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Abstract

Corrections are made to formulations and proofs of some theorems about convolution
equivalence closure for random sum distributions. These arise because of the falsity
of a much used asymptotic equivalence lemma, and they impinge on the convolution
equivalence closure theorem for general infinitely divisible laws.
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1. Introduction

The status of several closure theorems for convolution equivalent distributions has recently
been questioned. This is because their proofs rely, directly or indirectly, on Lemma 2.1(iv)
of Cline (1987). Shimura and Watanabe (2005) exhibit a counterexample to Cline’s lemma
that, in particular, affects part of the principal results obtained by Pakes (2004). The specific
issue is whether convolution equivalence of a random sum distribution implies the convolution
equivalence of the summand distribution. The proofs of the best existing results asserting that
this is the case are incomplete as a result of the problem with Cline’s lemma.

We discuss Cline’s lemma in Section 2 and the random sum problem in Section 3. Theo-
rem 3.1 below is a slightly weaker version of Theorem 5.1 of Pakes (2004) which preserves
its three-way equivalence for random sum distributions. In a recent independent study by
Wang et al. (2006), it was shown that if the compounding probabilities pn decrease sufficiently
fast then the side condition (a) of our Theorem 3.2 holds. Theorem 1.2 of Wang et al. (2006),
which corresponds to Corollary 2.14(i) of Cline (1987), embraces Poisson compounding and
hence it can replace that part of the proof of Theorem 3.1 of Pakes (2004, p. 416) (reproduced as
Theorem 3.1 below) which attempted to show that (c) in his Theorem 3.1 implies (a). Precisely,
this implication asserts that if an infinitely divisible law is convolution equivalent then so
is J (x) = ν[1, x)/ν[1, ∞), where ν is the Lévy measure. Lemma 3.2, which corresponds
to Corollary 2.14(ii) of Cline (1987), achieves the same end by altering some details of an
argument in Shimura and Watanabe (2005).

The condition imposed on the compounding distribution by Wang et al. (2006) also embraces
geometric compounding. In Section 4 we give a different and simpler proof for this case and
show that it extends, using Theorem 3.3, to negative binomial and log-series compounds.
Finally, for completeness, in Section 5 we prove closure for convolution roots in the two-sided
case.
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2. Cline’s lemma

If Ai : R �→ R (i = 1, . . . , 4) are positive on the interval [x′, ∞) and if c ≥ 0, we
write A1(x) ∼ cA2(x) if limx→∞ A1(x)/A2(x) → c and A1 = o(A2) if c = 0; and we
write A1 ≺ cA2 if lim supx→∞ A1(x)/A2(x) ≤ c, and A1 = O(A2) if A1 ≺ cA2 for some
positive c.

Cline’s lemma states that if the Ai satisfy

A1 ≺ A3 and A2 ≺ A4, (2.1)

and
A1 + A2 ∼ A3 + A4 (2.2)

then one of the following outcomes must occur:
⎧⎪⎨
⎪⎩

A1 ∼ A3 and A2 ∼ A4,

A1 ∼ A3 and A4 = o(A2),

A2 ∼ A4 and A3 = o(A2).

(2.3)

Cline (1987) asserts that the proof is straightforward! The assertion is valid in the sense that
any one, two, or all three of the outcomes (2.3) can occur along a subsequence if (2.1) and (2.2)
hold. This is the point of the Shimura–Watanabe counterexample. However, the impact of
this counterexample is lessened by the fact that the functions Ai which Shimura and Watanabe
(2005) use are not monotonic, whereas in all uses of Cline’s lemma the Ai are tail functions,
and there is usually a lot of additional structure. The fallacy in the various uses of Cline’s
lemma is to infer the first outcome in (2.3) without eliminating the possibility that the others
may hold along a subsequence.

The following lemma extracts the most that is possible from Cline’s hypotheses.

