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Abstract

Starting from a sequence of independent Wright—Fisher diffusion processes on [0, 1],
we construct a class of reversible infinite-dimensional diffusion processes on Ay, =
{x e [0, 11N: > i>1 % = 1} with GEM distribution as the reversible measure. Log-
Sobolev inequalities are established for these diffusions, which lead to the exponential
convergence of the corresponding reversible measures in the entropy. Extensions
are made to a class of measure-valued processes over an abstract space S. This
provides a reasonable alternative to the Fleming—Viot process, which does not satisty the
log-Sobolev inequality when S is infinite as observed by Stannat (2000).
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1. Introduction

Population genetics is concerned with the distribution and evolution of gene frequencies in a
large population at a particular locus. The infinitely-many-neutral-alleles model describes the
evolution of the gene frequencies under generation independent mutation and resampling. In
statistical equilibrium the distribution of gene frequencies is the well-known Poisson—Dirichlet
distribution introduced by Kingman [8]. When a sample of size n genes is selected from a
Poisson—Dirichlet population, the distribution of the corresponding allelic partition is given
explicitly by the Ewens sampling formula. This provides an important tool in testing neutrality
of a population.

Let

o
As = {x = (x1,x2,...) € [0, 1TN: Zxk — 1},
k=1
and let

o
V={x=(x1,x2,)€[0,l]Nx1 ZXZZZO, Zxkzl}
k=1

The Poisson—Dirichlet distribution with parameter & > 0 is a probability measure 1y on V. We
use P(0) = (P1(0), P,(0), ...) to denote the V-valued random variable with distribution ITy.
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Infinite dimensional diffusions 939

The component Py (6) represents the proportion of the kth most frequent alleles. If # denotes the
individual mutation rate and N denotes the effective population size then the parameter 6 = 4Nu
denotes the population mutation rate. An alternative way of describing the distribution is through
the following size-biased sampling. Let Uy, k = 1,2,..., be a sequence of independent,
identically distributed (i.i.d.) random variables with common distribution Beta(1, 8), and set

X{=U1, Xj=(0-U)A=Up))Up n=2.

Clearly (Xe, Xg, ...)isinspace A,. The law of X?, Xg, ... is called the one-parameter GEM
distribution and is denoted by l'[g‘EM. The descending order of X o Xg, ... has distribution
[Ty. The sequence XZ, k=1,2,..., has the same distribution as the size-biased permutation
of Iy.

Let &, k = 1,2,..., be a sequence of i.i.d. random variables with common diffusive
distribution v on [0, 1], i.e. v(x) = O for every x in [0, 1]. Set

00
Bg,y = Z Pr(0)8¢, .
k=1

It is known that the law of ®y , is a Dirichlet(#, v) distribution, and it is the reversible
distribution of the Fleming—Viot process with mutation operator (see [2])

] 1
Af(x) = 5/0 (f(y) = fx)v(dx). (1.1)

ForO <o <land@ > —a,let {Vi: k = 1,2,...} be a sequence of independent random
variables such that Vj is a Beta(1 — «, 0 + ko) random variable for each k. Set

X{9=vi,  X0*=(0-V)--(1=V, Ve nzl (1.2)

The law of X f’a, X g ** ... 1is called the two-parameter GEM distribution and is denoted by
HS%M. The law of the descending order statistic of X f’“, X g % . .iscalled the two-parameter
Poisson—Dirichlet distribution (henceforth denoted by Il ), which was studied thoroughly
in [12] . The sequence XZ’O‘, k=1,2,..., has the same distribution as the size-biased
permutation of I, ¢. In[11] it was shown that the two-parameter Poisson—Dirichlet distribution
is the most general distribution whose size-biased permutation has the same distribution as the
GEM representation (1.2). A two-parameter ‘Ewens sampling formula’ was obtained in [10].
Let ®g o,» be defined similarly to ®y , with X,,f being replaced by XZ’“. We call the law of
®g.«,v a Dirichlet(0, «, v) distribution.

