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MEETING OF THE ASSOCIATION FOR SYMBOLIC LOGIC 

A meeting of the Association for Symbolic Logic was held at the University of California, 
Los Angeles, on Friday and Saturday, the 22nd and 23rd of March, 1968, in conjunction with a 
meeting of the American Mathematical Society. Two invited addresses were presented, one by 
Professor Donald A. Martin entitled Large cardinals and infinite games and one by Professor 
Jack Silver entitled Some consistency results in model theory. In addition, eleven papers were 
delivered, and six were presented by title; the last six abstracts below are those presented by 
title. 

YLANNIS N . MOSCHOVAKK 

PROGRAM CHAIRMAN 

PETER ACZEL. The lattice of recursive density types. 
If n e (o = {0,1, 2, • • •} and a c to, let a[n] = card({i e a | /' < n}). If a, P c o> let a =̂  p if 

there is a recursive function / such that Vna[n] < p[f(n)]. Let Z»(a) = {p £ w | a ^ p and 
p =̂  a) and A = {D(«) | « £ u). The set A of recursive density types was first introduced by 
Medvedev and has been investigated by Pavlova and more recently by Rice and Gonshor. The 
relation =̂  induces a partial ordering < on A such that <A, < > is a distributive lattice with last 
element oo = Z>(o>) and has (an isomorphic copy of) <<o, <> as initial segment. 

Using Rice's characterisation of the hyperimmune sets, o is hyperimmune iff D(a) e A — 
u>u{oo}. Let an interval be a set [A,B] = {C\A < C < B} where A < jBand/4eA, Be A - w. 
By a density theorem of Gonshor and Rice the Boolean algebra of sets of integers modulo finite 
sets is lattice embeddable in every interval, so that every interval has cardinality 2*° and (using 
a result of Keisler) assuming the continuum hypothesis every interval is a universal distributive 
lattice. This result suggests that there may be a model theoretic characterisation of <A, ^>. 
Although it does not appear to be a universal homogeneous structure of any kind it does have 
many of the properties of such structures. Let <5, Pi, P2> be a cut if Px u Pz £ S £ A — m 
and for all A, B e S, (i) A u B e Px <-• A, B e Pu (ii) A n B e P2 <-> A, B e P2, (iii) A e Px 

and BeP2 implies A < B. The recursive density type A satisfies the cut <5, Plt P2y if P^ = 
{B e S | B < A] and P2 = {B e S \A < B}. 

THEOREM. For every countable cut there is an interval such that every element of the interval 
satisfies the cut. (Received February 2, 1968.) 

AKIRA NAKAMURA. On an undecidable Post canonical language. 
The purposes of this paper are [first] to present a rather simple Post canonical language whose 

decision problem is recursively unsolvable, and by making use of the system [second] to show a 
nonaxiomatizable propositional calculus. 

We consider the following canonical language L: 

The alphabet: {1, 0, A, *, # , W, O, V). 
The axioms: W± , O0. 
The productions: 
PI. Wa -> WaK. 
P2. Oa -> OaA. 
P3. Wa, 0,SA -* W # j3A # o. 
P4. Wa, W$ ->- WOafi. 
P5. Wa,OP^- W*P*a. 
P6. Wa, WP, Wy, WS, We -* l-OOOOOajSO # OA # y # OA # 8y«OOeo08o. 
P7. Wa, Wfi, Oy -* hO * y * 0«j30 *y*a*y*fi. 
P8. Wa, Op^-r0*P* aa. 
P9 . r-o, h0aj3 -> rp. 
P10. hx, Op -+ h * p * a. 
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[I] Then, it is shown that there is no finite, effective procedure to decide whether or not a 
given expression is a theorem in L. 

The central idea of proof is, roughly speaking, as follows: 

(1) We interpret a of Wa in the language £ as an expression obtained by modifying the 
definition of wff in the first-order predicate calculus F. 

(2) According to the interpretation (1), we construct a propositional logic P such that 
Wa, Ya mean a wff, a provable wff in P respectively. 

(3) Further, we consider a correspondence between wff's in Fand wff's in P. Let w be a finite 
set of wff's in P corresponding to a wff a> in F. Then, we show that w is provable in F iff at least 
one wff in <2 is provable in P. 

(4) Thus, we get the undecidability of language L from that of the first-order predicate 
calculus F. 

[II ] Since the axiomatic system P is a kind of propositional logic, it follows from the un­
decidability of P that the set of refutable wff's in P is not recursively enumerable. Thus, we have 
a nonaxiomatizable propositional calculus. (Received January 31, 1968.) 

