
This article concerns the power of various data
analytic strategies to detect the effect of a single

genetic variant (GV) in multivariate data. We simu-
lated exactly fitting monozygotic and dizygotic
phenotypic data according to single and two
common factor models, and simplex models. We
calculated the power to detect the GV in twin 1 data
in an ANOVA of phenotypic sum scores, in a
MANOVA, and in exploratory factor analysis (EFA), in
which the common factors are regressed on the
genetic variant. We also report power in the full twin
model, and power of the single phenotype ANOVA.
The results indicate that (1) if the GV affects all phe-
notypes, the sum score ANOVA and the EFA are
most powerful, while the MANOVA is less powerful.
Increasing phenotypic correlations further decreases
the power of the MANOVA; and (2) if the GV affects
only a subset of the phenotypes, the EFA or the
MANOVA are most powerful, while sum score
ANOVA is less powerful. In this case, an increase in
phenotypic correlations may enhance the power of
MANOVA and EFA. If the effect of the GV is
modeled directly on the phenotypes in the EFA, the
power of the EFA is approximately equal to the
power of the MANOVA.

Keywords: power, association, multivariate, univariate,
exact data simulation, genetic covariance structures.

Well-established twin registries, such as the
Scandinavian twin registers (Peltonen, 2003),
Netherlands Twin Register (Boomsma et al., 2006),
the UK Adult Twin Register (Spector & Williams,
2006), and the Brisbane Adolescent twin study
(Wright & Martin, 2004), contain a wealth of multi-
variate phenotypic data, relating to many different
phenotypes, and often observed at multiple occasions.
Developments in genotyping technology have resulted
in the addition of measured genetic information to
these databases (Boomsma et al., 2002; Willemsen et
al., 2010). The availability of genetic data has allowed
researchers to shift their focus from family-based
genetic covariance structure modeling (Martin &
Eaves, 1977; Neale & Cardon, 1992) to the detection

of individual gene effects in linkage and/or association
studies (e.g., Balding, 2006; Fulker et al., 1999;
Hirshhorn & Daly, 2005; Olson et al., 1999; Kettunen
et al., 2009; Perola et al., 2007; Vink & Boomsma,
2002; Yang et al., 2010). Given the presence of multi-
variate phenotypic data, the question arises under
which conditions a multivariate analysis is preferable
to univariate analyses in studying the role of a given
genetic variant (GV).

In linkage analyses, multivariate modeling was
considered both for substantive reasons and for statis-
tical power advantages that multivariate data
conferred (e.g., Allison et al., 1998; Amos et al.,
2001; Boomsma, 1996; Boomsma & Dolan, 1998;
Boomsma & Dolan, 2000; Evans & Duffy, 2004;
Hottenga & Boomsma, 2008; Martin et al., 1997). To
date, population-based association studies have
focused mainly on the relationship between a mea-
sured measured GV and a univariate phenotype. In
the case of psychological phenotypes, this phenotype
is often a sum score (i.e., the sum calculated across all
items of a phenotypic instrument), or a case-control
affection status dichotomy. In genetic association
studies, however, the power advantages of multivari-
ate data are also of interest, especially as the
contributions of individual genetic variants to the
phenotypic variance are commonly assumed to be
small (Evans, 2008; Gordon & Finch, 2005). To date,
three studies have addressed the question of the
power to detect GVs using multivariate data. In this
paper, we briefly discuss these studies, and we con-
tribute to this area by examining the power to detect
a GV in genetic covariance structures based on the
single and two common factor models and models for
repeated measures.

Ferreira and Purcell (2009) considered the power
of a multivariate test (MANOVA) based on Wilk’s
Lambda given varying number of phenotypes (5, 10,
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and 20), of which a varying number were affected by
the GV. They also varied the positive intercorrelations
between the phenotypes. They found that the multi-
variate test was more powerful than univariate tests,
with (1) increasing correlations among the phenotypes
and (2) increasing number of phenotypes affected (i.e.,
by the GV) increasing the power. However, they noted
a sharp loss of power of the multivariate test when all
phenotypes were affected by the GV. This loss in
power is exacerbated by increasing phenotypic corre-
lations. Their results are consistent with previous
results obtained in linkage analysis (Allison et al.,
1998; Evans & Duffy, 2004; Ferreira, 2006), and
with the statistical literature on MANOVA (Cole et
al., 1994).

Medland and Neale (2010) considered the single
factor models with 3 or 5 indicators, in unrelated cases
and in sib pairs (Fulker et al., 1999). They varied the
effect of the GV in the factor model such that it was (1)
part of the common factor, thus conveying its effect via
the factor loadings on all variables; or (2) common to
all phenotypes, but not conveyed via the factor; or (3)
present only in a single phenotype, or in some (but not
all) phenotypes; or (4) it was present in some pheno-
types, but with opposite effects. Medland and Neale
(2010) studied the power to detect the GV in the factor
model, in which the GV affected all phenotypes via the
factor (one degree of freedom (DF) test), or directly
affected all phenotypes (a DF = 3 or DF = 5 test). They
also considered the power conferred by the univariate
tests based on simple sum scores and factor scores
(Lawley & Maxwell, 1971). They varied other impor-
tant aspects such as the magnitude of the factor loadings
and the degree of missingness. Based on their figures 1a
and 1b (Medland & Neale, 2010, p. 237), the main con-
clusion is that their combined multivariate approach
(where the GV effect is conveyed via the common factor,
or the GV affects the phenotypes directly) was almost
universally as powerful as, or, depending on specific cir-
cumstances, more powerful than, the univariate tests
using sum scores or factor scores.

Van der Sluis et al. (in press) discussed the power to
detect the effects of GVs in uni- and multidimensional
common factor models. They contrasted the power in
these models to the sum score model, in the situation
that the sum score is not a sufficient statistic (i.e., the
univariate sum score entails a loss of information relative
to the multivariate data). They showed that the use of
the sum score generally entails a loss of power, except in
specific circumstances. In addition, they discussed how
violations of measurement invariance across multiple
samples, or with respect to the GV itself, affect the
power to detect GVs. Violations of measurement invari-
ance with respect to the GV itself (i.e., direct effects of
the GV on one or more phenotypes in the model, instead
of GV effects that are common to all phenotypes and
mediated by (genetic) common factors) resulted in
notable loss of power in the sum score model and incor-
rectly specified factor models.

The present aim is to contribute to this work on
the power to detect genetic association in multivariate
data. We discuss five models that one may encounter
in family-based genetic covariance structure modeling
of MZ and DZ twin data (Neale & Cardon, 1992):
genetic factor models with single or multiple genetic
factors underlying the covariance among a set of phe-
notypes, and two variations on the simplex models,
which have been used to analyze repeated measures
(Eaves et al., 1986; Boomsma & Molenaar, 1987). In
each model, the effect of the GV is specified as part of
an additive genetic factor, so that its effect on the phe-
notypes is mediated by the additive genetic factor. We
consider situations in which the GV affects all pheno-
types, and situations in which the effect is limited to a
subset of the phenotypes. The single common factor
model has been considered previously in the studies by
Medland and Neale (2010) and van der Sluis et al. (in
press). The power to detect a GV in the other four
models has not been considered so far.

We simulated data according to a full multivariate
twin model in the five scenarios. We established the
power to detect the GV in this true model, and we
studied the power in four statistical models using only
the data of the first twin members, that is, in geneti-
cally uninformative samples. In the following sections,
we describe the five study designs and the simulation
procedures in more detail. Next, we present the
results, and we end the paper with a discussion.

Procedure
To calculate the power to detect the GV effect, we
generated conditionally multivariate normal (i.e., con-
ditional on the GV) MZ and DZ twin data according
to the five models of interest. Next, we computed the
power to detect the GV effect in the full MZ and DZ
twin data, and in three statistical models in which we
used only the twin 1 data (i.e., the phenotypic data
and the measured GV): a univariate ANOVA in which
the sum of the phenotypic measures was regressed on
the GV, MANOVA in which all phenotypes were
regressed on the GV, and exploratory factor analysis
(EFA), in which the common factors were regressed
on the GV.