The Poisson—Dirichlet distribution and its two-parameter generalization have many similar
structures including the urn construction in [3] and [7], GEM representation, sampling formula,
etc. However, we have not seen a stochastic dynamic model similar to the infinitely-many-
neutral-alleles model and the Fleming—Viot process developed for the two-parameter Poisson—
Dirichlet distribution and the Dirichlet(8, «, v) distribution.

In this paper we firstly construct a class of reversible infinite-dimensional diffusion processes,
the GEM processes, so that both HSEM and its two-parameter generalization HS,%M appear as
the reversible measures for appropriate parameters.

In [13] the log-Sobolev inequality is studied for the Fleming—Viot process with the motion
given by (1.1). It turns out that the log-Sobolev inequality holds only when the type space
is finite. In the second result of this paper we first construct a measure-valued process that
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has the Dirichlet(6, v) distribution as reversible measure. Then we establish the log-Sobolev
inequality for this process.

The rest of the paper is organized as follows. The GEM processes associated with I'IQGEM
and HGEM are introduced in Section 2. Section 3 includes the proof of uniqueness and the
log- Sobolev inequality of the GEM process. Finally, in Section 4 the measure-valued process
is introduced and the corresponding log-Sobolev inequality is established.

2. GEM processes

For any i > 1, let g; and b; denote two strictly positive numbers. We assume that

inf b; > 1. 2.1
1

Let X; () denote the unique strong solution of the stochastic differential equation

dX;(1) = (ai — (@i + b)) X (1)) dr + v X; (1)(1 — X; (1)) dB; (1), Xi(0) € [0, 1],

where {B;(t): i = 1,2, ...} are independent one-dimensional Brownian motions. It is known
that the process X, (¢) is reversible with reversible measure 7., 5, = Beta(2a;, 2b;). By direct
calculation, the scale function of X; (-) is given by

( ) (1>a,'+b; /x dy
sik)y =1\~ —_—.
l 4 172 Y2 (1 — y)2bi

By (2.1) we have lim,_, | s; (x) = oo for all i. Thus, starting from the interior of [0, 1], the
process X; () will not hit the boundary 1 with probability 1. Let £ = [0, 1)N. The process

X(t) = (X1(0), X2(1),...)
is then an E-valued Markov process. Consider the map
P E—> As, x=(x1,x2...) > (@1(x), p2(x),...),
with
@1(x) = x1, n(x) = xp(1 —x1) - (1 = xp—1), n =2

Clearly ® is a bijection and the process Y(t) = & (X (¢)) is thus a Markov process. Let

= [0, 11N denote the closure of E, let C(E) denote the set of all continuous functions on E,

and letC 21 (E) denote the set of cylindrical functions in C (E) that have second-order continuous
derivatives and depend only on a finite number of coordinates. The sets C(E) and C 1 (E) will
be the respective restrictions of C (E) and C (E ) on E. Then the generator of process X (¢) is

given by
= °f of
Lf(x>=2{xk<1—xk> + (ax — (ak+bk>xk)a}, f € CH(E),
k=1

and can be extended to Cczl(E ). The sets B(E) and B(A) are bounded measurable functions
on E and A, respectively.
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Leta = (aj,az,...)and b = (b1, by, ...), and let
o
- -1
Ha,b = 1_[ Tay by and Eab = Hapo P .
k=1

Then we have the following result.

Theorem 2.1. The processes X (t) and Y (t) are reversible with respective reversible measures
Ka,b and Eq p.

Proof. The reversibility of X (z) follows from the reversibility of each X;(¢). Now, for any
two f and g in B(A), the two functions f o ® and g o ® are in B(E). From the reversibility
of X (), we have, for any ¢ > 0,

/A f(y)Ey[g(y(t))]Ea,b(dY):/;Ef(cb(x))Ex[g(cb(x(t)))]l/‘a‘b(dx)
=/Eg(CD(x))Ex[f(CD(X(t)))]Ma,b(dX)

=/A gEYf(y())]Eap(dy).

Hence, Y () is reversible with reversible measure &, .