JURGEN SCHMIDT. Remark on ordered pairs in the theory of classes. 
The notion of ordered pair is usually restricted to those well-behaving classes called sets. 

But within a theory of classes admitting proper classes that are not sets (which is convenient, 
e.g., for categories), one often misses a more extended notion of ordered pairs working for 
arbitrary classes (be they proper or not). E.g., one might define a category as an ordered pair 
(M, •)» where M is a class (the class of all "morphisms "), • some partial binary operation in 
class M; thus, a category would become an object of set theory respectively of class theory itself, 
even in the case when class M is proper. In the same manner, one could define partially ordered 
classes (which in fact may be considered as special categories as defined above) or other classes— 
proper or not—with certain types of structures. E.g., (On, <) , where On is the class of all 
ordinal numbers, < its natural ordering, would be a well-ordered class and as such an object 
of set-theory. 

The ordered pair for arbitrary classes should be a term (p, a) in two class variables such 
that the following basic properties of pairs hold: 

CI. (p, q) is a set if and only if p and q are sets; 
C2. (p, q) = (r, s) if and only if p = q and r = s. 

Here a set is defined as a class x such that A: is a member of some class y, x e y for some y. For 
most definitions of the ordered pair given so far (e.g., the well-known definition of Kuratow-
ski), C2 only holds for sets. We are going to observe the following two simple (but not so well-
known) facts: 

1. One can define a term (p,q) such that CI and the unrestricted C2 (for arbitrary classes 
p, q, r and s) hold; 

2. class theory, in particular that part concerned with relations and functions, is essentially 
independent of the actual definition of ordered pairs (even if restricted to sets). (Received 
January 30, 1968.) 

HENRY H. CRAPO and DON D. ROBERTS. Peirce algebras and the distributivity scandal. 
A re-reading of C. S. Peirce's paper On the algebra of logic (1880) brings to light a number of 

matters of historical, logical, and mathematical interest. 
A Peirce algebra (type I) is an algebra A with a binary operator -< and a logic T (or set of 

"valid" formulas) containing 
Al. x-i x 
A2. (x-< (y-<z))-< (y-( (x-<z)) 
A3. (y-( z)< ((x-< y)-< (x-l. z)) 

and closed with respect to the rules 
Rl. Detachment: From x e Tand (x -< y) e T, and to infer y e T. 
R2. Uniform substitution. 
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A Peirce algebra {type II) is an algebra A of type I, to which there is added a miliary operator 
0, in terms of which negation is defined 

DN. x = x< 0 

such that the following are "valid" 

A4. x -( x 
A5. 0-< x 

and in which there exist, for any elements x, y in the algebra, elements x + y and xy satisfying 

DA. (x + y) -< z if and only if x -< z and y -< z 
DM. z -< (xy) if and only if z -< x and z-( y. 

The scandal, that "Peirce thought that all lattices were distributive," is traced in the corre­
spondence between Peirce, Schroder, and Huntington, and culminates in a footnote to BirkhofF's 
Lattice theory (1948). We put the scandal to rest by verifying Peirce's proof of the distributive 
principle, as recorded in his logic notebook. 

In his recognition of the importance of the unrestricted modular condition 

((x + y)z) <(x + (yz)) 

and in his intuition concerning the significance of individual elements (elements m for which 
m -< (x + y) implies m -< x or m -<y), Peirce anticipates several important lattice-theoretic 
developments of the nineteen thirties and fifties. For example, Peirce's proof of distributivity 
also establishes Raney's theorem (1952): If, in a lattice L, every element is expressible as the 
supremum of some set of individual elements, then the lattice L is distributive. 

The Peirce algebra of type II constitutes a multi-valued logic, resembling intuitionist logic 
in many respects, but agreeing with it only in the trivial case of the classical propositional 
calculus. 

The interval [0,1] = {x: 0 < x < 1} of the real numbers provides a model of a Peirce 
algebra of type II. Let 

x -< y = min {1,1 — x + y). 

This example contains subalgebras of all finite and countably infinite cardinalities. {Received 
January 29, 1968.) 

ROBERT A. DIPAOLA. Church random sets in subrecursive hierarchies. 
Let C be a subclass of the recursive functions. By a C-random set we mean the set which is 

defined by replacing the class of recursive functions in the definition of random sequence (and 
hence random set) given by Church (On the concept of a random sequence, Bulletin of the 
American Mathematical Society, vol. 46 (1940), pp. 130-135) with the class of one-place functions 
in C. 