We simulated multivariate data according to a
multivariate ACE twin model, in which A, C, and E
represent the additive genetic structure, shared, and
specific environmental influences, respectively. The
additive genetic structure included one or more addi-
tive genetic factors. To one of these, we added a single
diallelic codominant GV (minor allele frequency of
.2), and defined its effect of .25% of the variance of a
given phenotype, which loaded directly on the genetic
factor. Depending on the chosen additive genetic
factor structure, the GV did (directly or indirectly), or
did not exert an influence on any other phenotype.

The first model that we considered included a
single additive genetic factor. The single factor model
was considered implicitly by Ferreira and Purcell
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(2009),1 and explicitly by Medland and Neale (2010)
and van der Sluis et al. (in press). In the present study,
the GV was specified as a source of variation in the
genetic factor, and so this factor mediated the relation-
ship between the GV and the phenotypes (see Figure
1). We include it because the single factor model, as
specified below, is an ideal, and because the compari-
son of the MANOVA and the EFA has yet to be made.
The second and third models included two correlated
additive genetic factors. In the second model, the GV
was part of the first genetic factor, but exerted no
influence on the second factor or on its indicators.
These indicators are thus uninformative with respect
to the effect of the GV. In the third model, the second
factor was regressed on the first genetic factor. This
implied that the GV of the first factor did exert an
influence on the second factor, and thus on its indica-
tors. This model may represent a latent phenotype-
endophenotype relationship, in which the effect of the
GV on the phenotype is mediated by the endopheno-
type (De Geus & Boomsma, 2001; De Geus et al.,
2001). Finally, we considered two hybrid simplex-
factor models for repeated measures. These models
have been applied mainly in genetic covariance struc-

ture modeling of twin data (Neale & Cardon, 1992;
for a linkage application, see Eaves et al., 1995 and
Birley et al., 2005). We considered an ACE model with
the additive genetic and environmental autoregres-
sions, and a common shared environmental factor,
and a stationary AE simplex model. In the latter, the
common shared environmental factor is omitted, and
background influences of A and E are stable over
time. In the former, shared environmental effects
decline, and the genetic effects increase. We considered
4 repeated measures, and calculated the power to
detect the GV effect given that it entered the model at
occasions 1, 2, 3, or 4. We consider this to be of inter-
est, as genetic innovation variance is often attributed
to the action of new genetic effects (Eaves et al., 1986;
Gillespie et al., 2004), which may include the effects
of measured GVs. The simplex-factor model is similar
to twin models established in analysis of IQ data in
children, with a decreasing role of shared environment
and increasing genetic influences (e.g., Hoekstra et al.,
2007). The stationary AE simplex model is consistent
with results one would expect in twin studies of IQ
conducted in young adults. Further details on the sim-
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Figure 1
Path diagram for the common factor model with 4 phenotypes. The triangles represent fixed regressors (i.e., the GV and the unit vector). The para-
meters t1 to t4 are intercepts, the parameter b is the effect of the GV on the common genetic factor. The GV enters the model via common genetic
factor A and affects the indicators y1 to y4. The effect size of the GV was defined as .25% of the variance of y1.
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ulation settings are given in the tables and path dia-
grams below.

Given these models, we varied (1) the number of
phenotypic measures, and (2) the parameter values
that accounted for genetic and environmental contri-
butions to phenotypic variance. The parameter values
are supposed to be typical of results one may obtain in
genetic covariance structure modeling. We provide
these details below. Throughout we used exact data
simulation (van de Sluis et al., 2007).2 We simulated
the data using MVRNORM in R (R-core development
team, 2005),3 under the assumptions that mating is
random, and the GV is in Hardy-Weinberg equilib-
rium. Given the diallelic GV, the total MZ and DZ
sample sizes were distributed over 3 MZ groups (three
pairs of identical genotypes) and 9 DZ groups (3
genotypes × 3 genotypes). The distribution of the total
sample size over these groups depends on the minor
allele frequency, which we set to equal .2 in all studies.

We first computed the power to detect the GV
effect in (A) the full multivariate twin model. We cal-
culated the power both in the model specified
correctly with respect to the role of the GV (i.e., a 1
DF test), and in the model in which all present
common genetic factors were regressed on the GV,
that is, an omnibus test, with DF equaling the number
of genetic factors in the model. We added the power of
the omnibus test because in practice one will not
know the exact locus of the GV, and therefore will
resort to the omnibus test. As mentioned we did not
consider the possibility that the GV affects a single
phenotype (Medland & Neale, 2010, did consider this
possibility), we therefore limited our omnibus test to
the common genetic factors. In the twin 1 phenotypic
and GV data, we calculated the power in: (B) a uni-
variate ANOVA, in which each univariate phenotype
was regressed on the GV; (C) a univariate ANOVA in
which the sum of the phenotypic measures was
regressed on the GV; (D) MANOVA in which all phe-
notypes were regressed on the GV; and (E) an
exploratory factor analysis (EFA), in which the pheno-
typic common factors were regressed on the GV. We
fitted standard MANOVAs, subject to homogeneity of
the conditional (i.e., on the GV) covariance matrices.

We did not constrain these in the light of our informa-
tion concerning the covariance structure. In specifying
the EFAs, we did exploit this information to the extent
that the specified dimensionality of the exploratory
factor solution is consistent with the true model. We
did not fit the exploratory factor model to the
repeated measures data, as the autoregressive covari-
ance structures are not compatible with an
exploratory factor model (e.g., Mandys et al., 1994).
As we considered only additive genetic effects, we
included the GV as a covariate (rather than as a
between-subject factor) in the analyses. Analyses A
and E were done in Mx (Neale et al., 2003), analyses
B to D were done in R. We report the power of the
tests of models B to E for N = 3000, and the power of
the full twin model for NMZ = 1500 and NDZ =
1500, all given an α level of .01. In the case of the
single phenotype ANOVA, we also report the power
for the Bonferroni corrected alpha (i.e., .01 divided by
the number of phenotypes). This correction is conserv-
ative, but the differences in power between the single
phenotype test and the other tests are such that the
choice of correction is unlikely to have any bearing on
the conclusions. We note that a resample procedure
such as permutation testing is unsuited as the data
simulation is exact. The alpha of .01 is unrealistic
given multiple testing. However, here we were interest
solely in the differences between the tests in power,
not in the absolute values. However, we report the
non-centrality parameters (NCPs), so that the power
of the tests of association can be computed for other
total sample sizes and other α levels, if the reader so
desires. R scripts that can be used to this end are pro-
vided in Appendix A. We report the power in the full
twin model, as our simulation and testing procedure
produces this result. However, our main interest is in
the sum score ANOVAs, MANOVAs, and EFAs. The
comparison of the power in the full twin model with
the power of the other tests is complicated by (1) the
difference in number of individuals (a twin comprises
two individuals), and (2) the differences in the expense
of ascertainment (ascertaining twin pairs is usually
more expensive than ascertainment of unrelated indi-
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Table 1

Variance Components in the Four Scenarios That Were Used to Generate the Data 

Phenotypic Nr. phenotypes Scenario Common A Specific ai Common C Specific ei

correlations

.5 4/8 S1 .5 .1 0 .4

.2 4/8 S2 .2 .1 0 .7

.7 4/8 S3 .5 .1 .2 .2

.4 4/8 S4 .2 .1 .2 .5

Note: The total variance of each phenotype, conditional on the GV, equaled one. We provide only 4 parameter values in each scenario, as we did not vary these parameter values
over the phenotypes. For instance in scenario S3, conditional on the GV, 4 (or 8) tests loaded on the common A factor with loadings equal to √.5, the genetic residual is .1. The
loadings on the common shared environmental factor equaled √.2. The unshared environmental residuals equaled 0.2. So in scenario S3, the decomposition of phenotypic
variance conditional on GV is h2 = .6, c2 = .2, and e2 = .2.
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viduals). In the subsequent sections, we present the
five studies in detail.