Remark. The one-parameter GEM distribution, HGGEM, corresponds to a@; = % and b; = 6/2,
and the two-parameter GEM distribution, I'IOG[EM, corresponds to a; = (1 — «)/2 and b; =
@ +ia)/2.

3. Uniqueness and Poincaré /log-Sobolev inequalities

Let

Aso i= {xe [O,I]N: in < 1}

i=1

be the closure of space Ao in RY under the topology induced by cylindrically continuous
functions. The probability E,4 5 can be extended to the space As,. For simplicity, the same
notation is used to denote this extended probability measure.

Now, for x € Ay such that

n
in < 1 for all finite n,
i=1
let
82

o0 o 8
Lix)= )" i) g Zbi(x)a—m,
i,j=1 i=1
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where

inj

(8i (1 — Zl 1 | x) — i) (8 (1 — Zl 1 xp) — xk)
ajj(x) := xiX;
: P> =Y W)
bi(x) := x; Xl: Gk (1= 323 1) — ) (1 — 34 1) — (a +bk)xk)
k=1 x(1 — Zl 1%1)

Here and in the sequel, we set Z i—; = 0and ]_[l ;= 1 by convention. By treatmg g as 1, the
definition of L(x) can be extended to all points in As,. Through direct calculation we can see
that L is the generator of the GEM process.

It follows, from direct calculation, that

dlaj) <3, bl <Y (it a),  x € A 3.1

ij=1 k=1

Indeed, since 1 — Y "/_| x; > x; and Dl<icj<ooXiXj < 1, we obtain

Z |a,,<x)|=2a”(x)+2 > lay )l

i,j=1 i=l 1<i<j<oo
- 1—21 R
<3 by
i=1 k=1 _ZIZIXI
i—1
2 P (i D)
l<i<j<oco PWIREY

00 i i—1
< in(l - sz + ZM)
' I=1 k=1

i=1

00 ) ;‘:1 X
=1
“FZZX,' Z Xj(l-i-—z}w#]x[)
- —

i=l  j=i+l
<142
=3.
Thus, the first inequality in (3.1) holds. Similarly, the second inequality also holds.
- .- af(x) dg(x)
r'(f, =
(f. 9)(x) ,-,-Zl aij(x) o

Then T'(f, f) € Ch(Aso) forany f € Cl(Ax).
Foreacha > 0 and b > 0, let a,, be the largest constant such that, for f € C,;([O, 1]), the
log-Sobolev inequality,

Tap(f2log f) <

1
fo x(1 = x) £ ()70, p(dx) + 70 p (F) logmap(fD),  (3.2)

a,b
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holds. According to Lemma 2.7 of [13], we have o, , > (a A b)/320. Moreover, it is easy to
see that, for a, b > 0, the operator

d? d
r(l — r)m +(a—(a+ b)r)d—r

on [0, 1] has a spectral gap a + b with eigenfunction i(r) := a — (a + b)r. So, the Poincaré

inequality,
1

1
Tap(f2) < —— | x(1 = x) £/ (x)* 70,5 (dx) + 74,5 (f)?, (3.3)
a+b )y

holds.
Let C é’lo (0, 1]N) denote the set of all bounded, C*° cylindrical functions on [0, 1]N, and

FC® ={fla,: [ € CF0. 11M).
Now we have the following theorem.

Theorem 3.1. Forany f, g € FC.°, we have

€(f. 8) = Bap(I'(f,8) = —Eap(fLE). 4

Consequently, (§, FC°) is closable in L*(Aso; Ea.p), and its closure is a conservative regular
Dirichlet form which satisfies the Poincaré inequality

Eap(f?) < )g(f, ). [ eD(€), Eap(f)=0.