Lemma 2.1. (i) Suppose that (2.1) holds. Condition (2.2) holds if and only if

A3 − A1 = o(A3 + A4) and A4 − A2 = o(A3 + A4). (2.4)

(ii) If (2.1) and (2.2) hold, then

A1 ∼ A3 provided A4 = O(A3), (2.5)

and
A2 ∼ A4 provided A3 = O(A4). (2.6)

Proof. (i) As

1 − A1 + A2

A3 + A4
= (A3 − A1) + (A4 − A2)

A3 + A4
,

we see that (2.4) implies (2.2). Suppose that (2.2) holds. Assumption (2.1) implies that if ε > 0
then there exists x(ε) such that

A3(x) − A1(x) ≥ −εA3(x) and A4(x) − A2(x) ≥ −εA4(x) (2.7)

if x ≥ x(ε). Hence, if x > x(ε), the first equation of (2.7) yields

lim inf
x→∞

A3 − A1

A3 + A4
≥ 0.
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On the other hand, the second equation of (2.7) implies that

1 − A1 + A2

A3 + A4
≥ A3 − A1

A3 + A4
− εA4

A3 + A4
≥ A3 − A1

A3 + A4
− ε,

so

0 ≥ lim sup
x→∞

A3 − A1

A3 + A4
≥ −ε,

and hence the first member of (2.4) follows. The second member of (2.4) follows in similar
manner.

(ii) If (2.1) and (2.2) hold, then the first member of (2.4) implies that

A3 − A1

A3 + A4
= 1 − A1/A3

1 + A4/A3
→ 0

and hence the numerator tends to zero provided A4/A3 is bounded. This implies (2.5), and
similarly for (2.6).

3. Random sums and convolution equivalence

We consider a distribution function G(x) < 1 for all real x, and denote its tail or survivor
function by G = 1 − G and its convolution powers by G∗n, n = 1, 2, . . . . We say that G has
an exponential tail with rate γ ≥ 0, written G ∈ Lγ , if

lim
x→∞

G(x − y)

G(x)
= eγy, −∞ < y < ∞,

and we say that G is convolution equivalent, written G ∈ Sγ , if G ∈ Lγ and the following
limit exists:

2M := lim
x→∞

G∗2(x)

G(x)
< ∞.

It is known that M = MG := ∫ ∞
−∞ eγ x dG(x). Pakes (2004, Corollary 2.1(iii)) proves this by

extension from the one-sided case. Several authors have offered proofs for the one-sided case,
and with differing errors. Rogozin (2000) deals with the case γ = 0, and he asserts that the
case γ > 0 was earlier treated by himself and M. S. Sgibnev using Banach algebra techniques.
Foss and Korshunov (2007, Section 8) cite Rogozin and Sgibnev (1999) for this case, they offer
remarks on the earlier literature, and their Theorems 3 and 7, which are relevant to this topic,
have ‘elementary’ proofs.

Let (pn : n = 0, 1 . . . ) be a probability mass function with p0 < 1 and let

F =
∑
n≥0

pnG
∗n. (3.1)

Then F is the distribution function of the random sum
∑N

j=1 Yj , where the summands are
independent with distribution function G and independent of N , where P(N = n) = pn.
Theorem 5.1 of Pakes (2004) can be re-stated as follows.
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Theorem 3.1. (Equivalent to Theorem 5.1 of Pakes (2004).) Suppose that:

(i) G ∈ Lγ for some γ ≥ 0 and MG < ∞,

(ii)
∑

n pn(MG + ε)n < ∞ for some ε > 0.

Then the following assertions are equivalent:

(a) G ∈ Sγ ;

(b)

lim
x→∞

F(x)

G(x)
=

∑
n≥1

pnnMn−1
G ;

(c) F ∈ Sγ and G �= o(F ).

Note that Theorem 3.1(ii) is satisfied if MG < 1, which is a possible outcome in the
two-sided case. Cline’s lemma was used to support the argument that Theorem 3.1(c) im-
plies Theorem 3.1(a). This is now in doubt, but the following weaker version is valid. Let
MF = ∫ ∞

−∞ eγ x dF(x).

