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ON THE CLASSIFICATION OF 
MANIFOLDS UP TO FINITE AMBIGUITY 

MATTHIAS KRECK AND GEORGIA TRIANTAFILLOU 

Introduction. In the early 70's Dennis Sullivan applied his theory of minimal mod­

els and surgery to the classification of 1-connected closed smooth manifolds of dimen­

sion > 5 up to finite ambiguity [Su]. To a diffeomorphism class of such a manifold M 

he assigns the isomorphism class given by the real minimal model fW(M), the integral 

structure in form of various lattices and the real Pontryagin classes. If one controls the 

torsion of the manifolds by some bound, his result is that the map given by the triple 

above is finite-to-one ([Su], Theorem 13.1). He also proves a realization result for the 

rational minimal model and the Pontryagin classes but not for the lattices ([Su], Theorem 

13.2). 

In this paper we show that these invariants can be substantially simplified especially 

the lattices which are subtle and hard to compute. This can be demonstrated with the 

following result. 

THEOREM 2.2. Let n > 5. The diffeomorphism type of a 1-connected closed smooth 

n-manifold M with formal ([n/ 2] + \)-skeleton is determined up to finite ambiguity by 

the isomorphism class of the truncated cohomology ring H = Çdi<[ni2]+\Hl(M', ^)> the 

real Pontryagin classes and an element OCM £ Hn(!M(H)[n/ 2])*. 

Here tM(H) is the real minimal model of H and 9vt(H)[n/ 2] is the subalgebra gener­

ated by elements of degree < \nj 2]. If 4/ > \nj 2] the real Pontryagin classes have to be 

identified with their image under Poincaré duality in the dual vector space Hn4l(M; Q )* 

= W~^\9^{H)\nl 2])*. We recall that a space is formal if its minimal model is deter­

mined by its cohomology ring. Formality is inherited by the skeleta of a formal space. 

There are rather general classes of manifolds which fulfill the conditions of Theorem 

2.2. For instance it applies to (r — l)-connected manifolds of dimension < 6r — 5; or 

to 1-connected manifolds whose integral cohomology ring is non-trivial only in four di­

mensions. If one wants to classify these manifolds by Sullivan's theorem one needs the 

full information of the minimal model and all lattices. This seems to be a very complicat­

ed task. We will discuss this in Section 2 and demonstrate the simplification of Sullivan's 

invariants more explicitly. 
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In particular we will apply Theorem 2.2 to the following very natural class of 7-
dimensional manifolds. For integers e and/? with/? = 2emod4 we denote by Me

k
,p the 

total spaces of the linear S3-bundle over #kS
2 x S2 with Euler and first Pontryagin class 

e and p resp. (for the existence compare [DW]). If k = 0 (base space S4) and e = 1 
these are Milnor's exotic 7-spheres [Mil]. If k = l,e even and/? = 2e they are homoge­
neous spaces of the form SU(2) x SU(2) x SU(2)/ U(\) x U(\). In general if e ^ 0 the 
non-trivial cohomology groups are H° = Z, H2 = Z2k and H4 = Ze. These manifolds 
are not formal. We will show that aM is completely determined by the 3-fold Massey 
products of elements in H2 and that these Massey products depend only on e. Thus we 
obtain 

COROLLARY 2.3. For fixed k £ N ande G Z — {0} the number ofdiffeomorphism 
types of the non-formal manifolds M6^ is finite. 

The classification of Milnor's 7-spheres indicates that the actual diffeomorphism clas­
sification of these manifolds is rather complicated. 

Theorem 2.2. follows from a more general classification result, Theorem 1.1 below. 
Recall that the minimal model of a space is an algebraic mirror image of the rational 
Postnikov tower. The lattices are given by the cohomology and homotopy groups of 
the integral Postnikov tower on each stage. We weaken these invariants for a manifold 
M by omitting all information above the middle dimension, i.e., we replace *M(M) by 
fW(M)[n/2] and consider only the lattices up to dimension [n/2]. It is surprising that 
besides the Pontryagin classes and a torsion bound one has to add only a single invari­
ant CCM to obtain a classification up to finite ambiguity of 1-connected closed oriented 
manifolds of dimension > 5. The class % £ //"(^(AOf/i/ 2])* is the image of the fun­
damental class in the rc-th homology of the [n/ 2]-th stage of a rational Postnikov tower. 
This is our main classification result—Theorem 1.1. Roughly speaking we do not need 
the whole minimal model but only "half of it" for our classification. We remark that this 
is not a formal consequence of Poincaré duality. We also obtain a realization result of 
our invariants if we omit the lattices, Theorem 1.2. 

To derive Theorem 2.2 from Theorem 1.1 one needs to know that the minimal model 
as well as the lattices of a formal space are determined by the integral cohomology ring. 
In Section 3 we will prove this result for arbitrary 1-connected formal spaces with finitely 
generated cohomology groups (Proposition 2.1). 

This research began during a visit of the first named author to the University of Min­
nesota, was continued at the IHES and was completed at the University of Crete. We 
would like to thank these institutions for their hospitality and support. 