inf;>1(a; + b;
Moreover, if inf{a; A b;: i > 1} > 0, the log-Sobolev inequality

1
a,b

Eap(f2log f) < 3 E(f, f), feD®), Bap(f) =1, (3.5)

holds for some Bq p > inf{(a; A b;)/320:i > 1} > 0.
Proof. For any f, g € FC;°, there exists n > 1 such that

f(x):f(-xlv-"9xn)7 g(x):g(xls'-'v-xn)s

3.6
x=(X1,...,%n,...) €0, 1]V 56

Let

0™ (x) = (@1(x), ..., pu(x)),
which maps [0, 1]* onto A, := {x € [0, 1]": Z?:l x; < 1}. Define

n n
9 0
L, := Zx,'(l —Xxi)— + Z(‘li — (@i +bi)xi)o—.
i=1 axi i=1 axi
and

n
-1
n =n n n
”a,bzl_[”anbi and E =7'L'a’b0(p() .
i=1
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Then, regarding {E" := 7, , o (p(”) : n > 1} as probability measures on A, and by letting
E" .= E"(dxy, ..., dx,) x 8o(dxn+1, ...), itconverges weakly to E, 5. Since L, is symmetric
with respect to " b WE have

9
/ sz(l — x; ( -fo w(")> (—g o co(”)) dry
(0,117 ax;

= —/ gogo(")Lnfo(p(”) dJT;l’b
[0)1]”

Noting that
i—1 ()
o) =xi[[—x) and x=—2— iz,
I=1 1 - Z[ 1 Qol(x)
we have
df o™ (x) (8ij — x)pj(x) df
i) ® l; a l—xj) 3 °P
i i>i i i Qj
Therefore,
0
/ th(l Xi ( fo §9(n)> (3_g ° ¢(n)> dnz}:,b
0,117 ; X Xi
- f F(fg) 0 g™ dnl, (3.7)
[0,1]" '

=f I/, g)dE".
Ap

By (3.1) and (3.6), we have I'(f, g) € Cp(Aso), so that the weak convergence of E” to Ea.b
implies that

im [ T(f g de" = / C(f. §) dZap. (3.8)
A}l AOC

n— oo

Similarly, by straightforward calculations we find that

Lof o™ (x) = (Lf) oo™ (x).

Moreover, (3.1) and (3.6) imply that gLf € Cp(Awo). Thus, we arrive at

lim gO(p(")Lnfo(p(n)dn‘;"bz/: gLfdZqp.
Ao

n—oo A
n

Therefore, (3.4) follows by combining this with (3.7) and (3.8). This implies the_closability of
(&, FC}°), while the regularity of its closure follows from the compactness of A, under the
usual metric

o0
plx.y) =Y 27 x5 — yil.

i=1

https://doi.org/10.1239/jap/1197908815 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1197908815

Infinite dimensional diffusions 945

Indeed, it is trivial that D(€) N Co([0, 1]V) D FCZ®, which is dense in D(€) under &,/ given
by
El(f. ) =E&f. N+ IfI3

Moreover, forany F € C(As) = Co(Aso), by its uniform continuity owing to the compactness
of the space,

Ax x> F(x):=F(x1,...,x,,0,0,...), n=>1,

is a sequence of continuous cylindric functions converging uniformly to F. Since a cylindric
continuous function can be uniformly approximated by functions in F'C;° under the uniform
norm, it follows that F'C go is dense in CO(AOO) under the uniform norm. That is, the Dirichlet
form (&, D(&)) is regular.

Next, the desired Poincaré and log-Sobolev inequalities can be deduced from (3.3) and
(3.2), respectively. For simplicity, we only prove the latter. By the additivity property of the
log-Sobolev inequality (see [6]),

1 n ah 2
w' (W logh?) < — / > xwd —xi)<—) drl , + p" (h*) log 2, (h%)
a.b [0,1]" im ax,- ’ 5

holds for all & € C[}([O, 171"), where

Bry=inflogp:i=1....n} and fP)=f(x1.....%..0,..0).

