

,

and

φ′
2(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−k(r−R) − 1, 2R2 < r ≤ R,

−(kea2k)
q(2R2)−1

q(r)−1
[ (2R2)N−1

rN−1 sin
(
ε2(r − 2R2) + π

2

)
k0(λ2 + μ2)

] 1
q(r)−1 dr,

2R2 − π
2ε2

< r ≤ 2R2,

0, 0 ≤ r ≤ 2R2 − π
2ε2

,
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it is easy to see that φ1, φ2 ≥ 0 are decreasing and φ1, φ2 ∈ C1([0, R]), φ1(x) = φ1(|x|) ∈
C1(�̄) and φ2(x) = φ2(|x|) ∈ C1(�̄).

Let r = |x|. By computation,

−�p(x)φ1 = −div(|∇φ1(x)|p(x)−2∇φ1(x)) = −(rN−1|φ′
1(r)|p(r)−2φ′

1(r))′/rN−1,

so then

−�p(x)φ1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
ke−k(r−R)

)p(r)−1[ − k(p(r) − 1) + p′(r) ln k − kp′(r)(r − R) + N−1
r

]
,

2R1 < r ≤ R,

ε1
( 2R1

r

)N−1
(kea1k)p(2R1)−1 cos

(
ε1(r − 2R1) + π

2

)
(λ1 + μ1),

2R1 − π
2ε1

< r ≤ 2R1, 0, 0 ≤ r ≤ 2R1 − π
2ε1

.

If k is sufficiently large, when 2R1 < r ≤ R, then we have

−�p(x)φ1 ≤ −k
[

inf p(x) − 1 − sup |∇p(x)|
(

ln k
k

+ R − r
)

+ N − 1
kr

]
≤ −ka1.

As a1 is a constant dependent only on p(x), if k is big enough, such that

−ka1 < −(λ1 + μ1)k0,

then we have

−�p(x)φ1 ≤ −(λ1 + μ1)k0 ≤ λ1f (φ2) + μ1h(φ1), 2R1 < |x| ≤ R. (4)

If k is sufficiently large, then

f (ea2k − 1) ≥ 1, h(ea1k − 1) ≥ 1, g(ea1k − 1) ≥ 1, γ (ea2k − 1) ≥ 1,

where k is dependent on f, h, g, γ and p, q and independent on R. Since

−�p(x)φ1 = ε1

(
2R1

r

)N−1

(kea1k)p(2R1)−1 cos
(
ε1(r − 2R1) + π

2

)
(λ1 + μ1)

≤ ε1(λ1 + μ1)2Nkp+
ea1kp+

, 2R1 − π

2ε1
< |x| ≤ 2R1,

let

ε1 = 2−Nk−p+
e−a1kp+

.

Then we have

−�p(x)φ1 ≤ λ1 + μ1 ≤ λ1 f (φ2) + μ1h(φ1), 2R1 − π

2ε1
< |x| ≤ 2R1. (5)

Obviously,

−�p(x)φ1 = 0 ≤ λ1 + μ1 ≤ λ1f (φ2) + μ1h(φ1), |x| ≤ 2R1 − π

2ε1
. (6)

Since φ1(x) ∈ C1(�), combining (4), (5) and (6), we have

−�p(x)φ1 ≤ λ1f (φ2) + μ1h(φ1), for a.e. x ∈ �.
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Similarly we have

−�q(x)φ2 ≤ λ2g(φ1) + μ2γ (φ2), for a.e. x ∈ �.

Since φ1(x), φ2(x) ∈ C1(�̄), it is easy to see that (φ1, φ2) is a subsolution of (3).
Step 2. We construct a supersolution of (3).
Let z1 be a radial solution of

−�p(x)z1(x) = (λ1 + μ1)μ, in �, z1 = 0 on ∂�.

We denote that if z1 = z1(r) = z1(|x|), then z1 satisfies

−(rN−1|z′
1|p(r)−2z′

1)′ = rN−1(λ1 + μ1)μ, z1(R) = 0, z′
1(0) = 0,

and so

z′
1 = −

∣∣∣∣ r(λ1 + μ1)μ
N

∣∣∣∣
1

p(r)−1

(7)

and

z1 =
∫ R

r

∣∣∣∣ r(λ1 + μ1)μ
N

∣∣∣∣
1

p(r)−1

dr.

We denote that if β = β((λ1 + μ1)μ) = max0≤r≤R z1(r), then

β((λ1 + μ1)μ) =
∫ R

0

∣∣∣∣ r(λ1 + μ1)μ
N

∣∣∣∣
1

p(r)−1

dr = ((λ1 + μ1)μ)
1

p(t)−1

∫ R

0

∣∣∣ r
N

∣∣∣
1

p(r)−1
dr,

where t ∈ [0, 1]. Since
∫ R

0 | r
N | 1

p(r)−1 dr is a constant, then there exists a positive constant
C ≥ 1 such that

1
C

((λ1 + μ1)μ)
1

p+−1 ≤ β((λ1 + μ1)μ) = max
0≤r≤R

z1(r) ≤ C((λ1 + μ1)μ)
1

p−−1 . (8)

We consider ⎧⎨
⎩

−�p(x)z1 = (λ1 + μ1)μ in �

−�q(x)z2 = (λ2 + μ2)g(β((λ1 + μ1)μ)) in �,

z1 = z2 = 0 on ∂�

and then we shall prove that (z1, z2) is a supersolution for (3).
For ξ ∈ W 1,p(x)(�) with ξ ≥ 0 it is easy to see that

∫
�

|∇z2|q(x)−2∇z2 · ∇ξ dx =
∫

�

(λ2 + μ2)g(β((λ1 + μ1)μ))ξ dx

≥
∫

�

λ2g(z1)ξdx +
∫

�

μ2g(β((λ1 + μ1)μ))ξ dx.

By (H.5) for μ large enough, we have

g(β((λ1 + μ1)μ)) ≥ γ
(
[(λ2 + μ2)(g(β((λ1 + μ1)μ)))]

1
q−−1

) ≥ γ (z2).
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Hence
∫

�

|∇z2|q(x)−2∇z2 · ∇ξdx ≥
∫

�

λ2g(z1)ξdx +
∫

�

μ2γ (z2)ξ dx. (9)

Also
∫

�

|∇z1|p(x)−2∇z1 · ∇ξdx =
∫

�

(λ1 + μ1)μξ dx.

Similar to (8), we have

max
0≤r≤R

z2(r) ≤ C[(λ2 + μ2)g(β((λ1 + μ1)μ))]
1

(q−−1) .

By (H.4) and (H.5), when μ is sufficiently large, according to (8), we have

(λ1 + μ1)μ ≥
[

1
C

β((λ1 + μ1)μ)
]p−−1

≥ λ1f
[
C([(λ2 + μ2)(g(β((λ1 + μ1)μ)))]

1
(q−−1)

]
+ μ1h(β((λ1 + μ1)μ)

≥ λ1f (z2) + μ1h(z1),

and so
∫

�

|∇z1|p(x)−2∇z1 · ∇ξdx ≥
∫

�

λ1f (z2)ξdx +
∫

�

μ1h(z1)ξ dx (10)

According to (9) and (10), we can conclude that (z1, z2) is a supersolution of (3).
Let μ be sufficiently large; then from (7) and the definition of (φ1, φ2), it is easy to see
that φ1 ≤ z1 and φ2 ≤ z2. This completes the proof. �
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