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We investigate the spatial organization and temporal dynamics of large-scale, coherent
structures in turbulent Rayleigh–Bénard convection via direct numerical simulation of
a 6.3 aspect-ratio cylinder with Rayleigh and Prandtl numbers of 9.6 × 107 and 6.7,
respectively. Fourier modal decomposition is performed to investigate the structural
organization of the coherent turbulent motions by analysing the length scales, time scales
and the underlying dynamical processes that are ultimately responsible for the large-scale
structure formation and evolution. We observe a high level of rotational symmetry in the
large-scale structure in this study and that the structure is well described by the first four
azimuthal Fourier modes. Two different large-scale organizations are observed during the
duration of the simulation and these patterns are dominated spatially and energetically by
azimuthal Fourier modes with frequencies of 2 and 3. Studies of the transition between
these two large-scale patterns, radial and vertical variations in the azimuthal energy
spectra, as well as the spatial and modal variations in the system’s correlation time
are conducted. Rotational dynamics are observed for individual Fourier modes and the
global structure with strong similarities to the dynamics that have been reported for unit
aspect-ratio domains in prior works. It is shown that the large-scale structures have very
long correlation time scales, on the order of hundreds to thousands of free-fall time units,
and that they are the primary source for a horizontal inhomogeneity within the system that
can be observed during a finite, but a very long-time simulation or experiment.

Key words: Bénard convection, turbulent convection

1. Introduction

Rayleigh–Bénard convection (RBC) occurs when fluid confined between horizontal
plates is heated from below and cooled from above in a uniform manner. Rayleigh–Bénard

† Email address for correspondence: psakiev@sandia.gov
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convection is considered an ideal problem for investigating the complex phenomenon
of turbulent thermal convection because the simple boundary conditions make it more
manageable to study without sacrificing the core complexity of thermal convection.
The canonical form of turbulent RBC is defined by a domain with a fixed height that
extends infinitely in the horizontal directions, thus creating a flow field that is statistically
homogenous in the horizontal direction. The infinite domain makes mathematical analysis
more tractable, but is obviously not achievable in experiments or discrete computational
analysis. Thus, the aspect ratio (Γ ), or the ratio of the horizontal and vertical length scales
is a parameter of choice in experimental or numerical investigations. Smaller aspect-ratio
domains are easier to simulate numerically or access during the measurements. However,
many RBC applications are well represented by wide horizontal layers (Adrian, Ferreira
& Boberg 1986), and so the large Γ cases are of significant interest to several different
scientific communities.

Rayleigh–Bénard convection in large Γ domains have been primarily studied to
investigate the structure and behaviour of pattern formation and a spiral defect chaos at the
onset of convection (Meyer, Ahlers & Cannell 1987; Bodenschatz, Pesch & Ahlers 2000).
Recently, attention has been turned to studying Rayleigh–Bénard convection in a fully
turbulent regime with large (Fernandes & Adrian 2002; Du Puits, Resagk & Thess 2007;
Hardenberg et al. 2008; Xia, Sun & Cheung 2008; Bailon-Cuba, Emran & Schumacher
2010; Sakievich, Peet & Adrian 2016), and very-large (Hartlep, Tilgner & Busse 2003;
Pandey, Scheel & Schumacher 2018; Stevens et al. 2018; Krug, Lohse & Stevens 2019)
aspect-ratio domains. Studies reaching aspect ratios as large as Γ = 128 were able to
comment on the size of structures not influenced by the boundary conditions (Stevens et al.
2018), and the natural sizes of these structures were reported to be of six to seven times
the height of the domain, consistent with the previous studies of Hartlep et al. (2003) with
varying Pr numbers. Despite these emerging studies devoted to wider aspect-ratio cells,
there are still a large number of gaps in the community’s knowledge of the aspect-ratio
affect on the flow field. This is because the main body of knowledge of RBC is still drawn
from smaller, primarily unit aspect-ratio studies, which constitute the vast majority of
efforts in the field.

One such gap is how Γ affects the structure of the flow field because the organization
of structures within the flow field changes dramatically as the domain size is increased
(Du Puits et al. 2007; Sakievich et al. 2016; Pandey et al. 2018; Stevens et al. 2018). These
structures contain a large portion of the field’s kinetic and thermal energy and play an
important role in the transport of these quantities. Furthermore, understanding the flow
field structure creates a fundamental framework for reasoning and comprehension of the
physics.

A prime example is unit Γ turbulent RBC. Much of the work in turbulent RBC
over the last several decades has been focused on the unit Γ case wherein a single
large-scale circulation (LSC) dominates the flow structure. Identification and dissection
of this structure has led to important theories, models and scaling correlations.