1. The main theorems. The rational (real) minimal model of a 1-connected n-
dimensional manifold M (or more generally of a 1-connected CW-complex) is an iso­
morphism class of minimal differential graded algebras (d.g.a.) 9vi over Q (R) such that 
there exists a homomorphism 9A. ^EM inducing an isomorphism on cohomology. Here 
EM is the de Rahm complex over Q (R) (for details see [Su]). 
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The rational minimal model is an algebraic picture of the rational homotopy type of 
M. Especially if we pass to the subalgebra generated by elements of degree < k we obtain 
the minimal model M[k] of the k-th stage of a rational Postnikov decomposition of M. 

There is a homomorphism 0\{[k] —» EM which induces an isomorphism on cohomol-
ogy in degree < k and an injection on cohomology of degree k + 1.. 

We denote the k-th stage of an integral Postnikov tower of M by M[k]. Obviously, 
M[k] is determined by any (k + l)-skeleton of M. Thus our problem is closely related to 
the classification of manifolds of dimension n with prescribed (k + l)-skeleton for some 
k>[n/2]. 

As described in Sullivan's article, the image of the integral homology or homotopy 
groups determine integer lattices in Hr+l(fy([r — 1]) and 7rr(f7V/"[&]), the vector space of 
the r-dimensional elements modulo decomposables, for r < k. We denote the direct sum 
of these lattices in 0 r(/ / r + 1 (#/"[> - 1]) 0 Kr(M[k\)) by Z\. Similarly, we have lattices 
in H*(!M[k]). We denote by Z2 the direct sum of these lattices in ®Ar<kH

4\M[k\) 0 
H"(M[k]) if n = 0 (4), and in ®Ar<kH

Ar{M[k\) 04r<* Hn~4r(M[k]) 0 Hn(M[k\) if 
n ^ 0 (4). 

Now, we suppose that M is oriented. If %{[k] —> EM is a homomorphism with the 
cohomology properties described above, we denote the image of the fundamental class 
under the dual of this map by a(M) e (//"(fW^]))*. 

The last invariants we consider are the rational or real Pontryagin classes of M. If 
r < k, we can consider them as elements of H4r(0\f[k]) and if 4r > k we replace them 
by the Poincaré duals kpr(M) e (#"-4r(fW[fc])*. 

The isomorphism class of the data (fAf [&]), Z\, Z2, pr(M) (4r < k), Apr(M) (4r > /c), 
a (M)) forms an invariant of the diffeomorphism type of M. We call it the k-th rational 
invariant if fM[k] is the rational model and the k-th real invariant if it is the real model. 

Now, we are ready to formulate our extension of Sullivan's result. 

THEOREM 1.1. i) For given n > 5, k > [n/2] and N G N the set of diffeomor­
phism classes of 1-connected closed smooth oriented n-manifolds with isomorphic k-th 
invariants and with \ Tor 7/*(M; Z)| < N is finite. 

ii) Ifn = 2m > 4 and k = m — 1, we obtain the same result if we restrict ourselves 
to manifolds with Hm(M; Q ) = { 0}. 

The proof is deferred to Section 3. 

REMARK. If k = n, a(M) is contained in the integer lattice of Hn{fMy which is 
isomorphic to Z and is completely determined by this lattice and the orientation of M. 
Thus we obtain Sullivan's result ([Su], Theorem 13.1) as a special case of ours. 

The general problem of the realization of the rational invariants is obviously difficult if 
we include the lattices Z\ and Z2. As in Sullivan's paper we only consider the realization 
problem for the rest of the data (and only for the rational invariant). 
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In our situation we first collect some necessary conditions. Let M be a 1-connected 
oriented closed ^-manifold and !M[k] as above. We have a commutative diagram 

ifiMlk]) —> Hl(M\Q) 
In a (A/) 1 ° ^ 

(IF-XM[K\))* <— Hn-i(M;Q)9 

where Pi a : Hl(^M[k\) —• Hn~lCM[k])* is given byx\—>(yi—KX (xU v)). As the horizon­
tal maps are isomorphisms in degree < &, and in degree k + 1 the upper one is injective 
and the lower one is surjective, Poincaré duality of M implies that C\a(M) is an isomor­
phism if n — k < i < k, injective if / = k + 1 and surjective if i — n — k — 1. If fA£ is a 
rational minimal d.g.a. generated by elements of degree < k we say a class a G Hn(^C) is 
a k-partial Poincaré duality class of 9\C if the homomorphism D a fulfills the properties 
above (compare [Kr], Section 5). 

If n ^ 0 (4) we will see that if a is a ^-partial Poincaré duality class all rational 
data (excluding the lattices) can be realized but if n = 0 (4) we have other necessary 
conditions. By the diagram above we know that if fA£ = M[k\ and a G Hn(9{) are 
invariants of a manifold, the quadratic form on /W2(5VJ given by y h-> a (y U v) is the 
tensor product of a symmetric unimodular integer form with Q. Thus it is equivalent to 
E±X?. 

Another necessary condition for n = 0 (4) comes from the fact that the Pontryagin 
numbers of a closed oriented ^-manifold have to fulfill the congruences of a cobord-
ism class [St]. If (p^ (M).. .pir(M), [M]), i\ < • • • < ir, is a Pontryagin number and 
4/r < k we can consider the classes pt] (M),... ,ptr{M) as elements of H*(%{[k]) and this 
number is equal to ct{M)(p^{M) U ••• U /?/r(M)). If Mr > k the number is 
equal to kptr(M)(pix(M) U • • • U /?;r_,(M)), where Ap/r(Af) is considered as element of 
Hn-Air(M[k\f. This indicates how for given classes at G HM(9t), Ai < k, bn-Ai G 
^ _ 4 i ( ^ ) * , 4/ > ^, and a G Hn(U\£)* one can introduce the notion of characteristic 
numbers. 