Let Clt C2 be subclasses of the class of recursive functions such that (1) E £ Cx
 c Ca, 

where E is the class of Kalmar elementary functions; (2) Cj. and C2 are closed under composition 
and limited recursion; (3) C2 contains a binary function / which is universal for the unary 
functions g in Ci. 

THEOREM 1. C2 contains a C-random set. COROLLARY 1. For each n > 2, the classes <?n+1 of 
the Grzegorczyk hierarchy of primitive recursive functions contain an Sn-random set. COROLLARY 
2. For each xe<S, the class C2* of the Kleene subrecursive hierarchy contains a Cx-random set. 
With respect to more restricted subrecursive hierarchies, the results are more special: THEOREM 
2. For each i > 0, the classes Fi + i of the Ritchie hierarchy of elementary functions contain an 
Fi-random set. {Received January 22, 1968.) 

S. K. THOMASON. More initial segments of hyperdegrees. 
(I) Every sublattice of the lattice of finite sets of natural numbers is isomorphic to an initial 

segment of hyperdegrees. (II) The lattice of all finite subsets of the continuum is isomorphic to 
an initial segment of hyperdegrees, and to an initial segment of degrees. These results extend 
that of the author's Some initial segments of hyperdegrees, presented to the American Mathe­
matical Society January 25, 1968. (Received January 22, 1968.) 
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HUGHES LEBLANC. Three generalizations of a theorem of Beth's. 

Where A is a wff of F1 (the first-order functional calculus without identity), and X and Y are 
not necessarily distinct individual variables of F1, (i) take A[Y/X] to be the result of substituting 
Y for every free occurrence of X in A if no free occurrence of X in A is in a component of A of 
the sort (V Y)B, (ii) otherwise, take A [ Y/X] to be A'[ Y/X], where A' is the result of substituting— 
for every occurrence of Y in every component of A of the sort (V Y)B that contains a free 
occurrence of X in A—an occurrence of the alphabetically earliest individual variable of F1 that 
is foreign to that component of A. And, where Asst is an assignment of truth-values to the 
atomic wffs of F1, take a wff of F 1 of the sort (VX)A to be satisfied by Asst if and only if A [ Y/X] 
is satisfied by Asst for every individual variable Y of F 1 . Availing himself of like-minded con­
ventions, Beth showed in The foundations of mathematics (1959), Section 89, that a set 5 of 
closed wffs of F 1 is consistent as to provability if and only if there is an assignment of truth-
values to the atomic wffs of F 1 that satisfies (each and every) member of S. 

Beth's result, which exploits a familiar result of Henkin's, can be generalized in three 
directions. 

(1) Supposing given a suitable characterization of isomorphism between sets of wffs of F 1 , 
it can be shown that a set S of wffs of F 1 is consistent as to provability if and only if there is an 
assignment of truth-values to the atomic wffs ofF1 that satisfies some set of wffs ofF1 isomorphic 
to S. 

(2) With A [GIF] defined along the same lines as A [ Y/X], A this time a wff of F 2 (the second-
order functional calculus without identity), and F and G not necessarily distinct predicate 
variables of F 2 of the same degree, with Q4F)A understood to be satisfied by an assignment Asst 
of truth-values to the atomic wffs of F 2 if and only if A[G/F] is satisfied by Asst for every predi­
cate variable G of F 2 of the same degree as F, and with a set S of wffs of F 2 taken to be con­
sistent* as to probability if at least one wff of F 2 is not provable from S in Henkin's fragment 
F * of F 2 (see this JOURNAL, vol. 18 (1953), pp. 201-208), it can be shown—given a suitable 
characterization of isomorphism between sets of wfFs of F2—that a set S of wffs of F 2 is con­
sistent* as to provability if and only if there is an assignment of truth-values to the atomic wffs 
ofF2 that satisfies some set of wffs ofF2 isomorphic to S. 