One of the first major studies to focus on the LSC was the pioneering work of
Krishnamurti & Howard (1981) who observed a persistent, large-scale circulation in unit
Γ RBC experiments when the Rayleigh number was greater than 1 × 106. Repetition of
the experiments showed that the direction of the LSC changed between realizations, but
the LSC was a consistent structure in the flow field. The LSC has often been referred to as
the ‘wind of turbulence’, or a ‘mean wind’, and this puzzling phenomenon has garnered
much attention over the last several decades. The experimental study by Zocchi, Moses
& Libchaber (1990) showed that the LSC is generated by the organization of small-scale
plumes that gather and cross the layer depth on opposing sides of the convection cell.
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Plumes that form in the central region of the cell are generally swept up by the momentum
of the LSC leading to a behaviour that is similar to a canonical boundary layer. This
similarity was harnessed by Grossmann & Lohse (2000, 2001, 2002, 2004) to derive a
semi-empirical theory for predicting the scaling of heat transfer and Reynolds number
as a function of Rayleigh and Prandtl numbers by assuming that the LSC generates a
Prandtl–Blasius boundary layer.

Another field of interest that has stemmed directly from the LSC is its dynamics. The
experimental work by Cioni, Ciliberto & Sommeria (1997) was one of the earliest studies
to identify a dynamic nature in the LSC. Through measuring the horizontal temperature
distribution, which is strongly correlated with the LSC, Cioni et al. (1997) demonstrated
that the LSC wanders dynamically within a cylindrical domain. Mechanisms contributing
to LSC wandering have mainly been attributed to rotations and cessations. The distinction
between these two mechanisms is that a rotation is the gradual change in azimuthal angle,
and a cessation is when the LSC suddenly dies and then reappears with a totally new
orientation (Brown, Nikolaenko & Ahlers 2005; Brown & Ahlers 2006). The rotation
process sees a wide range of azimuthal drift speeds, and the slowest speeds have been
attributed to a diffusive meandering that is driven by turbulent fluctuations within the
flow field (Brown et al. 2005; Brown & Ahlers 2006). Mishra et al. (2011) studied LSC
dynamics via DNS and found evidence of partial reversals and double cessations in
addition to the standard rotations and cessations, which was also reported by Xi, Zhou
& Xia (2006) via experiments. Mishra et al. (2011) also found that cessation is marked
by a distinct rise in the amplitude of the second Fourier mode when the LSC dies down.
Additional studies have also shown that (a) the LSC experiences a torsional mode that
causes its flow near the top and bottom plates to rotate out of phase with one another
(Funfschilling & Ahlers 2004; Resagk et al. 2006; Funfschilling, Brown & Ahlers 2008);
and (b) a sloshing mode that causes the entire structure to shift back and forth with respect
to the LSC symmetry plane (Brown & Ahlers 2009; Xi et al. 2009; Zhou et al. 2009).

Many of the studies cited above have been conducted in unit-Γ cylinders, but studies
are also routinely performed in box domains. In boxes the LSC tends to lock into opposing
corners, and it will periodically switch between the two pairs of corners in the domain
(Bai, Ji & Brown 2016). Stochastic models have been shown to successfully predict the
dynamics of the LSC in the Γ = 1 case for boxes and cylinders (Brown & Ahlers 2007,
2008a,b; Bai et al. 2016); these models are derived with a primary assumption that the
‘wind of turbulence’ or the single LSC is present.

While current understanding of the LSC has been fruitful, it is not the only large-scale
structure that can reside within turbulent RBC. Du Puits et al. (2007) showed that as
Γ increases the wind of turbulence concept breaks down. Numerical studies of RBC in
moderate Γ cylinders have shown that the large-scale structure organizes into a series of
three-dimensional roll cells (Bailon-Cuba et al. 2010; Sakievich et al. 2016). Qualitatively,
these patterns show clear signs of organization that are similar to the structures seen at
the onset of thermal convection, but the patterns vary with Γ and Rayleigh number.
Furthermore, the dynamic events such as net rotation, cessations and sloshing remain
to be analysed and quantified in the larger Γ cylinders. For example, Vogt et al. (2018)
recently discovered an appearance of a completely new LSC dynamic mode which they
called a ‘jump rope vortex’, different from both torsional and sloshing modes, in a Γ = 2
cylindrical container. The spatial organization, length scales and time scales of wider Γ
cases must be quantified before the predictive powers of the current low-order models can
be extended to more general cases of RBC in wider domains.