Theorem 3.2. Suppose Theorem 3.1(i) and (ii) hold. Then Theorem 3.1(a) and (b) are equi-
valent, and each is equivalent to

(a) F ∈ Sγ and F = O(G).

Proof. We need only show that Theorem 3.2(a) implies Theorem 3.1(a) because the
remainder of the proof of Theorem 3.1 given in Pakes (2004) is valid. If γ > 0 then
MF = γ −1

∫ ∞
0 eγ xF (x) dx, so Theorem 3.1(i) and F = O(G) imply that MF < ∞. Let

A1 = 2MF M2
GF , A2 = 2MGM2

F G, A3 = M2
GF ∗2, and A4 = M2

F G∗2. Pakes (2004) shows
that if F ∈ Sγ then (2.2) holds and, of course, A1 ∼ A3. The second part of Theorem 3.2(a)
can be read as A1 = O(A2). It follows from Lemma 2.1(ii) of Cline (1987) that A2 ∼ A4,
i.e. Theorem 3.1(a) holds.

In the one-sided case G(0−) = 0, Cline (1987, Corollary 2.14) asserts sufficient condi-
tions for the second part of Theorem 3.1(c) to hold, i.e. that lim infx→∞ F(x)/G(x) < ∞.
Our stronger condition merely replaces the lim inf with lim sup. Thus, the second part of
Theorem 3.2(a) is only a small strengthening of that in Theorem 3.1(c). It is worth noting that
Klüppelberg (1989) adds a density version of this restriction to her Theorem 3.2.

Lemma 3.4 below for the one-sided case G(0−) = 0 asserts that the lim sup restriction in
Theorem 3.2(a) can be replaced by a stronger restriction on (pn). Its proof relies on some
preliminary results valid for the two-sided case, which are of interest in their own right. The
following result appears as Lemma 5.6 of Pakes (2004), where F and G are arbitrary distribution
functions.

Lemma 3.1. Suppose that F, G ∈ Lγ and MF , MG < ∞, and that F ≺ aH , G ≺ bH where
H ∈ Sγ and a, b > 0 are constants. Then

F ∗ G(x) = (MGF(x) + MF G(x))(1 + o(1)) + o(H(x)), (x → ∞). (3.2)

In addition, if H = O(F + G) then

F ∗ G(x) ∼ MGF(x) + MF G(x). (3.3)
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The next lemma collects results for F defined by (3.1) which are scattered through
Pakes (2004) and proved here in greater detail. We need the following notation. For positive
integer N let pn(N) = P(N1 + · · · + NN = n) where the Nj s are independent copies of N ,
and let

κ(N) :=
(∑

n≥0

pn(N)nMn−1
G

)−1

.

This reciprocal definition makes the following expressions tidier.

Lemma 3.2. Fix N ∈ N, and assume that G ∈ Lγ , κ(N) > 0, and F ∈ Sγ . Then

G∗N ≺ κ(N)F ∗N, (3.4)

and
(F ∗ G)∗N ∈ Sγ . (3.5)

Proof. Suppose that N = 1, and let

κ = κ(1) and Bn(x) = G∗n(x)

G(x)
.

Lemma 5.4 of Pakes (2004) asserts that if G ∈ Lγ then

lim inf
x→∞ Bn(x) ≥ nMn−1

G ,

and (3.4) follows. Observe that if H = F in Lemma 3.1, then all its assumptions are satisfied
and, in particular, (3.3) holds. It follows that F ∗ G ∈ Lγ and, using (3.4), that

F ∗ G ≺ (MG + κMF )F .

Hence, Lemma 3.1 can be invoked again with F and G in (3.2) replaced by F ∗ G, giving

(F ∗ G)∗2 = 2MF MGF ∗ G + o(F ).