(3) With A[BIF(XX, X2, • • •, Xm)] defined essentially like ^X^X^--X"'A\ in Church's 
Introduction to mathematical logic, Volume I (1956), p . 192, count a function T v from 
the set of the wffs o f F 2 to {T, F) as a general truth-value function for F 2 if: (i) T v (~A) = T 
i f andonly i f T V (A) = F, (ii) T v (A = B) = Tit and only if T v (A) = F o r T v (B) = T, 
(iii) T V ((VX)A) = T if and only if T v (A [ Y/X]) = T for every individual variable Y of F 2 , 
and (iv) T V (0/F)A) = T if and only if T V (A[B/F(.X1, X2,---, XJJ) = T for every wff B 
of F 2 and every m (m the degree of F ) distinct individual variables Xu X2, • • • , and Xm of F 2 . 
And take a set S of wffs of F 2 to be consistent** as to provability if at least one wff of F 2 is 
not provable from S in Henkin's version F** of F 2 . It can be shown—given a suitable charac­
terization of isomorphism b e ween sets of wffs of F2—that a set S of wffs ofF2 is consistent** 
as to provability if and if there is a general truth-value function for F2 that satisfies some set of 
wffs ofF2 isomorphic to S. (Received January 19, 1968; corrected June 19, 1968.) 

YIANNIS N. MOSCHOVAKIS. The lack of hierarchies on the second projective class {preliminary 
report). 

A subset of m<o is SJ(HJ) if and only if it is explicitly definable by a formula with k + 1 
function quantifiers applied to a recursive matrix with outer quantifier existential (universal); 
A£ = SJ n II£ and boldface 2 , II, A indicate that the matrix can be recursive in an arbitrary 
element of ao>. 

It is known that A J = Borel subsets of au> and this puts a hierarchy on AJ. Similar hierarchies 
have been sought unsuccessfully for the classes AJ (k > 1); we give here a precise definition of 
a hierarchy and we show that there are none on A | . 

Sets in AJ are naturally coded by elements of ma>. There are also natural reducibilities on 
AJ, e.g. 

(1) A < (a)B o A = f_1[B], where f is the continuous function with code a, 
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(2) A < (a)B o A is recursive in a, R, B with index o(0) in the sense of recursive functionals 
oftype-2, where R is some fixed set in A£. 

DEFINITION. A trail through A£ (relative to a reducibility <, defined by (1) or (2)) is a sequence 
<.G, o, xi, • • •. X4> where G £ a<a, o maps G onto some ordinal K, XI, • • •» Xi are functions 
in A£ and: 

HI. For each a e G, xi(a) is a AJ-code for some set, call it Ga. 
H2. If a is a AJ-code for some set A, then x2(<0 e G and ,4 < (x3(a))G>2<a). 
H3. For each a e G, {j3 : 0 e G & o(fi) < o(a)} is A£ with code x4(a). 
A trail is ascending and defines a canonical hierarchy if for some function xs in AJ, 
H4. If a, /3 e G and o(o) < o(fi), then Ga ^ (x5(«, j3))G„. 
H5. If a, 0 e G and o(a) < o(fi), then for each y, -i[G„ :£ (y)GJ. 
THEOREM 1. There is no trail through A J. 
THEOREM 2. If every set is constructive in the sense ofGodel, then there is no trail through A J, 

for every k > 3. 
THEOREM 3. If every projective subset of am is determinate, then there are ascending trails 

through AJ for all odd k and there are no trails through AJ for all even k. 
The last result uses methods developed recently by J. W. Addison and the author and 

independently by D. A. Martin. The same results hold for the classes A J (of subsets of ao>). 
(Received February 15, 1968.) 

CARL E. GORDON. A comparison of abstract computability theories. 
In recent years a number of theories of computability on sets other than the integers have 

been developed. In particular Moschovakis defines in Abstract first order computability, Transac­
tions of the American Mathematical Society (to appear) the class SC(A, <p) of partial functions 
(and relations) on an arbitrary set B, search computable in a given finite sequence «p of partial 
functions (and relations) on B, from a given subset A of B. The definition is a generalization of 
the one in Kleene, Recursive functionals and quantifiers of finite type. I, Transactions of the Ameri­
can Mathematical Society, vol. 91 (1959), pp. 1-52. Moschovakis has shown that search com­
putability is equivalent to some known abstract notions of computability, e.g., Frais6-recursive-
ness. 

An entirely different approach to computability has been presented by Richard Montague. 
Given a set B, a set P of relations on B, and a subset A (of distinguished elements) of B, the 
relations Montague-^Q-recursive in P from A are those relations "Ax-definable" in a certain 
higher-type language from the given relations and distinguished elements. The K0, above, 
refers to a restriction on the interpretation of the higher-type variables, cf. R. Montague, A 
generalization of recursion theory, this JOURNAL, vol. 32 (1967), pp. 443-444, (abstract). 

THEOREM 1. IfB is an infinite set, P a finite sequence of relations on B, one of which is " equality ", 
A a subset of B and Ra relation on B, then R is Montague-R0-recursive in P from A if and only if 
R is search computable in P from A. 