Combining this with (3.7) for any f € D, the domain of L, we have

1
E”(f(")zlogf(")z)sﬂn f PO (f, £)da" + 8" (F™%) log 8 (1 ™).
u,b n

Therefore, as explained above, for f € D, (3.5) follows immediately by letting n tend to oo.
Hence, the proof is completed since D (&) is the closure of D under 811/ 2,

We remark that since (&, D(8)) is regular, according to [4] and [9], (L, D) generates a Hunt
process whose semigroup P; is unique in LZ(E,,,I,). Thus, the GEM process constructed in
Section 2 is the unique Feller process generated by L. Moreover, it is well known that the
log-Sobolev inequality, (3.5), implies that P; converges to &, 5 exponentially fast in entropy;
more precisely (see, e.g. [1, Proposition 2.1]),

Ba.p(Pr flog P f) < exp(—4Bap?) Ea,p(f log f), f=0, Bap(f)=1

Moreover, owing to [5], the log-Sobolev inequality is also equivalent to the hypercontractivity
of P;.

Thus, according to Theorem 3.1, we have constructed a diffusion process which converges
to its reversible distribution E, p in entropy exponentially fast.

4. Measure-valued process

It was shown in [13] that the log-Sobolev inequality fails to hold for the Fleming—Viot process
with parent independent mutation when there are an infinite number of types. In this section we
will construct a class of measure-valued processes for which the log-Sobolev inequality holds
even when the number of types is infinity.
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Let us first consider a measure-valued process on a Polish space S induced by the above
constructed process and a proper Markov process on S™. More precisely, let X, := (X1(f), ...,
X, (1), ...) be the Markov process on A, associated to (&, D(€)), and let & := (§1(¢), ...,
£,(1), ...) be a Markov process on SV, independent of X;. We consider the measure-valued
process

o
ne = in(t)fss,-(z),
i=1
where X; can be viewed as the proportion of the ith family in the population, and &; can be
viewed as its type or label. Then the above process describes the evolution of all (countably

many) families on the space S. Let M; denote the set of all probability measures on S. Then
the state space of this process is

My := {y € M;: supp y contains at most countably many points},

which is dense in M| under the weak topology.
Owing to Theorem 3.1, if & converges to its unique invariant probability measure v on SN
then 7, converges to [T := (E4 p X V) 0 wfl for

o0
Vihoox SN > Mo, Y E) =) xibg.
i=1

Unfortunately the process 7, is in general non-Markovian. So we like to modify the construction
using Dirichlet forms.

Let v denote a probability measure on SN and (€ v, D(E¢n)) denote a conservative sym-
metric Dirichlet form on L?(v). We then construct the corresponding quadratic form on
L?(My; IT) as follows:

&my (F, G) = /.;’N E(Fz, Gg)v(d§) +/ Egi (Fx, Gx)map(dx),

F,G € D(8wm,)
={H € L2(1'I): Hy := Hoy(x,-) € D(Egn) for Eg p-almost surely (a.s.) x,
Hg := H oyr(-,&) € D(&) for v-a.s. &, such that &y, (H, H) < oo}.

Since IT has full mass on My, to make the state space complete we may also consider the above
defined form to be a symmetric form on LZ(M;; IT) (= L2(Mo; IT)).

Theorem 4.1. Assume that there exists a > 0 such that
1
v(f2log ) < —Egu(f, /) +v(fHlogu(f?),  f € D(Eg),
holds, then

1
M(F%log F?) < WSMO(F, F)+TI(F?)logI(F?),  F e D(&v,). (4.1
a,b

Moreover, if D(8v,) C L*(My; II) is dense then (&Mg> D(&m,)) is a conservative Dirichlet
form on L*(Mo; T1), so that the associated Markov semigroup P; satisfies

[TI(P;Flog P F) < I1(F log F) exp(—(Ba.p N 0)t), t>0, F>0, II(F) =1, 42
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and (&m,, D(&m,)) is regular provided that the space (Egn, D(Egn)) is regular and S is

compact.
Proof. Let
D) ={F € Lz(Ea,b xv): F(x,-) € D(&¢n) for E4 p-acs. x,
F(-, &) € D(€) for v-a.s. &, such that E(F, F) < oo},
where

&(F, ) :=/ Eg(F(x, ->,é<x,->>Ea,b<dx)+/Ne(ﬁ(~,5),é(-,s>)v<d5).