As (3.3) implies that F = O(F ∗ G), it follows that

(F ∗ G)∗2(x) ∼ 2MF MGF ∗ G(x),

i.e. F ∗ G ∈ Sγ . Observing that F ∗N = ∑
n≥0 pn(N)G∗n and that the hypotheses imply that

G∗N ∈ Lγ and F ∗N ∈ Sγ , we see that, for arbitrary N , (3.4) and (3.5) follow from the N = 1
case.

Lemma 3.3. Suppose that G ∈ Lγ , F ∈ Sγ , and that κ(N) > 0 for N = 1, 2, . . . . Then

NMN−1
F MN

G F(x) + NMN
F MN−1

G G(x) ∼ MN
G F ∗N(x) + MN

F G∗N(x). (3.6)

Proof. For some N ≥ 1 suppose that

(F ∗ G)∗N ∼ NMN−1
F MN

G F + NMN
F MN−1

G G. (3.7)
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The case N = 1 is just (3.3), and this is valid under our hypotheses. The assumptions
of Lemma 3.2 are satisfied, so (3.5) implies that there are positive constants aN such that
(F ∗ G)∗N ≺ aNH , where H = F ∗ G. As H = O(F + G), it follows, again from (3.3), that

(F ∗ G)∗(N+1) = (F ∗ G)∗N ∗ (F ∗ G) ∼ MF MG(F ∗ G)∗N + (MF MG)NF ∗ G.

Applying (3.7) and (3.3), respectively, it follows that (3.7) holds with N replaced by N + 1
whence, by induction, it holds for all N .

The hypotheses imply that F ∗N ∈ Sγ and G∗N ∈ Lγ for all N . Taking H = F ∗N in
Lemma 3.1, the estimate (3.4) permits the use of (3.3) to obtain

(F ∗ G)∗N = (F ∗N) ∗ (G∗N) ∼ MN
G F ∗N + MN

F G∗N.

Combining this with (3.7) yields (3.6).

In the remainder of this section only, we let q = ∑
n≥1 pn. We next prove our foreshadowed

one-sided alternative to Theorem 3.2.

Lemma 3.4. Suppose Theorem 3.1(i) holds and that G(0−) = 0. Then Theorem 3.1(a) and (b)
are equivalent, and each implies Theorem 3.2(a). Conversely, if

(a) F ∈ Sγ and
∑

n≥1 pn[(MF + δ)/q]n < ∞ for some δ > 0, then Theorem 3.1(a) holds.

Proof. We need to show only that Lemma 3.4(a) implies Theorem 3.1(a). The key step is
following a line of argument in Shimura and Watanabe (2005, p. 454) to show, for some N ≥ 1,
that

F = O(G∗N). (3.8)

Our assumptions imply that (G∗n) is a nondecreasing sequence and hence F = ∑
n≥1 pnG∗n ≥

qG, in other words, 1 − q + qG ≥ F . Using the binomial theorem to expand the n-fold
convolution power of this inequality leads to the (crude) bound qnG∗n ≤ F ∗n, valid for n ≥ 1.
It follows that

1 = S :=
∑

n≥1 pnG∗n

F
≤

∑
n≥1 pnq

−nF ∗n

F
. (3.9)

As F ∈ Sγ , for each constant δ > 0 there is a positive constant K such that F ∗n(x)/F (x) ≤
K(MF + δ)n, valid for all x > 0 and n; see Chover et al. (1973). It follows from the bound
assumption in Lemma 3.4(a) that the second sum in (3.9) converges uniformly in x > 0.
Consequently, for arbitrary 0 < ε < 1, we can find N so large that the first sum in (3.9),
summed over n > N for S, is uniformly bounded above by ε. The remaining finite sum for S

is bounded above by QNG∗N/F , where QN = ∑N
n=1 pn, and (3.8) follows.