Study 1: Single Common Genetic Factor
The objective of the first simulation study is to
examine the power to detect a GV that affects all phe-
notypes via a common polygenic factor. Specifically,
we examined how the sources of phenotypic correla-
tions and the number of measured phenotypes affect
the power to detect the GV effect. In this study we
supposed that a single common genetic factor or, a
common genetic factor and a shared environmental
factor, account for the phenotypic correlations.

We simulated MZ and DZ phenotypic data that
generate precisely the means and variances predicted
by the common factor model shown in Figure 1. We
specified either 4 (as depicted) or 8 phenotypes
loading on the additive polygenic factor (A) and a
shared environmental factor (C). Additional parame-
ters are the phenotype-specific genetic (ai) and unique
environmental (ei) factors. We added the GV to the
common genetic factor (A), which thus affected all

phenotypes (yi). The GV accounted for .25% of the
variance in the first phenotype (y1). The chosen para-
meter values are given in Table 1. As we did not vary
the parameters over the phenotypes, the effect size of
.25% also holds with respect to the other phenotypes.
In fitting the models we did not constrain any parame-
ter to be equal, even though they were.

We simulated twin data, given eight scenarios in
which we varied the role of the common factor A and
C, and the specific environmental effect, as shown in
Table 1. The heritability of the phenotypes ranged
from h2 = .3 (S1 and S3) to h2 = .6 (S2 and S4). The
influence of the common C was absent in scenarios S1
and S2, and present in scenarios S3 and S4 (c2 = .2). As
shown in Table 1, the implied correlations among the
phenotypes were .5, .2, .7, and .4 in scenario S1, S2, S3
and S4, respectively. Table 2 contains the results.

Table 2 shows that in the single common factor
model, the ANOVA of sum scores has the same
power as the exploratory factor model. Due to the
equality (over the phenotypes) of factor loadings and
residual variances, the factor scores and the sum

529Twin Research and Human Genetics December 2010

Genetic Association in Multivariate Phenotypic Data

Table 2

The Power, Non-Centrality Parameter, and Degrees of Freedom (in Parentheses) of Univariate and Multivariate Tests of Association Given α = .01
In Study 1 

Scenario Nr. phenotypes True model ANOVA ANOVA MANOVA EFA
sum scores single phenotype

N 2 x 1500 3000 3000 3000 3000

S1 4 .95 .81 .56, .39 .59 .81
18.04 12.02 7.51 12.01 12.00

(1) (1,2998) (1,2998) (4,2995) (1)
8 .97 .85 .56, .31 .51 .85

19.97 13.35 7.51 13.32 13.33
(1) (1,2998) (1,2998) (8,2991) (1)

S2 4 .99 .96 .56, .39 .85 .96
29.47 18.78 7.51 18.76 18.73

(1) (1,2998) (1,2998) (4,2995) (1)
8 .99 .99 .56, .31 .89 .99

38.09 25.04 7.51 24.98 24.95
(1) (1,2998) (1,2998) (8,2991) (1)

S3 4 .91 .70 .56, .39 .46 .70
15.55 9.69 7.51 9.68 9.68

(1) (1,2998) (1,2998) (4,2995) (1)
8 .93 .73 .56, .31 .35 .73

16.56 10.18 7.51 10.16 10.17
(1) (1,2998) (1,2998) (8,2991) (1)

S4 4 .98 .86 .56, .39 .67 .86
22.11 13.66 7.51 13.64 13.63

(1) (1,2998) (1,2998) (4,2995) (1)
8 .99 .91 .56, .31 .62 .91

26.75 15.81 7.51 15.78 15.78
(1) (1,2998) (1,2998) (8,2991) (1)

Note: In the case of the single phenotype ANOVA, power is reported for α = .01 and α = .01/4 (.0025; 4 phenotypes) or α = .01/8 (.00125; 8 phenotypes). The power for the corrected
alpha is displayed in italics.
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scores are perfectly correlated. Note that in Table 2,
the information with respect to the single phenotype
ANOVA is redundant because the number of pheno-
types simulated is irrelevant in the analysis of a single
phenotype. We included the power of the single phe-
notype ANOVA to ease comparison, and because the
power associated with the Bonferroni corrected 
varies as a function of the number of tests (4 vs. 8).

The single phenotype ANOVA with Bonferroni cor-
rected alpha consistently has lowest power. The NCPs
of the sum score ANOVA, the MANOVA and the EFA
are comparable, and thus affected similarly by the dif-
ferences in parameter configuration. The lower power
of the MANOVA compared to the EFA stems from the
differences in DF of the associated tests. Increasing the
number of indicators resulted in a consistent increase
in power of the sum score ANOVA and EFA, as is to
be expected as the increase in affected phenotypes in
the one-dimensional model increases the GV signal.
However, the increase in the number of phenotypes
resulted in a decrease in power of the MANOVA in
three cases, and slight increase in only scenario S2
(power .85 vs. .89). Overall the power of the
MANOVA, sum score ANOVA, and EFA decreases
with increasing phenotypic correlation (e.g., compare
S1 and S3). Increasing the correlations increases the
variance of the sum scores, and given the constant
effect size, lowers the power of the test. Cole et al.
(1994) explained the role of the magnitude of pheno-
typic correlations on the power in the MANOVA given
consistent effects on the dependent variables.
Specifically they showed in two dimensions that the
overlap between the 95% ellipsoids increases with
increasing correlation (see Cole et al., 1994, Figure 1).
This results in a loss of power (see also Ferreira &
Purcell, 2009).

In conclusion, in this study, the methods of choice
are the EFA or the sum score ANOVA. The power of
these methods is equal because the factor loadings in
the EFA are equal. We refer to Medland and Neale
(2010) and van der Sluis, et al. (in press) for results
obtained in the same model, but with unequal load-
ings. The MANOVA fares relatively poorly because all
phenotypes are affected by the GV and the phenotypic
correlations are positive and relatively high (notably in
scenario S3). The power of the EFA is relatively good
because the test involves a single parameter, i.e., the
latent mean difference between the genotypes on the
common factor. The effect of the GV on the actual
phenotypes is thus mediated by the common factor.
Medland and Neale (2010) also considered the EFA in
which the GV has a direct effect on the phenotype. In
that case, the NCP would be the same as shown in
Table 2 for the EFA, but the DFs would equal 4 or 8
(i.e., the number of phenotypes). The power of this
EFA based test would then equal that of the
MANOVA.

The power of the full twin model was consistently
high (>.90), but the NCPs display good variation
(ranging from 15.55 to 38.09). For instance, retaining
the sample sizes of 2 × 1500, but changing the alpha
from 1E-2 to 1E-7, reduced the power to a low of
.083 (S3, 4 phenotypes) and to a high of .801 (S2, 8
phenotypes).