Recent works (Stevens et al. 2018; Krug et al. 2019) performed direct numerical
simulation (DNS) studies at very large Γ in turbulent RBC, and these studies identified
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persistent structures whose horizontal length scales are several times larger than the
height of the domain, which were recently termed as ‘superstructures’. While these
studies provide a valuable insight into statistical properties of the superstructures, the
analysis in these papers was largely concerned with the temporally averaged flow fields,
filtering out the temporal dynamics of the structures. Pandey et al. (2018) have devoted
significant attention to the determination of the averaging time scales to properly capture
the properties of the superstructures, since, evidently, an infinite time average would
smooth out all the large-scale structures and result in a horizontally homogeneous mean
field. They also examined the large-scale drift of the structure patterns by measuring the
phase change of the temporally filtered angular wavenumber in a sliding time average, and
identified a slow evolution of the superstructures on a time scale which is of the same order
as the filtering time scale that they identified, i.e. tens to hundreds of free-fall time units,
depending on the flow parameters, such as Pr and Ra numbers. A similar conclusion was
reached in Sakievich et al. (2016) who showed that the time scales required to observe a
change in the large-scale pattern in a Γ = 6.3 cylinder with Pr = 6.7 and Ra = 9.6 × 107

were of the order of 600 free-fall time units.
Different from the previous work on RBC in large-aspect-ratio domains, which was

mainly concerned with the statistical properties of the structures, this work focuses on
temporal dynamics and evolution of the different structure modes in a moderately high
aspect-ratio RBC domain with Γ = 6.3, as calculated from DNS using a spectral element
approach. Unlike the previous works, we focus on an individual structure rather than their
statistical representation, so that the dynamical events that are ultimately responsible for
the large-scale properties of the turbulent superstructures can be understood from the
bottom-up perspective. The analysis of temporal dynamics of the large-scale structure
is performed via studying both the temporal evolution and the statistics of the different
azimuthal Fourier modes in a cylindrical RBC domain. The Fourier decomposition
approach allows us to highlight the dynamical processes at different scales, and their
interaction, that accompany the large-scale structure formation and evolution in a
cylindrical RBC cell. In this sense, this is the first study which bridges the gap between our
understanding of the temporal processes in a large-aspect-ratio domain with a well-studied
subject of a temporal dynamics of RBC in a unit aspect-ratio cell, and highlights the
similarities and differences between the two cases. The aspect ratio we consider, Γ = 6.3,
is about the size of the superstructures naturally found in larger aspect-ratio domains
(Hartlep et al. 2003; Stevens et al. 2018). While the effect of the boundary conditions
is present in this study, some of the features of the large-scale mode organization and
dynamics that we observe resonate remarkably well with both the time scales (Pandey
et al. 2018) and the statistical properties (Krug et al. 2019) of the superstructures found in
larger aspect-ratio domains.

The current study is performed at a single value for the Rayleigh and Prandtl numbers.
It is known that these two parameters have a significant influence on the fluid and heat
transfer dynamics in a Rayleigh–Bénard convection, including the effect on both length
and time scales (Hartlep et al. 2003; Pandey et al. 2018), and the spatial structure of
the flow (Malevsky 1995; Verzicco & Camussi 1999; Breuer et al. 2004). The evidence
that exists of the influence of Ra and Pr on length and time scales is unfortunately not
enough to form a comprehensive picture at this point. For example, previous studies have
shown that the time scales generally increase with Prandtl number while they seem to be
relatively unaffected by Rayleigh number at a fixed Pr = 0.7 (Pandey et al. 2018). It was
shown that the length scales monotonically grow with Ra at a Pr = 0.7–1 (Pandey et al.
2018; Krug et al. 2019), while this tendency might be reversed at very high values of Pr
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(Malevsky 1995). The dependence of length scales on Prandtl number at a fixed Rayleigh
number seem to exhibit a growth with Pr followed by a decay, with the maximum value
around Pr ∼ 7–10 (Hartlep et al. 2003; Pandey et al. 2018). In terms of structure, the
large-scale flow organization is dominated by rolls at lower Pr, and by cellular structures
at higher Pr, with the transition between the two regimes happening around Pr = 7
(Malevsky 1995; Verzicco & Camussi 1999; Hartlep et al. 2003; Breuer et al. 2004). The
current study can thus be viewed as an in-depth exploration of one particular regime, while
larger parametric studies are required to achieve a broad understanding of the temporal
dynamics of large-scale structures across the parameter range.

The paper is organizes as follows. In § 2 we present the problem formulation and the
numerical method. In § 3 we comment on the mean field of RBC achievable with the
finite-time DNS simulations. In § 4 the large-scale structure organization is described via
a temporal filtering approach. In § 5 we analyse the temporal dynamics and the integral
times scales of the azimuthal Fourier modes. In § 6 statistical properties of the Fourier
modes and their spatial variability are discussed, while in § 7 concluding remarks are
presented.