Next, we show that Lemma 3.4(a) implies that κ(N) > 0. As the radii of convergence of the
power series hN(s) := ∑

n≥0 pn(N)sn = hN
1 (s) coincide, it follows from Lemma 3.4(a) that∑

n≥0 pn(N)[(MF + δ)/q]n < ∞. As MG ≥ 1, we have MF = ∑
n≥0 pnM

n
G ≥ qMG, and it

follows that
∑

n≥1 pn(N)(MG + δ/q)n < ∞, whence κ−1(N) = ∑
n≥0 pn(N)nMn−1

G < ∞,
as desired.

It follows from our hypotheses and the last step that (3.6) holds. We choose N so that
(3.8) is valid. Denoting the four terms in (3.6) by A1, A2, A3, and A4, respectively, we see
that (2.2) holds. In addition, A1 ∼ A3 because F ∈ Sγ , and (3.8) asserts that A1 = O(A4),
i.e. A3 = O(A4). It follows from Lemma 2.1 that A2 ∼ A4, i.e. Theorem 3.1(a) is true.
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Lemma 3.2 is valid if (pn) is a Poisson distribution and hence, the closure theorem for positive
compound Poisson laws implicit in Cline (1987, p. 358), and stated explicitly as Theorem 5.2 of
Goldie and Klüppelberg (1998) (and elsewhere), is valid as stated. This particular case can be
used in place of Cline’s Theorem 2.13 and Corollary 2.14, at the end of the proof of Theorem 3.1
in Pakes (2004, p. 416). Consequently, Theorem 3.1 of Pakes (2004) is valid as stated and, for
completeness, we give it as follows.

Theorem 3.3. Suppose that F is an infinitely divisible distribution function with Lévy measure
ν(dx), and let

J (x) = ν([x, ∞))

ν([1, ∞))
.

The following assertions are equivalent:

(a) J ∈ Sγ ,

(b) J ∈ Lγ and

lim
x→∞

F(x)

ν(x, ∞)
= MF < ∞,

(c) F ∈ Sγ .

4. Negative binomial mixtures

Results mentioned by Shimura and Watanabe (2005) as uncertain include geometric com-
pound distributions. In this section we rescue and generalize this to the negative binomial case
φζ (s) := ∑

pns
n = [(1−q)/(1−qs)]ζ , where 0 < q < 1 and ζ > 0, and we let Fζ = φζ (G),

but drop the subscript ζ in the case ζ = 1. In addition, we consider the generalized log-series
distribution with probability generating function Lλ(s) = [log(1 − qs)/ log(1 − q)]λ, and let
Hλ = Lλ(G), where λ > 0.

Theorem 4.1. Suppose that G ∈ Lγ and qMG < 1. Then the following are equivalent:

(a) G ∈ Sγ ;

(b)
lim

x→∞
Fζ (x)

G(x)
= φζ (MG);

(c)
lim

x→∞
Hλ(x)

G(x)
= Lλ(MG);

(d) Fζ ∈ Sγ for some (and hence all) ζ > 0;

(e) Hλ ∈ Sγ for some (and hence all) λ > 0.

Proof. Our assumptions imply that Theorem 3.1(ii) holds. Theorem 3.2 asserts that
Theorem 3.1(a), (b), and (c) are equivalent, and that Theorem 3.1(a) implies Theorem 3.2(a)
and Lemma 3.4(a). Clearly, Fζ is a one-dimensional distribution function of a Lévy process
with time parameter ζ , so it follows from Theorem 3.3 that Fζ ∈ Sγ for all ζ > 0, or for no ζ .
Hence, Theorem 3.2(a) holds if and only if F1 ∈ Sγ .

Assume Theorem 3.2(a) holds. For ζ = 1, the identity φ(s) = 1 − q + qsφ(s) implies,
via φF = 1 − qφGφF , that F = qF ∗ G. Taking H = F in Lemma 3.1 and observing that
F = O(MGF + MF G) we have

F ∗ G ∼ MGF + MF G.
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Consequently, MF G/F → q−1 − MG > 0. Thus, Theorem 3.1(b) holds and hence G ∈ Sγ ,
i.e. Theorem 3.2(a) is equivalent to Theorem 3.1(a).