The characteristic numbers of a closed smooth oriented manifold fulfill the relation 
of the Hirzebruch signature theorem [Hi]. Thus if ai,bj and a as above are characteric 
classes and fundamental class respectively of a manifold, the signature of the quadratic 
form _y »—• a(y U y) is equal to L(at,bj) where L is the Hirzebruch L-poloynomial. As 
the coefficient of bo (bo corresponds to the top Pontryagin classpn(M)) is non-trivial this 
formula determines bo G Q in terms of the a» the bj for j > 0 and a. Thus for given 
classes at, bj (j > 0) and a we can define their characteristic numbers if we add to these 
classes the class bo determined by the at,bj and a. For n = 0 (4), we say that at,bj 
(j > 0) and a can be realized by a manifold if these classes together with the class bo 
determined by the other classes can be realized. 

These are the obvious conditions which the invariants coming from manifolds have 
to fulfill. They are also sufficient. 

THEOREM 1.2. Let 9\[be a minimal differential graded algebra over Q generated 
by elements of degree < k with Hl(9\[) = {0}. Let [n/ 2] < k and n > 5. Then !A£ 
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and classes ar G H4r(9{)for0 < Ar < k, bn-Ar G //"-4r(fAÔ* for k < Ar < n and 
a G //"(1AÛ* can be realized as the k-th rational invariant (excluding the lattices) of a 
1-connected closed smooth n-manifold iff 

i) a is a k-partial Poincaré duality class and n^O (4), 
ii) for n = 0 (4), a is a k-partial Poincaré duality class, 

so that the quadratic form on /W2(fA£X y »—> oc(yU y), is equivalent to a sum of squares 
±xt and the characteristic numbers of at and bj with respect to a satisfy the congruences 
of a cobordism class [St]. 

Also if n = 2 (4), n = 2 (k + 1) and IP I 2(9{) = { 0} the data above can be realized 
by a 1-connected closed smooth «-manifold M with !Pl2(M\ Q) = 0. If n = 0 (4), 
n = 2 (A: + 1) and IPl2{9{) = {0} the only necssary and sufficient condition is that 
the characteristic numbers of at and bj with respect to a satisfy the congruences of a 
cobordism class. 

The proof is deferred to Section 3. 

REMARK. If k = n we are again in Sullivan's situation ([Su], Theorem 13.2). In this 
case, we obtain a slightly stronger information by deciding which fundamental classes 
a (in Sullivan's notation /i) can be realized. 

2. Application to manifolds with formal ([«/ 2] + l)-skeleton. A space X is for­
mal if its minimal model is determined by the rational cohomology ring. More precise­
ly the condition is that there is a homomorphism from fW(X) to H*(X\ Q ) inducing an 
isomorphism on cohomology. There are large classes of spaces which are formal, e.g., 
Lie groups, classifying spaces [Su], (r — l)-connected manifolds of dimension < 4r — 2 
[Mi], 1-connected Kaehler manifolds [DGMS]. An algorithmic method to decide when 
a space is formal is given in [HS]. 

In the case of Kaehler manifolds Sullivan showed that the diffeomorphism type (in 
real dimension > 4) is determined up to finite ambiguity by the integral cohomology ring 
and the real Pontryagin classes ([Su], Theorem 12.5). In the proof he assumes implic­
itly that not only the minimal model but also the lattices are determined by the integral 
cohomology ring. This holds in general for formal spaces. 

PROPOSITION 2.1. Let H be a finitely generated graded commutative ring over Z. 
Then there are only finitely many homotopy types of simply connected, formal, finite CW-
complexes with integral cohomology isomorphic to H. 

REMARK. The result also holds for spaces with finitely generated homotopy 0/7T, (X). 
We give a proof of Proposition 2.1 in Section 3. 
As a consequence of Proposition 2.1 one can generalize Sullivan's result about clas­

sification of Kaehler manifolds to general formal manifolds. Similarly one can use it in 
combination with Theorem 1.1 to classify manifolds with formal (k+ l)-skeleton for some 
k > \nj 2]. As all skeleta of a formal space are again formal it is enough to consider the 
smallest skeleton, i.e., k — \nj 2]. 
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If M has formal ([n/2] + l)-skeleton it is determined up to finite ambiguity by an 
invariant of the following algebraic type: isomorphism classes of quadruples 

(H,phApi9a)9 

where H is a finitely generated graded commutative ring over Z with H° = Z, Hx = 
{0},lf= {0} for i > [n/2] + l,Pi £H4i®R fori < 4i<[n/2lApt E (H"-41®!*)* 

for[/ i /2]< Ai<n,ot G (w{M{H)[nlT£) <g) R V . 
Two such objects are isomorphic if there is a ring isomorphism on H respecting the 

Pi, kpi and a. 
If M has a formal ([n/ 2] + l)-skeleton we obtain such a quadruple as follows: H — 

©K[n/ 2]+i#*(A ;̂ ̂  ),Pi and Ap, are the Pontryagin classes and their image under Poincaré 

duality respectively and a — a^ £ is the invariant occur­

ring in Theorem 1.1. Here we use formality to identify f 7/n(fAf(M)[n/ 2]) <g> R j with 

(Hn(M(H)[n/2]®VLX. 