Study 2: Correlated Genetic Common Factors
In the second study, the model included two correlated
genetic factors, of which only the first is affected by
the GV. We examined how the sources of phenotypic
correlations, that is, the genetic correlation and the
shared environmental factor, affect the power to detect
the GV effect. In addition, we explored the impact of
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Table 3

Variance Components, Conditional on GV, Used to Simulate Data in Study 2 (Correlated Genetic Factors) and Study 3 (Regression Of Genetic Factor
2 on Genetic Factor 1) 

Correlation Phenot. cor.
coefficient within sets, Nr. ind. Scenario Common Specific Common Specific 

between sets* A1, A2 ai C ei

ρA1A2 = .77 .8, .7 3/5 S11 .3 .1 .5 .1 
.4, .33 3/5 S12 .3 .1 .1 .5
.3, .23 3/5 S13 .3 .1 0 .6

ρA1A2 = .47 .8, .64 3/5 S21 .3 .1 .5 .1
.4, .24 3/5 S22 .3 .1 .1 .5
.3, .14 3/5 S23 .3 .1 0 .6

ρA1A2 = .25 .8, 57 3/5 S31 .3 .1 .5 .1
.4, .17 3/5 S32 .3 .1 .1 .5
.3, .07 3/5 S33 .3 .1 0 .6

Note: The within (between) set phenotypic correlation is among phenotypes that load on the same (different) genetic factor (factors). For instance in 3 indicator S22 scenario, the phe-
notypes y1 to y3 (y4 to y6) loaded √.3 on the common A1 (A2) factor, each phenotype loading √.1 on the common C factor. The residual variance of each phenotype equaled .6 (.5
due to specific environment; .1 due to specific genes). So in scenario S22, the decomposition of phenotypic variance conditional on GV is h2 = .4, c2 = .1, and e2 = .5.

* Within set correlation is among phenotypes that load on the same genetic factor (y1-y2), the between set correlation is among phenotypes that load on the different genetic
factors (y1-y6).
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the number of phenotypic indicators (3 vs. 5 per
factor) on the power. Figure 2 depicts the three indica-
tor model. The covariances among the phenotypes are
caused by two genetic correlated factors (A1 and A2)
and a shared environmental factor (C). Additional
parameters in the model are genetic specifics (ai) and
unshared environmental effects (ei). The GV enters the
model via the latent genetic factor A1, and so affects
the indicators of A1, but affects neither A2, nor its
indicators. The parameter values used to generate data
for this study are given in Table 3. The GV explained
.25% of the variance of the phenotype y1. Given the
parameter values, the GV explained the same amount
of variance in the other indicators for the first genetic
factor, but no variance in the indicators of the second
genetic factor.

As we manipulated the correlations between the
genetic factors (3 settings), the number of phenotypes
per genetic factor (2 settings), and the parameter
values (3 settings), we simulated data according to 18
scenarios. As above, we computed the power to detect
the GV in the true multivariate twin model, in the uni-
variate phenotype ANOVA, in the sum score ANOVA,
in the MANOVA, and in the two factor oblique EFA.
In fitting the EFA in Mx, we identified the model by
fixing the loading of the first phenotypic variable on
the second factor, and the last phenotypic variable on

the first factor to zero. All other loadings were esti-
mated. The common factors were standardized and
allowed to correlate. For the path diagram, see Figure
3. Other identifying constraints, but these constraints
in the EFA does not affect the power of the omnibus
test, in which all phenotypic common factors are
regressed on the GV (McDonald, 1999; Dolan et al.,
2009). In the EFA, we regressed both common factors
on the GV (a 2 DF test), that is, we did not exploit our
knowledge of the locus of the GV in the model. We
varied the number of indicators, the size of the genetic
correlations, and the contribution of the common C
factor. Table 4 contains the results.

The power of the sum score ANOVA is low, as
expected because the phenotypes that are unaffected
by the GV add only noise to the sum score. The single
(affected) phenotype ANOVA is more powerful (i.e.,
power based the corrected alpha) than the sum score
ANOVA when the phenotype intercorrelations were
relatively large (e.g., S11). The NCPs of the
MANOVA and the EFA are comparable, and affected
similarly by the variation in parameters. However, as
in Study 1, the EFA has greater power due to the dif-
ference in DF of the associated tests. In comparison
with Study 1, the MANOVA fares relatively well,
because the GV does not affect all the phenotypes (as
in Study 1; see also Ferreira & Purcell, 2010). Note
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Figure 2
Path diagram of the oblique two common factor model (three indicator model). The triangle represents the GV as a fixed regressor. The unit vector,
which is included to estimate intercepts is not included to avoid clutter (see Figure 1). The parameter b represents the effect of the GV. Note that
the GV contributes to the variance of the first latent genetic factor A1 and affects its indicators (y1–y3), but does not affect the second common
factor A2, or its indicators (y4–y6). The value of the correlation between A1 and A2 was varied. Parameters are not shown to avoid clutter. The
effect size of the GV was defined as .25% of the variance of y1.
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Table 4

Power, Non-Centrality Parameter, and Degrees of Freedom (in Parentheses) of Univariate and Multivariate Tests of Association Given α = .01 in Study 2 

ρA1A2 Scenario n. of indicators True model ANOVA ANOVA MANOVA EFA
sum scores single phenotype

N 2 × 1500 3000 3000 3000 3000

ρA1A2 = .77 S11 3 >.99,>.99 .14 .56, .34 .97 >.99
47.29 2.35 (1,2998) 7.51 (1,2998) 30.23 (6,2993) 30.15
(1),(2) (2)

5 >.99,>.99 .15 .56, .29 .98 >.99
57.40 2.38 (1,2998) 7.51 (1,2998) 37.14 (10,2989) 37.02
(1),(2) (2)

S12 3 >.99,>.99 .28 .56, .34 .77 .91
29.57 4.03 (1,2998) 7.51 (1,2998) 18.02 (6,2993) 18.01
(1),(2) (2)

5 >.99,>.99 .31 .56, .29 .85 .97
39.06 4.40 (1,2998) 7.51 (1,2998) 24.35 (10,2989) 24.32
(1),(2) (2)

S13 3 >.99,>.99 .35 .56, .34 .74 .89
28.48 4.90 (1,2998) 7.51 (1,2998) 17.35 (6,2993) 17.34
(1),(2) (2)

5 >.99,>.99 .41 .56, .29 0.83 0.97
37.83 5.58 (1,2998) 7.51 (1,2998) 23.60 (10,2989) 23.58
(1),(2) (2)

S21 3 >.99,>.99 .16 .56, .34 .79 .92
29.98 2.50 (1,2998) 7.51 (1,2998) 18.62 (6,2993) 18.61
(1),(2) (2)

5 >.99,>.99 .16 .56, .29 .78 0.95
34.45 2.52 (1,2998) 7.51 21.55 (10,2989) 21.54
(1),(2) (1,2998) (2)

ρA1A2 = .47 S22 3 .99,.97 .32 .56, .34 .64 .82
23.25 4.50 (1,2998) 7.51 (1,2998) 14.74 (6,2993) 14.74
(1),(2) (2)

5 >.99,>.99 .36 .56, .29 .66 .91
28.07 4.98 (1,2998) 7.51 (1,2998) 18.07 (10,2989) 18.07

(1) (2)

S23 3 .99,.97 .41 .56, .34 .65 .83
23.61 5.62 (1,2998) 7.51 (1,2998) 15.01 (6,2993) 15.01
(1),(2) (2)

5 >.99,>.99 .49 .56, .29 0.69 0.92
28.86 6.54 (1,2998) 7.51 (1,2998) 18.77 (10,2989) 18.77
(1),(2) (2)

S31 3 .99,.98 .16 .56, .34 .68 .85
25.72 2.60 (1,2998) 7.51 (1,2998) 15.56 (6,2993) 15.55
(1),(2) (2)

5 >.99,>.99 .17 .56, .29 .61 .88
28 2.64 (1,2998) 7.51 (1,2998) 16.91 (10,2989) 16.92

(1),(2) (2)

ρA1A2 = .25 S32 3 .98,.96 .35 .56, .34 .59 .79
21.42 4.83 7.51 (1,2998) 13.70 (6,2993) 13.7
(1),(2) (1,2998) (2)

5 >.99,.98 0.39 .56, .29 .59 .87
25.25 5.38 (1,2998) 7.51 (1,2998) 16.31 (10,2989) 16.31
(1),(2) (2)

S33 3 .98,.96 .46 .56, .34 .62 .81
22.37 6.15 (1,2998) 7.51 14.36 (6,2993) 14.36
(1),(2) (1,2998) (2)