The distribution functions Hλ also comprise of one-dimensional distribution functions of
a Lévy process, and hence Theorem 4.1(e) holds if and only if H1 ∈ Sγ . But H1 is the
distribution function of jumps in the compound Poisson representation of F1, and so it follows
from Theorem 3.3 that H1 ∈ Sγ if and only if F1 ∈ Sγ .

A consequence of this result is that the proof of Corollary 3.3 and the results discussed in
Section 4 of Klüppelberg (1989) remain valid.

5. Closure for convolution roots

One implication of Theorem 3.3 is that if one element of a continuously indexed convolution
semigroup is in Sγ , then all elements are in Sγ . The corresponding result for ordinary
convolution powers G∗n is included here for completeness. Theorem 5.1(a) appears in the
unpublished report of Willekens (1987), but the details of our proof differ somewhat from his
proof, being closer to the argument used by Embrechts and Goldie (1982) for the one-sided
case.

Recall that if G ∈ Lγ and Bn(x) := G∗n(x)/G(x) then

lim inf
x→∞ Bn(x) ≥ λn := nMn−1

G , n = 1, 2, . . . . (5.1)

Theorem 5.1. Suppose that G ∈ Lγ and MG < ∞.

(a) If there is an integer N ≥ 2 such that LN := lim supx→∞ BN(x) ≤ λN then G ∈ Sγ .

(b) If G∗N ∈ Sγ then G ∈ Sγ .

Proof. (a) In view of (5.1) the hypothesis actually asserts that LN = λN . First, we show
that

Ln+1 ≥ MGLn + Mn
G, n ≥ 1. (5.2)

As G∗(n+1)(x) = ∫ ∞
−∞ G∗n(x − y) dG(y) we have Bn+1(x) = In(x) + Jn(x), where

In(x) = Bn(x)

∫ x′

−∞
G∗n(x − y)

G∗n(x)
dG(y),

and x′ is a real constant. Observing that in the integral x − y > x′ if x > 2x′, and as Lγ is
closed under convolution powers, for ε > 0 we can choose x′ > 0 so large that

G∗n(x − y)

G∗n(x)
≤ G∗n(x − x′)

G∗n(x)
≤ eγ x′ + ε.

Hence, the dominated convergence theorem shows that the integral term converges as x → ∞
and hence

lim sup
x→∞

In(x) = Ln

∫ x′

−∞
eγy dG(y).

Using (5.1) of Pakes (2004), the complementary integral

Jn(x) =
∫ x−x′

−∞
G(x − y)

G(x)
dG∗n(y) + G∗n(x − x′)G(x′)

G(x)
.
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Fatou’s lemma shows that the lim inf of the integral is no smaller than Mn
G. As

lim sup Bn+1(x) ≥ lim sup In(x) + lim inf Jn(x),

letting x′ → ∞ yields (5.2). Taking n = N − 1, as we may, we see that λN = LN ≥
MGLN−1 + MN−1

G , implying that LN−1 ≤ λN−1. It follows from (5.1) that LN−1 = λN−1,
and iterating this argument yields L2 = λ2, i.e. G ∈ Sγ .

Our proof for (b) follows the argument used by Embrechts and Goldie (1982, Theorem 2.10).
A decomposition dual to that we used for (a) yields

1 = (BN(x))−1
∫ x′

−∞
G(x − y)

G(x)
dG∗N(y) + JN(x).