THEOREM 2.2. Let n > 5. T/î  diffeomorphism type of a 1-connected closed smooth 
oriented n-manifold M with formal ([n/ 2] + 1)-skeleton is determined up to finite ambi­
guity by the isomorphism class 

( 0 tf(M\Z)9pu/±puaX 
M<[n/2]+l * 

PROOF. Let k = [n/2]. The statement follows from Theorem 1.1 if H = 
®i<k+\Hl(M; Z) determines M[k], Z\ and Z2 up to finite ambiguity. As 9^i\k\ Z\ and 
Z2 are determined by a (k + l)-skeleton of M the proof is completed if there are only 
finitely many minimal (k+ l)-skeleta coming from all manifolds M with fixed H. Here X 
is a minimal (k+ l)-skeleton if the Betti number bk+\ (X) is minimal under all (k+1 )-skeleta 
ofM. 

The above will folllow from Proposition 2.1. if we know that: 
i) If X and X' are /:-skeleta of a simply connected space Y then they are both formal 

or both non-formal, 
ii) The integral cohomology ring of a minimal (k +1 )-skeleton X of M is determined 

by ®i<k+\Hl{M\ Z) up to finite ambiguity. 
To show i) we first note that X is formal if and only if X V Sk is formal. If X and X' are 

&-skeleta of F there exists a ̂ -equivalence Z = XfWrS
k —-> X. It follows that 71̂+1 (X, Z ) = 

Hjc+i (X, Z ) is free. Let a\,..., ar be the generators. Then fftf(Z) = %f(X)[a\, ...,ar, bt] 
with degfc/ > k + 1 and tf*(Z) = //*(X) 0 Zai 0 • • • 0 Zar. 

Thus if X is formal the map M(X) —> H*(X) inducing an isomorphism on cohomology 
has an obvious extension to 0\f(Z) with the same property. This means that Z is formal. 

To show ii) we first note that if X is a (k+1 )-skeleton of M then H* = ®/a+i//''(M)©Zr 

with integral coefficients. 
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Consider the minimal (k + l)-skeleta X of all manifolds M with ®/<*+i//'(M) = H. 
By a simple induction argument over k it can be shown that the Betti numbers bk+\(X) 
are bounded by some integer N depending on H. This completes the argument. • 

Now we want to discuss this result and especially the role of the invariant aM. As 
mentioned above, all (r— l)-connected manifolds of dimension < 4r—2 are formal [Mi] 
and thus they are determined up to finite ambiguity by the integral cohomology ring and 
the Pontryagin classes. This also follows from Theorem 2.2 Indeed the cohomology ring 
H*(M)/ Tor of Mn is determined by @i<MW{M\ Z) and aM (recall k = [n/ 2]): 

As a group Hl(M; Z ) / Tor for i> A: is by Poincaré duality isomorphic to W'XM', Z )*. 
Also the ring structure is by Poincaré duality equivalent to knowing all triple products 
(XiUX2UX3,[Af]) whenE|X/| =nand|X/ | < k. But by definition of aM, (XiUX2U 
X3, [M]) isequal toaM(XiUX2UX3). Here we identify ff(M; Z)(g)Q W\\hH\M(H)[k\). 

This classification of (r — l)-connected manifolds of dimension < 4r — 2 can be 
generalized by our theorem to manifolds of lower connectivity. Since every (r — 1)-
connected CW-complex of dimension < 3r — 2 is formal, the ([n/ 2] + l)-skeleta of 
(r — l)-connected manifolds of dimension < 6r — 5 are formal. Therefore Theorem 2.2 
applies. 

If M is (r — l)-connected and n > Ar — 2, M is in general not formal but it is still 
possible that the (k+\ )-skeleton is formal. This is demonstrated in the following example. 
Consider 1-connected closed smooth w-manifolds with non-vanishing homology only in 
four dimensions: 0, r, n — r, n, where 1 < r < \nj 2] = k. Such a manifold has a formal 
(k + l)-skeleton which is a wedge of r-spheres if r < [n/ 2]. 

If the Betti number is 1 all such manifolds are formal but if the Betti number is 2, we 
have two minimal models with this cohomology ring. If r is odd the non-formal model 
looks as follows (ai, «2 and b are the generators of the algebra): 

r 2 r - l 2r 3r - 1 4 r - 1 

a\ b\—>a\ci2 a\b a\a^b 
a2 a2b 

With this example we also want to demonstrate the most important aspect of our re­
sults. In the formulation of Theorem 1.1 as well as in Sullivan's original result the most 
delicate information is contained in the lattices. These are not easy to compute. If M has 
formal ([n/ 2] + l)-skeleton no such information is needed. 