5 >.99,.99 0.54 .56, .29 .64 .9
26.79 7.26 7.51 17.57 (10,2989) 17.58
(1),(2) (1,2998) (1,2998) (2)

Note: The power in the true model is included for the likelihood ratio test of the correctly specified GV (1 df) and for the omnibus test, in which the 2 genetic factors are regressed
on the GV (2 df). In the case of the single phenotype ANOVA, power is reported for α = .01 and α = .01/6 (.0016; 6 phenotypes) and α = .01/10 (.001; 10 phenotypes). The power
for the corrected alpha is displayed in italics.
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that in this case (in contrast to Study 1), the increase
in the phenotypic correlations resulted in an increase
in power (compare S11 and S13, or S11 and S31). The
presence of phenotypes not affected by the GV has a
beneficial effect in MANOVA, especially when the
correlations among the phenotypes are relatively high
(see also Ferreira & Purcell, 2009). Cole et al. (1994)
explained the role of the magnitude of phenotypic cor-
relation on the power in the context of MANOVA,
when some, but not all, dependent variables are
affected (see Cole et al., 1994, Figure 3). In general,
power of all tests improved by increasing the number
of phenotypic indicators (from 3 to 5). In conclusion,
in this study, the methods of choice are the EFA or the
MANOVA. The power of the EFA is relatively good
because the test involves just two parameters, i.e., two
latent mean differences. As in Study 1, the effect of the
GV on the phenotypes is mediated by the 2 common
factors. Estimating the effect of the GV directly on the
phenotypes in the EFA (a 6 or 10 DF test) would
render the power of the EFA equal that of the
MANOVA.

NMZ = 1500 and NDZ = 1500 afforded high
power in full twin model. But again the NCPs are
quite variable. Changing the alpha from 1E-2 to 1E-7
reduced the power of the 1 DF test to a low of 0.24

(scenario S32, 2 × 3 phenotypes) and to a high of >.99
(scenario S11, 2 × 5 phenotypes).

Study 3: Latent Regression Model
In the third study, we specified a latent regression
model with an independent (A1) and dependent
common genetic factor (A2). The GV is introduced
into A1, and exerts its influence both on the indicators
of A1 (i.e., via A1), and on A2, and its indicators of
A2. We included a common environmental factor, and
varied the details of both the shared and unshared
genetic and environmental effects. As in Study 2, we
considered both 3 and 5 indicators models. We simu-
lated phenotypic data according to the model, as
shown in Figure 4 (i.e., the three indicator model).

We chose parameter values such that the resulting
correlations between the factors A1 and A2 equal the
correlations of Study 2. The other parameters in the
model are additive genetic specifics (ai) and unique
environmental effects (ei), which contribute to pheno-
typic variance. The GV effect is defined with respect
to the first phenotype y1, but the GV explained the
same amount of variance (.25%) in the other indica-
tors of the first common genetic factor. Given ρA1A2 =
.77, the GV accounted for about 0.15% of the
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Figure 3
Exploratory (oblique) two common factor model as used in studies 2 and 3. Two factor loadings are fixed to zero (as depicted) to achieve rotational
determinacy. The common factors are denoted F1 and F2, r1 to r6 represent the residuals. The triangles represent fixed regressors. The regression
on the unit vector serves to estimate the intercepts, the regression on the GV estimates the effect of the GV (i.e., the parameters b1 and b2). Other
parameters are not shown to avoid clutter.
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 variance in the indicators of A2, the dependent genetic
factor. The parameter values used in Study 3 equaled
those of Study 2, and are shown in Table 3. As we
manipulated the regressions between the genetic
factors (3 settings), the number of phenotypes per
genetic factor (2 settings), and the parameter values (3
settings), we simulated data according to 18 scenarios.
Table 5 contains the results.

The present study resembles Study 1 in that the
effect of the GV is general. However, here the GV
effect varied (e.g., .25% vs. .15% in S11), as did the
intercorrelations among the phenotypes (see Table 3).
Compared to Study 2, the sum score fares well, espe-
cially when the phenotypic intercorrelations are
relatively low, and the regression relationship of A2
and A1 is relatively strong: in scenarios S11, S12, and
S13, the sum score ANOVA has the greatest power.
However, given a weaker regression relationship the
power of the EFA is greater than the power of the sum
score ANOVA. The power of the MANOVA depends
on (1) the differences in the GV effect on the pheno-
types (general large effects in S11, S12, and S13 in
contrast to S31, S32, and S33), and the intercorrela-
tions among the tests (generally low in S13, S23, and
S33; generally high in S11, S21, and S31) (see, Cole et
al., 1994). The greatest power is observed in S13 (6
phenotypes), that is, a general effect, but low pheno-

typic intercorrelations (.70). The lowest power is in
S11 (10 phenotypes), that is, general effects and high
phenotypic correlations (.27). In this scenario, the
single phenotype ANOVA happens to be more power-
ful (.36). The NCP of the MANOVA equals that of
the EFA, so it is again the difference in DF that deter-
mine the difference in power. Conducting the EFA
with GV effect directly on the phenotypes (rather than
being mediated by the common factors) would render
the power of the EFA equal to that of the MANOVA.

The power of the 1 DF test in the full twin model
is high (>.96). Changing the alpha from 1E-2 to 1E-7,
reduced the power to a low of .15 (S11, 3 indicators)
and to a high of .65 (S13, 5 indicators).

Study 4: Hybrid Simplex (A,E) — 
Factor (C) Model
In the fourth study, we considered a hybrid factor-
simplex model for four occasions. We varied the
occasion (t) at which the GV entered the model as part
of the genetic factor (A(t)). In this model, which is
shown in Figure 5, the phenotype y(t) was regressed
on a latent genetic factor A(t), environmental influ-
ences common to all phenotypes C(t), and specific
environmental influences E(t): y(t) = A(t) + C(t) + E(t).
The stability of the phenotypic individual differences
depended on the common shared environmental
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Figure 4
Path diagram for the latent genetic regression model (3 indicator model). The triangle represents the GV as fixed regressor. The unit vector, which
is included to estimate intercepts is not included to avoid clutter (see Figure 1). The parameter b represents the effect of the GV. Note that the GV
contributes to the variance of the first latent genetic factor A1 and affects its indicators (y1-y3). The GV contributes to A2 via the regression coeffi-
cient bA2A1, and so also affects the indicators y4-y6. The value of the parameter bA2A1 was varied. Parameters are not shown to avoid clutter. The
effect size of the GV was defined as .25% of the variance of y1.
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Table 5

Power, Non-Centrality Parameter, and Degrees of Freedom (in Parentheses) of Univariate and Multivariate Tests of Association Given α = .01 in Study 3 

ρA1A2 Scenario n. of indicators True model ANOVA ANOVA MANOVA EFA
sum scores single phenotype

N 2 × 1500 3000 3000 3000 3000

βA1A2 = 0.77 S11 3 .95,.91 .55 .56 & .32, .42 & .21 .33 .54
18.29 7.39 7.51 & 4.50 8.8 8.81
(1),(2) (1,2998) (1,2998) (6,2993) (2)

5 .96,.93 .56 .56 & .32, .36 & .17 .27 .57
19.47 7.51 7.51 & 4.50 9.27 9.29
(1),(2) (1,2998) (1,2998) (10,2989) (2)

S12 3 .97,.95 .83 .56 & .32, .42 & .21 .58 .78
20.97 12.68 7.51 & 4.50 13.37 13.37
(1),(2) (1,2998) (1,2998) (6,2993) (2)

5 .98,.97 .87 .56 & .32, .36 & .17 .53 .83
23.46 13.87 7.51 & 4.50 14.85 14.86
(1),(2) (1,2998) (1,2998) (10,2989) (2)

S13 3 .99,.98 .91 .56 & .32, .42 & .21 .7 .86
24.49 15.44 7.51 & 4.50 16.05 16.05
(1),(2) (1,2998) (1,2998) (6,2993) (2)