The dominated convergence theorem implies that, as x → ∞, the first integral can be expressed
as (1 + o(1))

∫ x′
−∞ eγy dG∗N(y). Identity (5.1) of Pakes (2004) can be used to obtain the

decomposition JN(x) = K1(x)+K2(x)+K3(x), where the Kis will be defined as we proceed.
First,

K1(x) =
∫ x′

−∞
G∗(N−1)(x − y)

G∗N(x)
dG(y). (5.3)

We write the integrand as

G∗(N−1)(x − y)

G∗N(N−1)(x − y)
· G∗N(N−1)(x − y)

G∗N(x − y)
· G∗N(x − y)

G∗N(x)
. (5.4)

Equation (5.1) asserts that the lim sup of the first factor in (5.4) is at most [NM
(N−1)2

G ]−1.
The convolution equivalence of G∗N implies that the limit of the second factor in (5.4) is
(N − 1)M

N(N−2)
G , and the limit of the third factor is eγy . As x − y > x′ if x > 2x′, it follows

from the lim sup version of the dominated convergence theorem that

lim sup
x→∞

K1(x) ≤ (1 − N−1)M−1
G

∫ x′

−∞
eγy dG(y).

We define K2(x) as the integral in (5.3) but taken over [x′, x − x′]. If x′ < y < x − x′ then
x − y ≥ x′, so by taking x′ sufficiently large we see, as above, that the first two factors in (5.4)
together contribute a factor of at most M−1

G . Hence, if x > x′ then

K2(x) ≤ M−1
G

∫ x

x′
G∗N(x − y)

G∗N(x)
dG(y).

If X and S are independent random variables having distribution function G and G∗N , respect-
ively, then the last integral equals

P(x′ < X ≤ x < S + X) ≤ P(x < S ≤ x + u)

+ [P(S > x + u) + P(x − x′ < S ≤ x)] P(x′ < X ≤ x),

where u is a small positive number. It follows that K2(x) is of order

1 − G∗N(x + u)

G∗N(x)
+ [G∗N(x + u) + (G∗N(x − x′) − G∗N(x))]

(
G(x′) − G(x)

G∗N(x)

)
.
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This quantity converges to 1−e−γ u + (e−γ u +eγ x′ −1)G(x′) as x → ∞, and since MG < ∞,
this limit can be made arbitrarily small by choosing u small and x′ large.

Finally,

K3(x) = G(x − x′)
G∗N(x − x′)

· G∗N(x − x′)
G∗N(x)

· G∗(N−1)(x′) = O(eγ x′
G∗(N−1)(x′)), (x → ∞)

and this bound also can be made arbitrarily small by taking x′ sufficiently large.
It follows from these estimates that for a given ε > 0, we can choose x′ so large and u so

small that if x > 2x′ then

1 ≤ (BN(x))−1
∫ x′

−∞
eγy dG∗(N−1)(y)(1 + o(1)) + (1 − N−1)M−1

G

∫ x′

−∞
eγy dG(y) + ε,

and hence, that
1 ≤

(
lim inf
x→∞ (BN(x))−1)MN−1

G + 1 − N−1 + ε.

As ε is arbitrary we conclude that lim supx→∞ BN(x) ≤ NMN−1
G , and hence (a) implies that

G ∈ Sγ .

Note added in proof

Professor T. Watanabe has directed my attention to the fact that statement (c) in Theorem 3.3
above (and Theorem 3.1 of Pakes (2004)) should read:

(c) J ∈ Lγ and F ∈ Sγ .

The addition is required to ensure that Theorem 3.1(i) holds, and it seems to be necessary
for any proof based on a random sum theorem that Theorem 3.3(c) implies Theorem 3.3(a).
Watanabe (2007) proves that Theorem 3.3(c) implies Theorem 3.3(b) (and hence (a)) by using a
clever adaptation of the first part of the proof of Theorem 4.2 of Embrechts and Goldie (1982).
Theorem 3.3 as stated (i.e. Watanabe’s version) is required for the assertions in the proof of
Theorem 4.1 that, e.g. Fζ ∈ Sγ for all ζ > 0, or for no ζ . The proof can be recast to avoid any
reference to infinite divisibility by using stronger random sum theorems, such as Theorem 1.2
of Wang et al. (2007). However, this results in a less elegant treatment.
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