As it happens, the algebra described above is also the minimal model tM of (Sr V 
Sr)[2r— 1]. For simplicity let us restrict ourselves to manifolds with trivial normal bundle. 
Then these manifolds are up to finite ambiguity classified by aM G H4r~l (fAf )* = Q. On 
the other hand it follows from [Kr] (compare also the proof of Theorem 1.2 in Section 
3) that the set of a which can be realized contains a lattice in Q. In particular, there 
are infinitely many diffeomorphism types. We can deduce that in Sullivan's theory these 
diffeomorphism types are distinguished by two minimal models and an infinite number 
of non-equivalent lattices. This can not be seen directly in that theory since there is no 
realization result of lattices. 
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In this example we have seen that at least part of the information carried by the lattices 
in Sullivan's result is contained in the invariant a^. We finish this chapter with a brief 
discussion of the role of aM. As noted above, for (r — l)-connected manifolds Mn with 
n < Ar — 2, aM is equivalent to the ring structure of H*(M; Z ) / Tor. In general for 
n > 4r — 2 there is further structure on the cohomology ring which one should be 
able to deduce from a, namely higher order cohomology operations, for instance the 
Massey products. In principle one could specify the relation between the higher order 
cohomology operations and a but the formulation becomes very technical. 

Instead we show this relation in the situation of the manifolds Me
k
,p defined in the in­

troduction. As mentioned above, all 1-connected 4-complexes are formal and thus 2.2 
applies. We suppose e ^ 0. The Gysin sequence shows that the only non-trivial coho­
mology groups of H*(Me

k'
p; Z) in dimension < 4 are H° ^ Z, H2 ^ Z2*, H4 9* Ze. 

From this information one can read off !M(H)[3], where H — ®;<4//'(M; Z ). 
fy[(H)[3] is generated by elements a\,..., a^k in dimension 2 and /?//, 1 < i <j < 2k, 
in dimension 3. The differential is given by: d(by) = 0,0/. From these data one can 
derive that //5(fAf(//)[3]) is generated by the 3-fold Massey products [01,02,03], a nd 
//7(fAf(//)[3]) by [01,02,03]-04,0* £ / / 2 ( ^ ( / / ) [ 3 ] ) . H e r e [01,02,03]: — 012^3—01023, 

where 0^ are cochains with day — ataj, and 0/ denotes the cocyle and its cohomology 
class indiscriminately. 

Thus by naturality aM is determined by knowing ( [01,02,03] • 04, [M]) for all 0, G 
H2(M; R). By construction M — Me

k
,p is the boundary of a disk-bundle N = N^. We 

have an isomorphism d: H5(M) —• F^iN, M). In this situation a standard argument shows 
that d[01,02,03] = a 1203 — «2301, where ât G H2{N) —> H2(M) are the corresponding el­
ements to 0/ and otij G H4(N, M) map to â[âj in H4(N) (with R -coefficients). If we identify 
lP(N,M) with H2(#kS

2 x S2) by the Thorn-isomorphism and H2(M) with H2(#kS
2 x S2) 

by the natural map, the Massey product [01,02,03] is (01 • 02/ e) • 03 — (02 • 03/ e) • 01, 
where at • q/e G H°(M; R) = R is the unique element which under the cup-product 
with e maps to 0/ • q G H4(M; R ). Thus we see that ( [01,02,03] • 04, [M]) = ( (0102/ e) • 
0304 — (0203/ e) • 01 • 04, [#&S2 x S2]) and so aM depends only on e and not on p. 

Another consequence is that, for e ^ 0 and k > 0, M ^ is not formal. For, otherwise 
we have a morphism fTVf = %f(Me

k
,p) —• H*(Me

k
,p) inducing an isomorphism on coho­

mology groups. Restricting to %f[3] = f^f(//)[3] and using the fact that by construction 
of M[3] the induced map H\M[3}) —• H7(Me

k
,p) is trivial, we obtain aM = 0. On the 

other hand if k > 0 we can find 01,02,03,04 G H2(M) — H2(^f[3]) such that by the 
formula above ([01,02,03]-04, [M]) = ( [01,02,03]-04, «M) is non-trivial contradicting 
the assumption. 

These considerations prove 

COROLLARY 2.3. Forp = 2e mod 4 fef M ^ be the total space of the 3-sphere bundle 
over #jçS2 x S2 with Euler and Pontryagin class e andp respectively. Suppose e ^ 0. 

i) For k > 0 these manifolds are not formal 
ii) Their dijfeomorphism type is up to finite ambiguity determined by k = 

\ rank H2(M) and e = \H4(M)\ alone. 
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REMARK 2.4. If k = 0 and e = 1, Ml
0

,p are Milnor's exotic 7-spheres implying that 
the actual diffeomorphism classification is rather complicated. 

3. Proofs. The proofs of Theorems 1.1 and 1.2 follow the same pattern as Sulli­
van's proofs [Su]. He uses his homotopy theory up to finite ambiguity and Browder's 
and Novikov's surgery theory for 1-connected manifolds. The first named author has 
extended this surgery theory to attack the problem of classification of rc-manifolds with 
prescribed (k + l)-skeleton [Kr]. A combination of this theory and Sullivan's homotopy 
theory leads to the proof of Theorem 1.1 and 1.2. 

We shortly summarize this surgery theory. For details see [Kr]. Let/?: B —> BO be a 
fibration. An n-dimensional normal k-smoothing in (B,p) is a pair (Mn, VM), where M is a 
closed smooth «-manifold and VM- M —• B a (&+Inequivalence such that VM — pvwi\ here 
VM is the normal Gauss map of M. These conditions imply that M and B have homotopy 
equivalent (k + l)-skeleton and the restriction of the normal bundle of M to this skeleton 
is isomorphic to the restriction of p*l to it, where 7 is the universal bundle over BO. 