The theory of functions metarecursive on an admissible ordinal has been studied by Kripke 
and others, cf. S. Kripke, Transfinite recursions on admissible ordinals. I, this JOURNAL, vol. 29 
(1964), p. 161, (abstract). In order to compare this theory with search computability, we extend 
the definition of SC(A, <p), in a natural way, to the case when cp contains type-2 objects. 

THEOREM 2. If B is a set, K an admissible well-ordering of B, and f a partial function on B, 
then f is metarecursive on B if and only if fe SC(B, <, bE), where bE is the type-2 object that 
represents bounded quantifications, 

C0if(3y<x)(f(y)^0), 
bE(x,f) ~ I 1 if Q/y < x)(f(y) ~ 1), 

[undefined otherwise. 
(Received January 17, 1968.) 

RICHARD D. MOSIER. Recursive functions and the inference calculus. 
Where x is any proposition and Ex is a proposition in calculus E of implication and Ax is a 

proposition in calculus A of entailment, we can form the sequences: 

E(Ex! • • • Ex2 • • • Ex3 • • • Exn) A(Axx • • • Ax2 • • • Ax3 • • • Axn) 
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If we assign /? as the recursive function of the propositional implications in calculus E and y 
as the recursive function of the propositional entailments in calculus A, then (Eg) can replace 
(Ex„) in calculus E and (Ay) can replace (Axn) in calculus A. Henceforth, calculus E of pro-
positional implications and calculus A of propositional entailments can be represented by: 

E(E6) A(Ay) 

Thus, (Ee) is an "abstract" of the whole calculus E taken at a specified cumulative point 
(Ex^); and (Ay) is an "abstract" of the whole calculus A taken at a specified cumulative point 
(Ax„). We have in effect abstracted "implies" as a recursive function (j3) from the matrix of 
propositional implications in calculus E; and, similarly, we have in effect abstracted "entails" 
as a recursive function (y) from the matrix of propositional entailments in calculus A. 

Consequently, we can now form new sequences consisting only of the "abstracts" from our 
original sequences: 

E(Egx •••Eg2---Eea--- Egn) A(An • • • A y a • • • A y a • • • AYn). 

Just as we replaced (Exn) by (Eg) in our original sequence for calculus E, and just as we re­
placed (Axn) for (Ay) in our original sequence for calculus A, we now substitute (fiE) for (Eg) 
in our calculus of "abstracts" of recursive functions in calculus E, and we substitute (y^) for 
(Ay) in our calculus of recursive functions of calculus A, so that the " abstracts " of the sequences 
are now represented simply by (fiE) for calculus E and by (yA) for calculus A. 

In our first abstraction from the original sequences, we abstracted the recursive function OS) 
for the E calculus and the recursive function (y) for the A calculus. But the "abstracts" (Eg) 
and (Ay) have the defect of being determined by the immediately preceding values (Exx • • • Ex2 

• • • Ex3 and Axx • • • Ax2 • • • Ax3). But if we substitute (pE) for (Eg) and (yA) for (Ay), we shall 
discover recursive functions which are themselves recursive—genuine "power" functions (fiA and 
yjd rather than "order" functions (Eg and Ay). 

What we here call "power" functions Quine calls "course-of-values" recursion, which he 
describes as defining an infinite sequence, or function over all natural numbers, such that 
generation means specification of successive values not in terms of the respective single values 
just preceding (Eg and Ay), but in terms of the whole sequence of values which have been 
generated (J8B and y^). Consequently, we conclude that it is possible to discover not merely 
"order" recursion but also "power" recursion in the inference calculus. (Received before 
January 1, 1968.) 

R. L. STANLEY. Local sharpness in cut-free systems. 
"Cut-free" natural deduction proofs (well-known term) contain no steps taken under 

authority of any general cut-rule. A "sharp" formula (new term) is one which, occurring 
suitably at a point in a proof, allows a full-strength cut-step to be taken, in effect, at that point, 
although strictly the proof remains cut-free, since no cut-rule is used. A proof-line may be sharp 
altogether, only in some parts, or nowhere; correspondingly, cut-steps are available throughout 
that proof, only locally therein, or not at all. 