5 >.99,.99 .94 .56 & .32, .36 & .17 .67 .91
27.86 17.58 7.51 & 4.50 18.46 18.46
(1),(2) (1,2998) (1,2998) (10,2989) (2)

βA1A2 = 0.47 S21 3 .96,.93 .38 .56 & .09, .42 & .04 .41 .62
19.55 5.24 7.51 &1.50 10.16 10.17
(1),(2) (1,2998) (1,2998) (6,2993) (2)

5 .98,.95 .39 .56 & .09, .36 & .03 .34 .66
21.09 5.33 7.51 &1.50 10.88 10.9
(1),(2) (1,2998) (1,2998) (10,2989) (2)

S22 3 .96,.93 .68 .56 & .09, .42 & .04 .54 .74
19.73 9.43 7.51 & 1.50 12.55 12.55
(1),(2) (1,2998) (1,2998) (6,2993) (2)

5 .98,.96 .74 .56 & .09, .36 & .03 .51 .81
22.7 10.43 7.51 & 1.50 14.4 14.41

(1),(2) (1,2998) (1,2998) (10,2989) (2)

S23 3 .98,.96 .8 .56 & .09, .42 & .04 .64 .82
22.57 11.78 7.51 & 1.50 14.63 14.63
(1) ,(2) (1,2998) (1,2998) (6,2993) (2)

5 >.99,.98 .86 .56 & .09, .36 & .03 .63 .89
26.41 13.69 7.51 & 1.50 17.4 17.41
(1),(2) (1,2998) (1,2998) (10,2989) (2)

S31 3 .97,.95 .29 .56 & .03, .42 & .013 .47 .68
20.66 4.11 7.51 & .49 11.23 11.24
(1),(2) (1,2998) (1,2998) (6,2993) (2)

5 .98,.96 .29 .56 & .03, .36 & .008 .39 .72
22.29 4.19 7.51 & .49 12.02 12.03
(1),(2) (1,2998) (1,2998) (10,2989) (2)

βA1A2 = 0.25 S32 3 .96,.93 .57 .56 & .03, .42 & .013 .53 .74
19.64 7.63 7.51 & .49 12.52 12.52
(1),(2) (1,2998) (1,2998) (6,2993) (2)

5 .98,.97 .63 .56 & .03, .36 & .008 .51 .82
22.76 8.51 7.51 & .49 14.52 14.52
(1),(2) (1,2998) (1,2998) (10,2989) (2)

S33 3 .99,.96 .7 .56 & .03, .42 & .013 .62 .81
22.05 9.71 7.51 & .49 14.24 14.24
(1),(2) (1,2998) (1,2998) (6,2993) (2)

5 >.99,.98 .79 .56 & .03, .36 & .008 .62 .89
26.04 11.46 7.51 & .49 17.15 17.15
(1),(2) (1,2998) (1,2998) (10,2989) (2)

Note: The power in the true model is included for the likelihood ratio test of the correctly specified GV (1 df) and for the omnibus test, in which the 2 genetic factors are regressed
on the GV (2 df). In the case of the single phenotype ANOVA, power is reported for α = .01 and α = .01/6 (.0016; 6 phenotypes) and α = .01/10 (.001; 10 phenotypes). The power
for the corrected alpha is displayed in italics.
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factor, and on the autoregressive coefficients in the
genetic and unshared environmental simplexes, that is,
βA and βe. The parameters βA and βe equal 1 and .7,
respectively. The other parameters in the model are the
residual variances, σ2ζa (σ2ζa =.1) and σ2ζe (σ2ζe=.204),
representing the amount of variance in the genetic
factors A(t) that is not explained by the independent
factors A(t-1).

The GV was added to the genetic factor (A) at occa-
sion t, and its effect is defined as .25% of the variance
in the phenotype y(t) that depends directly on A(t).
Because of the genetic autoregression, the GV effect
entering at occasion t is transmitted to the phenotypes
measured at the subsequent occasions. For example in
Figure 5, the GV also affects y2, y3 and y4. The parame-
ter values in the model are given in Table 6, along with
the expected phenotypic covariances. As shown in
Table 6, the variance due to the common shared envi-
ronmental factor decreased over time (c2 decreases from
.3 to 0), while the variance due to the genetic factor
increased through time (h2 increases from .3 to .6). We
calculated the power in the full multivariate twin

model, in the univariate ANOVA of the sum scores, i.e.,
the sum of the phenotypes observed at the different
occasions; in the univariate ANOVA of each individual
phenotype, and in the MANOVA. As mentioned above,
we did not fit the exploratory factor model on these
longitudinal data as the autoregressive covariance struc-
ture is not compatible with an exploratory factor
model. Table 7 contains the results.

The results are consistent with the results of the
preceding studies. First, when the GV affected all phe-
notypes (enters at occasion 1), the ANOVA of sum
scores was the most powerful test of association (p =
.71). Its power decreased from .71 to .03, as the GV
entered the model at a progressively later occasion.
This is expected as the GV signal in the sum score is
weakened by the presence of unaffected phenotypes.
The power of MANOVA followed a reverse pattern: it
was the lowest when all phenotypes were associated
with the GV (.51). Given the relatively large pheno-
typic correlations, this is consistent with Cole at al.
(1994; Figure 1; see also Ferreira & Purcell, 2009),
and with the results of Study 1 and Study 3. The
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Figure 5
Path diagram for the hybrid simplex-factor model. The triangle represents the GV as fixed regressor. The unit vector, which is included to estimate
intercepts is not included to avoid clutter (see Figure 1). In this model the GV enters at occasion 1. In this diagram, the effect size of the GV was
defined as .25% of the variance of y1. We also considered the cases in which the GV enters at occasions 2, 3, or 4, and defined the effect size as
.25% of the variance of y2, y3, or y4.
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power is high when the GV entered at a later occa-
sion, ranging from .95 (occasion 2) to .88 (occasion
4). The power of the single (affected) phenotype
ANOVA had a constant value of .38.

The first column in Table 7 contains the power of
the full true multivariate twin model. As in the
MANOVA, the power of this model was lowest when
the GV entered at occasion 1 (.93). It increased to
>.99 when the GV entered at later occasions. The dif-

ferences in power of the 1 DF test are more pro-
nounced given an alpha of 1E-7: .10 (t1), .85 (t2), .82
(t3), .66 (t4).

Study 5: Stationary Double Simplex (A,E)
Model
In the fifth simulation study, we considered a station-
ary double-simplex model (A, E) with a single
phenotype measured at four occasions. Common envi-
ronmental effects were absent. As in Study 4, the GV
was added to the genetic factor (A) at occasion t, and
its effect is defined as .25% of the variance in the phe-
notype y(t) that depends directly on A(t). Due to
autoregression, the GV that enters the model at occa-
sion t affects the phenotype at the subsequent
occasions. The path diagram of this model is the same
as that in Figure 5, except for the absence of C. The
genetic autoregression coefficient (βA) equals .9 and
the environmental autoregressive coefficient (βE)
equals .7. The residual genetic and environmental
(innovation) variances equal σ2ζA = .114 and σ2ζE =
.204, respectively. These parameters resulted in a sta-
tionary model, in which the h2 and e2 at each occasion
equal .6 and .4, respectively. The phenotypic
correlations equal .82 (t1-t2, t2-t3, t3-t4), .68 (t1-t3,
t2-t4), and .57 (t1-t4). Table 8 contains the results.