If we omit the condition that VM is a (/c + Inequivalence, (M, VM) is called a (B,p)-
manifold. The bordism group of n-dimensional (#,/?)-manifolds is denoted by Q.n . 

The most interesting case occurs when B is connected and homotopy equivalent to a 
CW-complex and p:B —• BO is (k + l)-coconnected (i.e., the homotopy groups of the 
fibre vanish in dimension > k + 1). Such a fibration is obtained if one considers the k-th 
stage of a Postnikov decomposition of the normal Gauss map of some manifold M which 
is characterized by a commutative diagram. 

B 

M > BO 

here M —• B is a (k + Inequivalence and B —• BO is a (k + l)-coconnected fibration. 
This fibration is determined by M and k up to fibre homotopy equivalence and is called 
the normal k-type of M. 

LEMMA 4. Let p:B —> BO be a (k + \)-coconnected fibration such that B is 1-
connected and homotopy equivalent to a CW-complex with finite ([n/ 2] + \)-skeleton. 
Let n > 5. 

i) If k > [n/2] then the set of diffeomorphism classes of n-dimensional normal 
k-smoothings in (B,p) representing a fixed bordism class in Çln

 ,p is finite, 
ii) If n — 2(k +1) then the same holds if we restrict ourselves to manifolds with 

Hk+l(M; Q ) = { 0 } . 

PROOF, i) is an immediate consequence of [Kr], Theorem 7.3, B, C, D as the ob­
structions to transforming a B-bordism between two normal /c-smoothings into an h-
cobordism are contained in the ordinary surgery obstruction group Ln+\{e} or rather a 
quotient of it. 
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Thus we can obtain a 5-bordism with vanishing obstruction if we add to one of the 
normal &-smoothings an appropriate homotopy sphere. Here we make use of the addi-
tivity of surgery obstructions ([Kr], Proposition 7.1). 

ii) follows from [Kr], Theorem 2.1 and Theorem 3.1. 
By the Pontryagin-Thom construction, Of^,p) = 7rn(M/?*7), where 7r„(M/?*7) is the 

stable homotopy group of the Thorn spectrum of the pull back of 7. On the other hand by 
Serre [Se], 7r„(M/?*7) <g> Q = Hn(B\Q). Thus, if B is 1-connected and has finite (n + 1)-
skeleton this implies that the map Q„ ,p —• Hn(B; Q) given by [M9PM] •—» (VM)*[M] 

has finite kernel (if we orient /?*7; any B-manifold can be oriented by pulling back the 
orientation of p*l). 

We compute Hn(B\ Q) by a rationalization B$ of B such that Hn(B;Q) = Hn(Bo). 
BOo = Y[K(Q,4i) is a product of Eilenberg-Mac Lane spaces. Thus if p:B —> BO is 
(k + l)-coconnected, we have a homotopy commutative diagram 

B —• B0[k] x BO0(k + e) 

[P 1 
BO -> BOo 

where the upper horizontal map induces isomorphisms on the rational homotopy groups 
and thus induces a homotopy equivalence Bo = Bo[k] x BOo(k + e). As before M[k] 
stands for the k-th stage of a Postnikov tower. B(r) stands for the (r — l)-connected 
cover of B. In the diagram e = 1, if k + 1 ^ 0 (4) or k + 1 = Am and p*(pm) = 0 in 
H4m(B; Q). Otherwise £ = 2. The map B —> Z?o[&] is the rational &-th Postnikov map 
whereas the mapB —• BOo(k + e) is given by the higher Pontryagin classes of/?*7. The 
map Bo[k] x BOo(k + e ) —> 50o is the sum of the lower Pontryagin classes p*l and the 
inclusion BOo(k + e) -^ BOo 

The homotopy equivalence Bo —> 5oM x BOo(k+s) described above and the Kuen-
neth formula imply, (VM)AM\ = (VN)*[N] in Hn(B; Q) = Hn(Bo). This is equivalent to 
(PM)*[ATI = (PA )̂*[AH and (pM)*^r(M) = (pN)*Apr(N) for 4r > ^ inH*(B0W); here pM 

and p^ are the compositions of the maps vM and vN respectively with the map B —> Bo M 
in the diagram. 

If we combine this information with Lemma 4 we obtain 

LEMMA 5. Consider the same assumptions as in Lemma 4. The set ofdiffeomorphism 
classes of n-dimensional normal k-smoothings (M, VM) with the same homology classes 
(PM)*[M] and (pM)*Apr(M) in H*(B0[k]) for Ar > k is finite. 

PROOF OF THEOREM 1.1. Let fA£ be a real minimal d.g.a. generated by elements of 
degree <k,Zu Z2 lattices, ar G H4r(9{) for Ar < k and br £ //*-4r(iAÔ* for Ar > k and 
a G Hn(9{). By ([Su], p. 324, step 1) we can assume that 9^ is a rational minimal d.g.a. 
We want to show that there are only finitely many diffeomorphism classes of manifolds 
of dimension n with &-th rational invariant (fA£ Z\, Z2, ar, br, a ) and with torsion bounded 
by N. 