This paper examines sharpness in a system based on Quine's "Set theory and its logic" 
(1) displaying varieties, distribution, and general effects of sharp formulas, (2) establishing, from 
sharpness of certain numerical formulas, the closure of elementary number theory under 
Modus Ponens (that is, establishing Takeuti's conjecture, as restricted to elementary number 
theory), (3) constructing a sharp model to prove that Quine's system is consistent if the natural 
deduction sub-system without cut-rule is consistent, and (4) building sharpness into atomic 
formulas to form a system isomorphic to Quine's, for which Takeuti's conjecture is true without 
restriction. 

Sharpness is not peculiar to this system, indeed occurs more extensively in some others. The 
methods and results of (2), (3) and (4) extend to some other strong natural deduction systems— 
conjecturally, to most. 

Local sharpness' extent in any system enlarges simply and artificially, but importantly. To 
build systems, however, whose structure seriously diminishes sharpness appears difficult. Con­
jectured possibilities deserve exploration. (Received December 7,1967.) 
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NICHOLAS RESCHER. Autodescriptive systems of many-valued logic. 
Consider an entry in an n-valued truth-table of some two-place connective ®: 

where i and j and <i ® y> are 
all elements of {1, 2, • • •, n} 

<J®7> 
Such an entry says: "If the truth-value of.p is i and that of q is./', then that of p ® q is to be 
<« ® j)> •" We can translate this quoted statement into the vocabulary of the many-valued system 
itself whenever this system affords us three pieces of machinery: (i) an implication-connective 
-»• for "if then" (which is assumed to have the modusponens feature that if p and p ->-q take 
designated truth-values, then so does a), (ii) a conjunction-connective A for "both-and" 
(which is assumed to have the feature that if p and q both take designated truth-values, then 
p A q does so), and (iii) a truth-value assignment operator Vip for "the truth-value of p is »'" 
(which is assumed to have the feature that Vip takes a designated truth value iff i is the truth-
value oi p). The above-quoted statement can then be rendered intrasystematically as: 

(1) (Vip A Vjq) — V<i ® j>(p ® q). 

(The translation of the truth-table for a one-place connective is to be handled analogously.) 
A many-valued system that affords this machinery will be termed autodescriptive with respect 

to its truth-value assignment operator Vip if the translation into the system the information 
enshrined in any and every one of its truth-table entries in the manner of (1) will be a tautology 
of the system. 

The truth-value assignment operator of an n-valued system will be said to be diversified if 
statements of the form Vip can assume all of the truth-values (not just the two corresponding to 
truth and falsity). The defining matrix for a diversified truth-value assignment operator has the 
crucial and interesting feature that it contains entries other than 1 (true) and 2" (false), so that 
truth-value assigning statements of the form "The truth-value of p is i" are not viewed as 
inherently two-valued (in a way alien to the spirit of many-valued logic). 

The three-valued system L3 of Lukasiewicz is an example of a system that is autodescriptive 
in this sense with respect to the now-to-be-specified diversified truth-value assignment operator: 

I \ 

+ 

2 
3 

Vip 
1 2 

1 2 
2 1 
3 2 

3 

3 
2 
1 

+ 1 
2 
3 

~>P 

3 
2 
1 

P A q 
1 2 3 

1 2 3 
2 2 3 
3 3 3 

p-+q 
1 2 3 

1 2 3 
1 1 2 
1 1 1 

In the case of an autodescriptive system of many-valued logic with a diversified truth-value 
assignment operator, one can take the view that the system can be presented by means of a 
many-valued metalanguage, and does not require the usual two-valued one. The existence of 
such many-valued systems which could themselves serve as their own metalanguage refutes the 
position of various writers who view two-valued logic as fundamental vis a vis many-valued 
logic on the grounds that many-valued systems must invariably be developed by means of two-
valued logical machinery used at the metalinguistic level. (Received January 19, 1968.) 

ANDRZEJ MOSTOWSKI. A theorem on ^-models. 
Let A be the set of axioms of the second order arithmetic as described, e.g., in this JOURNAL, 

vol. 23 (1958), p. 189 and containing, in addition, the axiom-scheme of choice (x)(Ea1)F(x, a1) = 
(Ea2)(x)F(x, Xya2(x, y)). The following theorem is proved: If a set X 2 A has a j3-model, then 
it also has an to-model which is not a /?-model. 

In the proof we use an extended language L containing a symbol c for a function with 2 
arguments. Let AT be a /8-model of X and W the set of all functions fe M such that the relation 
R, — {<x, y) :f(x, y) = 0} well orders <o. We call a set C £ Wunbounded if for every/in W 
there is a g in C such that <tu, Rf) is isomorphic to a submodel of <<o, i?9>. 