The results resemble those of Study 4. We find that
the sum score ANOVA is most powerful when all phe-
notypes were affected (GV entered at the first
occasion), and that the power of this ANOVA declines
progressively as the GV entered at later occasion. The
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Table 6

Variance Components in Study 4 at the Four Occasions, and the
Implied Phenotypic Covariance Matrix, Conditional on GV

Occasion h2 c2 e2

t1 .3 .3 .4
t2 .4 .2 .4
t3 .5 .1 .4
t4 .6 0 .4
phenotypic covariance matrix
1
.825 1
.669 .821 1
.437 .596 .780 1

Note: The model comprises a simplex for A and E, and a common C factor. The factor
loadings on the common C factors are √.3, √.2, √.1, and zero. The C factor
loading decrease, the additive genetic variances increases, and the unshared
environmental variance remained constant. Consequently the total phenotypic
variance, conditional on the GV, remains 1 at each occasion. The autoregressive
parameters βA and βe equal 1 and .7, respectively. The residual variances equal
σ2

ζa =.1 and σ2
ζe=.204

Table 7

Power, Non-Centrality Parameters, and Degrees of Freedom (in parentheses) of Univariate and Multivariate Tests of Association Given α = .01 in Study 4

Model TRUE ANOVA ANOVA MANOVA
model Sum scores Single phenotypes at 4 occasions

2 × 1500 3000 3000 3000

GV at T1 .93,.79 .71 .56 & .56 & .56 & .56 .51
16.48 9.8 .38 & .38 & .38 & .38 10.45
(1),(4) (1,2998) 7.51 & 7.51 & 7.51 & 7.51 (4,2995)

(1,2998)

GV at T2 >.99,>.99 .41 .01 & .56 & .56 & .56 .95
40.65 5.51 .0025 & .38 & .38 & .38 24.36
(1),(4) (1,2998) 0 & 7.51 & 7.51 & 7.51 (4,2995)

(1,2998)

GV at T3 >.99,>.99 .15 .01 & .01 & .56 & .56 .93
39.1 2.45 .0025 & .0025 & .38 & .38 23.33

(1),(4) (1,2998) 0 & 0 & 7.51 & 7.51 (4,2995)
(1,2998)

GV at T4 >.99,>.99 .03 .01 & .01 & .01 & .56 .88
32.82 .61 .0025 & .0025 & .0025 & .38 19.82
(1),(4) (1,2998) 0 & 0 & 0 & 7.51 (4,2995)

(1,2998)

Note: The power in the true model is included for the likelihood ratio test of the correctly specified GV (1 DF) and for the omnibus test, in which all 4 genetic factors are regressed on the
GV (4 DF). In the case of the single phenotype ANOVA, power is reported for α = .01 and α = .01/4 (.0025; 4 phenotypes). The power for the corrected alpha is displayed in italics.
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Table 8
Power, Non-Centrality Parameters, and Degrees of Freedom (in parentheses) of Univariate and Multivariate Tests of Association Given α = .01 in Study 5

Model TRUE ANOVA ANOVA MANOVA
model sum scores single phenotypes at 4 occasions

2 × 1500 3000 3000 3000

GV at T1 .81, .60 .52 .56 & .45 & .36 & .28 .35
12.1 6.94 .39 & .29 & .21 & .15 7.8

(1),(4) (1,2998) 7.51 & 6.08 & 4.93 & 3.99 (4,2995)
(1,2998)

GV at T2 >.99, >.99 .3 .01 & .56 & .45 & .36 .93
38.91 4.31 .0025 & .39 & .29 & .21 23.32
(1),(4) (1,2998) 0 & 7.51 & 6.08 & 4.93 (4,2995)

(1,2998)

GV at T3 >.99, >.99 .13 .01 & .01 & .56 & .45 .93
38.73 2.12 .0025 & .0025 & .39 & .29 23.18
(1),(4) (1,2998) 0 & 0 & 7.51 & 6.08 (4,2995)

(1,2998)

GV at T4 >.99, .99 .03 .01 & .01 & .01 & .56 .93
38.43 .58 .0025 & .0025 & .0025 & .39 22.94
(1),(4) (1,2998) 0 & 0 & 0 & 7.51 (4,2995)

(1,2998)

Note: The power in the true model is included for the likelihood ratio test of the correctly specified GV (1 DF) and for the omnibus test, in which all 4 genetic factors are regressed on the
GV (4 DF). In the case of the single phenotype ANOVA, power is reported for α = .01 and α = .01/4 (.0025; 4 phenotypes). The power for the corrected alpha is displayed in italics.

power of the MANOVA was lowest when all pheno-
types were affected, and increased sharply when the
GV entered at a later occasion (see Cole et al. 1994;
Ferreira & Purcell, 2009).

The power of the full multivariate twin model
resembled that of the MANOVA: the power was rela-
tively low when the GV entered at t1 (.82), but
increased sharply when the GV enter at t2 or later
(>.99). Given an alpha of 1E-7, the power of the 1 DF
test ranges from .03 (GV enters at occasion 1) to .83
(GV enters at occasion 2).

Discussion
In this article, we considered the power of tests of
genetic association using multivariate phenotypic data.
Our main interest was in power of tests based on sum
score ANOVAs, MANOVAs and EFAs in phenotypic
data of unrelated subjects. We also reported the power
of single phenotype ANOVAs, and the power of likeli-
hood ratio test in the full MZ & DZ twin model.

Based on the results of factor model-based studies
(1, 2, and 3), we conclude that overall the EFA is the
most powerful model to detect association. The factor
model was also found to be powerful to detect linkage
by using IBD mapping in sibs (Boomsma, 1996;
Boomsma & Dolan, 1998). Medland & Neale (2010)
and van der Sluis et al. (in press) also found this
approach to be powerful to detect factor level associa-
tion in single factor models. However, note that in the
present paper the success of the EFA in studies 1, 2,
and 3 hinges on the fact that the GV effect on the phe-
notypes is mediated (or conveyed) by common factors,
that is, that the factor model is measurement invariant
with respect to the GV (van der Sluis et al., in press).

This reduces the number of parameters that are esti-
mated to accommodate the mean differences, and so
increases the power. Van der Sluis et al. (in press)
demonstrated that violation of this invariance (i.e.,
direct effects of the GV on one or more phenotypes in
the model) may greatly reduce the power. We noted
that in Studies 1, 2, and 3, the NCP of the MANOVA
and the EFA were approximately equal, and the differ-
ences in power are solely a function of the number of
estimated parameters. Modeling direct effects of the
GV on the phenotypes in the EFA (as studied by
Medland and Neale, 2010) renders the power of the
likelihood ratio test asymptotically equal to the power
in the MANOVA.

The power of the MANOVA (and so of the EFA)
depends on whether the GV affects all phenotypes, or
only a subset, and on the intercorrelations among the
phenotypes (as noted by Ferreira and Purcell, 2009). If
all phenotypes are affected, the power is relatively low,
especially if the phenotypes are relatively highly corre-
lated. If the GV affects a subset of phenotypes,
increasing phenotypic correlations can be beneficial.
We refer to Cole et al. (1994) for a graphical explana-
tion of these mixed effects.

In the special case of Study 1, the phenotypic sum
score is a sufficient statistic, in the psychometric IRT
sense: the sum scores contain the same amount of the
information as the constituent phenotypic test scores.
Under these specific circumstances the tests based on
the sum score ANOVA and EFA (subject to measure-
ment invariance) are equally powerful. However, even
if the sum score is not sufficient, the sum score
ANOVA may still fare well, that is, if the GV effect is
present in all phenotypes, as shown in Studies 3, 4,
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and 5. However, the power decreases with increasing
phenotypic correlations, as higher phenotypic correla-
tions result in larger phenotypic (sum score) variance.
Also the power in the sum score ANOVA decreases as
the variation in the GV effect over the phenotypes
increases (Study 3, S31 to S33; see also Medland &
Neale, 2010).