By ([Su], Theorem 10.4) there exist only finitely many 1-connected homotopy types 
with rational minimal model and integer lattice isomorphic to (fA£,Zi) and with torsion 
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bounded by N. Consider the subset of these homotopy types which has a representative 
X with finite (n + l)-skeleton and 7rr(X) = { 0} for r > k. Fix for each homotopy type 
a representative X and denote its (k + l)-skeleton by Y. We translate our data ar, bs and 
a into the rational cohomology and homology of X. They are only well defined up to 
composition with the action of AutZ on the corresponding cohomology and homology 
groups of X. On the other hand our invariant is the orbit of ar, bs and a under the action 
of the automorphisms of the minimal model of X which preserve the lattices. One has to 
control the difference between the orbits under these two actions. Fortunately the group 
of automorphisms induced by AutX and the one induced by the automorphisms of fA£ 
which preserve the lattices are commensurable ([Su], p. 325). 

Thus for studying the classification up to finite ambiguity we can equally well work 
with the orbit under AutX instead of the automorphisms of 5\£ which preserve the lattices. 

Now, we want to construct a (k+ l)-coconnected fibration/?: B —+ BO from the classes 
ar G H4r(X\ Q) and, if k + 1 = 4m, bn^m G /^~m(X; Q)*. We require that the fibre 
homotopy equivalence class of this fibration is determined by the classes above up to 
finite ambiguity. We will later show that the normal &-type of a manifold M with the given 
data as its k-th rational invariant is contained in this finite set. Furthermore we know that if 
k+1 = 4m, Ap4m(M) = bn-M is in the image of the map H a : ir{X\ Q ) —> FF^X; Q )*. 
This map is injective and we can assume for our proof that if k+1 = 4m, bn-m = a^mC\ a 
with a^m € H4m(X; Q ) completely determined by bn-m. 

The classes ar, 4r < k + 1, determine a finite set of isomorphism classes of vector 
bundles over Y, the (k + l)-skeleton of X, given by a map p:Y —> BO with p*(pr) — ar-
We obtain the (k + l)-coconnected fibrations p:B —+ BO if we pass to the k-th stage of a 
Postnikov decomposition of such a map. 

By Lemma 5 for each such fibration p: B —> BO there are only finitely many diffeo-
morphism classes of manifolds with this normal k-type whose k-th rational invariant is 
isomorphic to (!A£, Z\,Z2,anbs,a). Thus we are done if, as announced, we can show that 
for all these manifolds the normal A:-type is contained in the finite set constructed above. 
But this is obvious as the normal k-type of a manifold can be constructed from the k-th 
stage of a Postnikov tower M [k] (which is homotopy equivalent to one of the X described 
above). We restrict the normal bundle of M to the (k + l)-skeleton of M which is equal 
to the (k + l)-skeleton of M[k] and we take the &-th stage of a Postnikov decomposition 
of it. • 

PROOF OF THEOREM 1.2. Again we follow the same pattern as Sullivan. Given 3\£ let 
Xbe arational space representing fA£( [Su], § 8). Consider the map XxBOo(k+e) —•> BOQ 
given by the classes ar and the inclusion BOo(k + e) —+ BOo, where e — 1 or 2 as 
described in the proof of Theorem 1.1; e = 1 if k + 1 ^ 0 (4) or k + 1 = 4m and 
bn-m = 0 and e = 2 otherwise. Consider the fibre product B of this map and the map 
BSO-+BO0: 

B — • BSO 
p 

i i • 
XxBO0(k + e) —• BO0 
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Now, we assume that we have a class a G Of^,p) whose image under the Hurewicz 
mapin//n(#; Q) = Hn(XxBOo (k+e)) is the class given by a and the bn-4r (including bo 
if n = 0 (4) as determined by the other classes and a by means of the L-polynormal). We 
represent a by a ^-manifold (N, vN). By rational surgery we can assume that vN\ N —> 
B is a rational \nj 2]-equivalence (this follows from an obvious modification of [Kr], 
Lemma 2.3; compare [Su], p. 326). 

If a is a ^-partial Poincaré duality class we can transform the map v^iN -^ B into a 
rational (k+ l)-equivalence (into one with Hnl \M\ Q ) = { 0} , if n = 2(k+1)) by killing 
the kernel of 7r[n/2](A0 ® Q —» TT[«/2](^) ® Q (compare with the arguments in [Kr], § § 5 
and 6). The only obstruction for doing this is the Witt class of the quadratic form on this 
kernel which for n = 0 (4) is classified by the signature. This signature vanishes by our 
construction of bo. This proves that we can realize the given data if our data represent a 
homology class in Hn(B\ Q) which is in the image of the Hurewicz homomorphism. 

In order to show that this is true if the characteristic numbers of at and bj with repsect 
to a satisfy the congruences of a cobordism class we first note that if G is a finite group 
or Q / Z the map p\B—* BSO induces as isomorphism of homology groups H*(B\ G) —> 
H*(BSO; G). This follows from the Serre spectral sequence and the fact that the homotopy 
fibre F of p: B —> BSO is by construction a rational space. 