LEMMA. IfC = [_J Cnis unbounded and the relation «n, x} : xe Cn} is definable in M, then at 
least one Cn is unbounded. 

https://doi.org/10.2307/2271050 Published online by Cambridge University Press

https://doi.org/10.2307/2271050


ABSTRACTS OF PAPERS 159 

Using this lemma repeatedly we show that there is a consistent and complete set X0 consisting 
of sentences of £ and an infinite sequence of integers /„ such that (i) if F e X <J A, then the closure 
of Fis in X0; (ii) the sentences Bord(c) (i.e. "c is a well ordering") and c(in+i> in) = 0 belong 
to X0 for n = 0, 1, 2, • • •; (iii) if F has one free variable and (Ex)F(x) e X0, then there is an 
integer such that F(n) e X0. 

The set X0 has an <u-model but no tu-model of X0 is a /3-model. (Received January 30,1968.) 

A. A. MULLIN. On an application of recursive arithmetic to philosophy. 
The Pythagorean doctrine pervades the works of Plato (e.g., Republic, Book VII), Aristotle 

(e.g., Metaphysics, Book I, Chapter 5), Philo Judeus (e.g., The creation, vol. I), Nicomachus of 
Gerasa, Virgil (e.g., Eclogue, VIII), and Aurelius Augustinus (e.g., City of God, Chapter XXX) 
to name only a few pre-medieval inquirers. In these works the simple odd-even dichotomy is 
utilized, among other properties of numbers. The present study develops a motley of meta­
physical theories, simple ethical theories, and elementary aesthetical theories, based, in part, 
upon computable number-theory, with special emphasis on the prime-composite dichotomy. 
The ethical theories are admittedly naive since they hinge exclusively on computable properties 
of amicable numbers and so-called agapistic numbers [Notices of the American Mathematical 
Society, vol. 12 (1965), pp. 217-218]. The author did not have access to the little-known results 
by A. Comte, who apparently constructed parts of his metaphysics from properties of prime 
numbers. In the aesthetical domain, new syllable-count forms of poetry are constructed based 
upon use of recursive sets, so as to supplement recent results using prime numbers [Notices of 
the American Mathematical Society, vol. 14 (1967), pp. 941-942]. Recursion theory is chosen as 
a frame of reference partly because of its logical relevance and partly because of the central role 
its philosophical analogue plays in various parts of the modern works of Vico, Nietzsche, 
Whitehead, and Joyce, among others. (Received February 6, 1968.) 

PETER ACZEL. The universal properties of recursive density types. 
Notation as in the previous abstract. Call a function on a> a density function if it is bounded 

by a recursive function and it is nondecreasing in each argument. If R £ " o> and oti, • • •, <*n £ 
to, then <«i, • • •, <*„> is R-attainable if there are density functions flt • • • , /„ such that (ix)x < 
f,(x) for i = 1, • • •, n and (VxKajlJitx)], • • •, <*„[/„(*)]> 6 R. The extension RA of R to A is 
defined by RA = {<D(°<i), • • •, D(an)> I Oi> • • •, «n> is A-attainable}. 

The recursive density types behave in many respects like the recursive equivalence types. In 
fact using the above extension procedure there are analogues to most of Nerode's results in 
Extensions to isols, Annals of mathematics, vol. 73 (1961). The role of the isols is here played by 
the set T = {A eA | (VB)B < oo ->• A w B < oo}. The density functions play the role of Myhill's 
recursive combinatorial functions. The graph of every density function/extends to the graph 
of a function /A. The extension procedure commutes with composition of functions and Y is 
closed under every fA. Let / r denote the restriction of/A to T and let % be the class of recursive 
combinatorial functions. 

THEOREM. The same universal sentences are true in <A,/A>/6«' and <r,/ r>/ 6«' . 
NOTE 1. The existence of an extension procedure for A analogous to the Myhill-Nerode pro­

cedure for R.E.T.'s was first conjectured by H. Gonshor. 
NOTE 2. Almost all of the results of this and the previous abstract depend only on the fact 

that the set of recursive functions form a countable primitive recursively closed set. (Received 
February 2,1968.) 