The results of the repeated measures studies 4 and
5 are consistent with the results of studies 1 to 3.
Specifically, if the GV entered at the first occasion and
so affected all phenotypes the power of the MANOVA
was relatively low, while the power of the sum score
ANOVA was relatively large. The power of the sum
scores ANOVA decreased and the power of the
MANOVA increased as the GV entered at a later
occasion. For instance, as shown in Table 7, when the
GV enters occasion 4, the power of the sum score
ANOVA and the MANOVA are .03 and .88, respec-
tively. We note that the striking differences in the
covariance structures of the repeated measure models
(increasing h2 in Study 4, constant h2 in Study 5) had
little bearing on the power. We did not consider the
EFA, as this model is not consistent with repeated
measures (Mandys et al., 1994). This is not to say that
the factor analytic approach to repeated data is neces-
sarily suboptimal, but the identification of the exact
conditions in which an EFA of repeated measures con-
ferred relatively good power to detect a GV is beyond
the present scope.

We note the following limitations of the present
power study. First, we have chosen configurations of
parameter values that we deemed plausible. Many
other configurations are possible. For instance, low
broad sense heritability (say, .10) does not rule out the
presence of quantitative trait loci of relatively large
effect. Second, we have limited our analyses to 3
factor models and 2 univariate simplex models. Other
models such as multivariate simplex models, or
growth curves model may be of interest, depending on
the available data. Third, although we reported the
power of the true full multivariate twin model, we
have made no effort to compare and discuss the power
of this model with the power of the other tests
((M)ANOVAs and EFAs), as the study of twins and
the study of unrelated subjects differ in sampling
requirements (given that about one person in 50 is a
twin). In terms of sample sizes, we retain an equal
number of cases (3000), but a case in a twin sample
naturally consists of two individuals. To arrive at an
equal number of individuals, the power in the full
twin model could be recalculated for NMZ = 750 and
NDZ = 750 using the R code in the Appendix (these
results are available on request). However, if twin data
are available, genetic association analysis performed in
the context of a genetically informative design is very
powerful. In addition, the DZ sibpairs provides a
within-family test of association that guards against
stratification (see Medland and Neale, 2010; Fulker, et
al., 1999). Fourth, we have limited our study to multi-

variate normally distributed data. Multivariate model-
ing of discrete data is an important issue that remains
to be addressed. Fifth, we have limited the phenotypic
covariance structure modeling to the exploratory
factor model. Confirmatory modeling is often a viable
option, is more parsimonious, and may possibly
confer greater power. Sixth, in the factor models, the
effect of the GV on the phenotypes was conveyed via
the common genetic factors. This is in keeping with
the notion that a polygenic genetic factor represents
the aggregated effects of many loci. However, one
cannot discard the possibility that a measured genetic
locus may have a direct effect on a given phenotype
(see Medland & Neale, 2010, and van der Sluis et al.,
in press). As studied by Medland and Neale (2010) the
GV effect may vary in sign from phenotype to pheno-
type.

Conclusion
The power studies to date have produced useful infor-
mation concerning the power to detect the effects of
GVs using multivariate data. We note that in the sce-
narios considered here (see also Medland and Neale,
2010), a multivariate approach is almost always more
powerful than a univariate (i.e., single phenotype)
approach. However, multivariate data require model-
ing choices. The reasons for collecting multivariate
data depend on the nature of the phenotype(s) of
interest (Hottenga & Boomsma, 2008). For instance,
if the phenotypes are psychometric indicators, a well
fitting common pathway model (e.g., McArdle &
Goldsmith, 1984; Neale & Cardon, 1992), or a model
involving a single common genetic factor plus rela-
tively small genetic residuals would justify the use of
EFA (and in special cases the use of sum scores).
However, a set of phenotypes may be viewed as a
system of related variables, rather than as a set of psy-
chometric indicators. Huberty and Morris (1989)
describe such a system as a ‘collection of conceptually
interrelated variables that, at least potentially, deter-
mine one or more meaningful underlying variates’ (p.
304). Clearly this is sufficiently vague to justify the
specific advice that one should carry out power analy-
ses tailored to the theoretical and empirical knowledge
of the (genetic) covariance structure at hand,4 rather
than rely on general advice.
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Endnotes
1 Ferreira and Purcell (2009) chose the intercorrelations

among the phenotypes to be equal, which is consistent
with a single factor model. 
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2 In exact data simulation, the simulated data fit the
true model exactly, and lent themselves to power cal-
culations as the likelihood ratio of the models with
and without the GV effect equals the noncentrality
parameter of the noncentral χ2 distribution required to
calculate the power.

3 This is part of the MASS library. MVRNORM
includes the facility for exact data simulation.

4 The R scripts and Mx scripts used in this study are
available on request. These can be tailored to one’s
own requirements.
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Appendix A
R Code for Calculating Power

R code for computing the power of likelihood ratio test statistic. The input are the non-centrality parameter
(NCP), the sample size (N), the degrees of freedom (df), and the alpha (alpha). N and alpha can be varied. The
actual input in this code is arbitrary.

# start power chi2 test
rm(list=ls(all=TRUE)) # wise
powchi=function(alpha,df,NCP) {
cv=qchisq(alpha,df,lower.tail=F)
pchisq(cv,df=df,ncp=NCP,lower.tail=F) }
#
alpha1=.01 # Input Type I error probability
df=1 # Input Degrees of freedom
N1=7000 # Input The sample size N
NCP1=132.6 # Input NCP
power1=powchi(alpha1,df,NCP1)
print(c(alpha1,NCP1,power1))
N2=3000 # Input new N
NCP2=N2*(NCP1/N1)
power2=powchi(alpha1,df,NCP2)
print(c(alpha1,NCP2,power2))
alpha2=1E-7 # Input new alpha
power3= powchi(alpha2,df,NCP2)
print(c(alpha2,NCP2,power3))
# end

R code for computing the power of ANOVA. The input are the non-centrality parameter (NCP), the alpha
(alpha), the sample size (N). N and alpha can be varied.

# start power one way ANOVA (1df test)
rm(list=ls(all=TRUE)) # wise
powanova=function(alpha,df1,df2,NCP) {
cv=qf(alpha,df1,df2,lower=F)
pf(cv,df1,df2,ncp=NCP,lower=F) }
#
alpha1=.01 # Input type I error probability
N1=3000 # Input sample size
NCP1=6.94 # Input non-centrality parameter
df1=1 # Hypothesis degrees of freedom
df2=N1-2 # Error degrees of freedom
power1=powanova(alpha1,df1,df2,NCP1)
print(c(alpha1,NCP1,df1,df2,power1))
N2=1000 # input new N
df2=N2-2
NCP2=(NCP1/N1)*N2
power2=powanova(alpha1,df1,df2,NCP2)
print(c(alpha1,NCP2,df1,df2,power2))
alpha2=.01/4 # input new alpha
power3=powanova(alpha2,df1,df2,NCP2)
print(c(alpha2,NCP2,df1,df2,power3))

R code for computing the power of MANOVA. The input are the alpha (alpha), the non-centrality parameter
(NCP), the sample size (N), the number of tests (nv), the hypothesis degrees of freedom (df1), the error degrees
of freedom (df2). N and alpha can be varied.

#start power MANOVA
rm(list=ls(all=TRUE)) # wise
powmanova=function(alpha,df1,df2,NCP) {
fcrit = qf(alpha, df1, df2, lower=F)
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pf(fcrit, df1, df2, ncp=NCP, lower=F) }
#
alpha1=.01 # Input alpha
nv=4 # Input number of tests
N1=3000 # Input sample size
NCP1=10.45 # Non-centrality parameter
df1=nv # Hypothesis degrees of freedom
df2=N1-nv-1 # Error degrees of freedom
power1=powmanova(alpha1,df1,df2,NCP1)
print(c(alpha1,NCP1,df1,df2,power1))
N2=6000 # input new N
NCP2=(NCP1/N1)*N2
df2=N2-nv-1
power2=powmanova(alpha1,df1,df2,NCP2)
print(c(alpha1,NCP2,df1,df2,power2))
alpha2=1E-5 # input new alpha
power3=powmanova(alpha2,df1,df2,NCP2)
print(c(alpha2,NCP2,df1,df2,power3))
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