00 N

Then (&, D(8)) is a symmetric Dirichlet form on L?(As x SY; Eq.p X v) and (see, e.g.
[6, Theorem 2.3])

- - 1 - - - -
(Eap x V)(F*log F?) < m(Ea,b x V)(F?),  Fe D), (Bap x v)(F?) =1.

a,b
~ 3 y 4.3)
Let P; denote the Markov semigroup associated to (§, D(&)). Then (4.2) follows from the fact
that n, = ¥ (X (¢), £(¢)), and (4.3) implies that (see [1, Proposition 2.1])

(Eap X V)(P,Glog P,G) < (Eqp x )(G log G) exp(—4(Ba.p A a)t)

for all ¥ > 0 and nonnegative function G with (E4,p x v)(G) = 1. Since F € D(8y,) if and
only if F o ¢ € D(€), and

Emy(F, F) = E(F oy, F o),

(4.1) follows from (4.3). By the same reasoning and noting that (€, D(E)) isaDirichlet form, we
conclude that (&m,, D(&wm,)) is a Dirichlet form provided it is densely defined on L2My; TD).
Finally, if S is compact then so is M; (under the weak topology). Thus, as explained in the
proof of Theorem 3.1, for regular (E¢n, D(Egn)), the set

Fg)snga))in =1, f e CLR™), g € C(S), 1 <i <n} C CoMo) N D(Emy)

is dense both in Co(M1)(= C(M})) under the uniform norm and in D(&y,) under the Sobolev
norm.

Remark. Obviously, we have a similar assertion for the Poincaré inequality: if there exists
A > 0 such that

1
v(f?) < Esu(f, )+ v(f)?,  f e D(Egw),
holds then

M(F?) < !

&w. (F, F) + TI(F)?, F € D(&y).
= )\./\iﬂf[zl(l)i"‘bi) M()( )+ ( ) ( M())

To see that the above theorem applies to a class of measure-valued processes on S, we present
below a concrete condition on E¢n such that the assertions of Theorem 4.1 apply. In particular,
it is the case if &g is the Dirichlet form of a particle system without interactions.
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Proposition 4.1. Let v; be the ith marginal distribution of v and, for a function g on S, let
gD(&) :=g(&), i > 1. Assume that

So 1= {g e Co(S): g(i) € D(&gn), sup SSN(g(i), g(i)) < oo}
i>1

is dense in Co(S). Then (&m,, D(8m,)) is a symmetric Dirichlet form.
Proof. Under the assumption and the fact that CCZI(AOO) is dense in L2(My; IT), the set
S ={f(8) . (g)in=1, feCyR"), g €S, 1 <i<n}
is dense in L?(My; IT). Therefore, by Theorem 4.1 it suffices to show that § C D(&wm,); that
is, for F := f({-, g1)s..-, (-, 8gn)) € S, wehave F oy € D(E). Let
m m
Fp(x) = F(Zx,-gl(&), ...,Zx,-g,,(s,»)) X €A, m> 1.
i=1 i=1
Since, for fixed & € SN,
n
O Foy(n&)(x) =) hfer&), ix1,
k=1
is uniformly bounded, we have F,, € D(&) and (3.1) yields

for some constant C > Oand allm > 1 and& € SN. Thus, Foy (-, £) € D(€) foreach & € SN
and

Slgp E(Foy(-§), Foy(,§) =C. 4.4)

Conversely, since gr € So, 1 < k < n, noting that, for any x € A,
n 2 00
|Foy(x,6)— Foy(x, &) < (Z ||akf||oo) > xileeE) — gk @D,
k=1 i=1
we conclude, in the spirit of Proposition I-4.10 of [9], that F o ¥ (x, -) € D(&gn) and
gSN(F o 1//(x9 ‘)’ Fo I/I(xv )) < C/
for some C’ > 0 independent of x. Combining this with (4.4) we obtain F o ¢ € D(E:“).
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