Next we note that we can find a representative in Hn{B\ Z ) of the class given by our 
data whose image in Hn(BSO; Z ) is contained in the image of the Hurewicz map £ln —> 
Hn(BW; Z ). This follows from our assumptions and diagram chasing in 

Hn+l(B\ Q/Z) — Hn(B;Z) - • Hn(B;Q) -» Hn{B\ Q / Z ) 
i I I 1= 

Hn+{(BSO-Q / Z) -+ Hn(BSO\Z) -> Hn(BSO;Q) -> Hn(BSO; Q/Z) 

Finally we use the Atiyah-Hirzebruch spectral sequence. This determines the image of 
the Hurewicz map Q.(n

B'p) —• Hn(B\ Z ) as n/>2 kerdf. Hn(B\ Z) —• Hn-j(B; irj^) where dj 
are the differentials in this spectral sequence. We compare this situation with the Atiyah-
Hirzebruch spectral sequence for BSO. As the stable stems 7r5_j are finite groups the 
commutative diagram 

Hn(B;Z) —+ //„_,(£; < i ) 
dj 

Hn(BSO\Z) —• Hn:(BSO\n*) 
dj J 

implies that an element in Hn(B\ Z) is in the image of the Hurewicz map if and only if 
its image in Hn{BSO\ Z ) is contained in the image of the corresponding Hurewicz map.» 

PROOF OF PROPOSITION 2.1. We proceed inductively over the Postnikov tower. Let 
Xn be the nth stage of the Postnikov tower of X where X fulfills the properties of the 
propsition. Assume that there are only finitely many homotopy types of such Xn's. We 
fix one such [Xn] and we consider all the spaces X above, the nth Postnikov stage of 
which is homotopy equivalent to Xn. We will show that their (n + l)st stages Xn+\ fall 
into finitely many homotopy types. 
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Let ^ be a minimal model of HQ = H (g> Q. Let M[n] 
cohomology isomorphisms such that the diagram 

J î 
M[n] - ^ EXn 

commutes up to homotopy. 
These maps induce lattices Z\ and Z2 such that 

Zx ® Q *z 0 ^(fMM) 

and 
Z 2 ®Q ^0/ / / + 2 ( fW[/ ] ) . 

By Sullivan [Su] the model M[n + 1] with these lattices and a torsion bound determine 
[Xn+\] up to finite ambiguity. 

We will show that for fixed [Xn] various choices of X, (p and (pn together with the 
torsion of H induce finitely many equivalence classes of lattices. We recall that the lattices 
(Zi,Z2) and (Z\,Z'2) are equivalent if there is an isomorphism of the model fy([n + 11 
which induces an isomorphism between (Z\, Z2) and (Z[, Z2). 

Since [Xn] is fixed, the sublattices in iti(M[i\) for / < n and Hl+2{M[/]) for / < n are 
also fixed up to equivalence. 

The only lattice that can vary is the lattice in 7rn+\(ft{[n + 1]). 
We will show that there are only finitely many such lattices in irn+\(9\{[n + 1]) up 

to equivalence. This will complete the inductive step since the torsion of H determines 
a torsion bound on the homotopy of Xn+\ as well. To complete the proof we only need 
to recall that two finite complexes X and Y are homotopy equivalent if Xn and Yn are 
homotopy equivalent for n sufficiently large. We consider the long exact sequence 

>Hn+\M[n)) -• Hn+\M) -U Hn+\M,M[n\) - ^ Hn+\M[n\) -> ••• 

••• -> Hn+\X;Q) -+ Hn+2(Xn,X;Q) -^ Hn+2(Xn;Q) - • •••• 

J J J 
U L L" 

Let L', L and L" be the lattices corresponding to the integral cohomology. We consider L', 
L, and L" as lattices of Hn+\M\ #"+1(fW, fW[n]) and #"+2(lM"|>z]) respectively. Recall 
that 

Hn+\M, fW[n]) ^ fW[n + 1]/ fW[n] = nn+x(M[n + 1]), 

where the first isomorphism is canonical and the second is the definition. 
We observe that L can be written as L = L\ 0 L2, where L\ is determined up to finite 

ambiguity by i(L) C L\ and the torsion of//n+2(Xn, Z) and L2 = /?(L) is determined up 
to finite ambiguity by the torsion of H1*2 and a splitting a : p(L) —•> L. 

—+ £x„ a nd ^ : ^ —̂  £x be 
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If another splitting o'\ p(L) —• Lr
2 C L is chosen one can construct an isomorphism p 

of M[n + 1] with the following properties: 

P\iM[n] 

p\u 

P\L2 

Here we used the fact that 

M[n+ 1] = M[n](Hn+\M,M[n})), 

where the differential is the composition 

Hn+\M, M[ri\) -^ Hn+2(M[n]) -^ Zn+2(M[n]) 

and r is a splitting of cohomology classes into cocycles. The isomorphism p induces an 
isomorphism between L\ © L^ and L\ 0 Z/2. 

The only statement that remains to be shown is that another choice X',ip' and ipf
n with 

[Xn] fixed induces lattices M' and M" equivalent to L' and L" respectively. 
Let/: Xn —> Z^ be a homotopy equivalence and let/: fW r̂c] —+ fyf[n] be an isomor­

phism induced by/ . The map/ induces an isomorphism of the lattices M" and L" (and 
of the lattices in Hi+2(9rf[n]) for / < n and 7r/(fW) for / < /i). 

Consider the diagram 

! ^ 

i 
fW -^ H\<M) 

Here a and af are isomorphisms induced by integral isomorphisms H*(X\ Z) = H and 
H*{X'\~L) = H and the map a can be chosen such that a* = id on cohomology. The 
map g is an isomorphism which completes the diagram of solid arrows up to homotopy. 
Moreover g can be constructed as an extension of/: 9rf[n\ —> M[n\. Therefore g is the 
required equivalence between the lattices M' and L' and betwen M" and L". • 
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