LAWRENCE WOS AND GEORGE ROBINSON. Maximal model theorem. 
A clause is a set of atomic formulae (of the first order predicate calculus) and negations of 

atomic formulae—and is thought of as representing the disjunction of its members (literals). 
Each existential variable has been replaced by a Skolem function and each other variable is 
universally quantified over the clause in which it occurs. For any set Sf of clauses, let P be the 
set of atoms over its Herbrand universe. For undefined terms refer to J. A. Robinson, "A 
machine-oriented logic based on the resolution principle," Journal of the Association for Com­
puting Machinery, vol. 12 (1965), pp. 23-41. Where x' is the negation of a literal x, let N = 
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{6'|*>eP},andfor W s P u NletW = {b' \ be W}-K W 5 P, Wv(P- W)'is an interpre­
tation ofSP. An interpretation of SP is called a model of SP if it has a nonempty intersection with 
each variable-free instance of each clause in SP. Relative to each Q £ P, there is a partial order­
ing of the set of interpretations and hence of the models of if: 

M1 < QM2 iff Mi n [Q' v (P - Q)] £ M2n [Q' u (i> - Q)]. 

MAXIMAL MODEL THEOREM. IfSP has a model, then given any Q £ P, SP has a maximal model 
M relative to Q. Furthermore, for each literal bin M r\ [Qu (P — Q)'\ there exists a clause in SP 
having an instance D with D n M = {b}. 

PROOF. Let T = g u (P - Q)'; then Mx < QM2 iff Mx n 7" S Af2 n T'. Let {/TJoer be a 
nonempty, simply ordered (relative to Q) set of models of SP. Then 

( | J Ha n T') v(f)Han T) 

is a model of SP and an upper bound for {Ha}aer . Hence by Zorn's lemma there is a maximal 
model M of &". Furthermore, if there were an element b in M r> T that falsified the second part 
of the theorem, (M — {b}) v {b'} would be a model of SP strictly greater than M. (The proof 
makes no appeal to the properties that the members of P are atomic formulae and the clauses 
in £P are disjunctions, but does use x" = x.) 

It also follows that given, not a subset Q of P, but an interpretation J of S?, there is a model 
M of SP maximal with respect to T, i.e., for which no model M* of 5" exists with M r\ T <= 
M* n T (properly). 

With Q = P, the maximal model theorem plays a central role in establishing that certain 
properly paramodulation-based systems are semidecision procedures for first-order predicate 
calculus with equality (see abstract following). (Received February 1, 1968.) 

GEORGE ROBINSON AND LAWRENCE WOS. Completeness of paramodulation. 
For terminology and for the maximal model theorem see preceding abstract. A finite set SP 

of clauses has a model M in the sense of the preceding abstract iff it has a model in the usual 
sense. If M satisfies SP under the usual definition for first-order predicate calculus with equality, 
M will be called an R-model of SP and SP termed R-satisfiable. 

Paramodulation. Given clauses A and a' = /5' v B (or /}' = a' v B) such that A contains a 
term 8 with 8 and a' having a most general common instance a identical to a'lsjut] identical to 
^[tjlwj], where A' is obtained by replacing in A[tj/Wj] some single occurrence of a (resulting 
from an occurrence of 8) by p'lsjuil, infer A' V B[st/ut]. 

THEOREM 1. If an R-unsatisfiable set SP of clauses is closed under paramodulation and contains 
all instances ofx = x over the Herbrand universe H of £P, then SP is unsatisfiable. 

PROOF. Suppose SPis satisfiable. Let SP* be the set of all (variable-free) instances of members 
of SP over H and let P be the set of atoms of SP*. By the maximal model theorem there is a 
model M of SP such that for each binMnP there is a clause D in SP * with D n M = {b}. From 
this it can be shown that the relation {(a, j3)|(a = 0) e M} is in fact reflexive, symmetric, transi­
tive, and (with respect to all functions and predicates occurring in SP) substitutive. Hence M is 
an /{-model of SP, contradicting its .R-unsatisfiability. 

THEOREM 2. Based upon paramodulation, taken together with resolution and the axiom schema 
a = a, one can construct a semidecision procedure for first-order predicate calculus with equality, 
i.e., a procedure which yields a refutation for any finite set SP iff SP is R-unsatisfiable. 

PROOF. Adjoin to SP all instances of x = x over the Herbrand universe of SP and close under 
paramodulation, obtaining a set SP'. &~, the closure of SP' under resolution, can be effectively 
enumerated. If SP is iJ-satisfiable, then &~ is satisfiable since paramodulation and resolution are 
both sound. If SP is .R-unsatisfiable, then by Theorem 1, 3~ must be unsatisfiable. Then since y 
is closed under resolution it must, by a theorem of J. A. Robinson in the paper cited in the 
preceding abstract, contain a pair of contradictory one-member clauses. (Received February 1, 
1968.) 
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