2. Problem formulation and numerical method

The purpose of this section is to provide a description of the problem formulation,
notation, governing equations and numerical methodology used throughout this study.
This work relies heavily on Fourier decomposition to analyse the structure of the flow field,
and so a small primer on Fourier decomposition is included at the end of this section.

2.1. Equations, computational domain and scaling
The computation domain Ω in this study is a cylinder with height H and diameter D. We
can expressΩ in cylindrical coordinates that are normalized by H and symmetrized about
the mid-plane (H/2 → z = 0) such that the normalized Ω is defined as

{Ω(r, θ, z) | r ∈ [0, Γ /2], θ ∈ [0, 2π), z ∈ [−0.5, 0.5]}, (2.1)

where Γ is the aspect ratio (Γ = D/H) of the cylinder. Here Ω is also aligned with
the gravitational vector (g) such that g/|g| = −êz, where êz is the unit normal in the
z-direction.

Velocity and temporal units are normalized by the ‘free-fall’ velocity (wf = √
βgΔTH)

and time (tf = H/wf ), where β is the coefficient of thermal expansion, g is the
gravitational constant and ΔT is the temperature difference between the top and bottom
plates of the convection cell. Here ΔT is used to normalize the temperature field and the
Boussinesq approximation is applied to the incompressible Navier–Stokes equations for
computation and analysis. The reference temperature for the Boussinesq approximation is
taken to be the average mid-plane temperature such that

ϑ = T − Tref

ΔT
∈ [−0.5, 0.5]. (2.2)

Utilizing these scales, the non-dimensional form of the Boussinesq equations for RBC
can be expressed as
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∇ · u = 0, (2.3)

∂u
∂t

+ (u · ∇)u = −∇p +
√

Pr
Ra

∇2u + ϑ êz, (2.4)

∂ϑ

∂t
+ (u · ∇)ϑ = 1√

Ra Pr
∇2ϑ, (2.5)

where u, p and ϑ are the dimensionless velocity, pressure and temperature. The Rayleigh
(Ra) and Prandtl (Pr) numbers in (2.4) and (2.5) are defined as

Ra = βgΔTH3

αν
, (2.6)

Pr = ν

α
, (2.7)

where α and ν are the thermal diffusivity and kinematic viscosity, respectively.
In this study Γ = 6.3, Ra = 9.6 × 107, Pr = 6.7. When presenting the results, the

velocity field is expressed in terms of cylindrical coordinates such that u = {ur, uθ , uz}
and ui represents any of the components {ur, uθ , uz}.

Two primary time scales are used in this work. The free-fall time scale (tf ), and an eddy
turnover (tε). Here tε approximates the mean up and down times for large-scale motions
that span the depth of the domain. It is defined as

tε = 2H√〈u2
z 〉V,t

, (2.8)

where 〈〉V indicates a spatial average over the entire domain volume V and 〈〉t is an average
in time.

Eddy-turnover time can be thought of as the average time it will take for a particle
to cross the layer depth twice driven by a turbulent diffusion. For reference, tε is
approximately 31tf in this study.

2.2. Numerical method
The data in this study is obtained by DNS using the open source spectral element
code Nek5000. Nek5000 is a thoroughly validated research code that has been used
extensively in scientific literature (see Fischer, Lottes & Kerkemeier 2008). The spectral
element method uses high-order polynomial approximation of the solution within each
element, while local element solutions are assembled globally through gather-scatter
operations (Deville, Fischer & Mund 2002). A Pn − Pn−2 (Fischer 1997) spectral element
formulation is employed herein. Temporal integration is of second order, utilizing
an implicit backward-differentiation formula for the viscous terms, and an explicit
extrapolation for nonlinear and Boussinesque terms. Pressure decoupling is performed
using the operator splitting method (Karniadakis, Israeli & Orszag 1991), and a resulting
pressure Poisson equation is solved by GMRES (Saad & Schultz 1986) with a multigrid
preconditioning. The computational grid is discretized with hexahedral elements and a
marginal amount of biasing toward the upper and lower plates is applied to the element
distribution. The spectral element method (SEM) used in this simulation also applies a
Gauss–Lobatto–Legendre (GLL) quadrature within each element which clusters points
toward the boundaries of each element and greatly improves resolution at the walls.
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(a) (b)

z y
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FIGURE 1. Images of the computational grid using spectral elements (44.6 million grid points
with a ninth-order polynomial basis in the spectral elements) (a) and an example of the
cylindrical coordinates post-processing grid with a resolution of [60, 512, 32] points in the r,
θ and z directions, respectively (b). The sampling resolution in (b) is reduced from the actual
resolution used for analysis [160, 2048, 64] to improve image quality in the figure.

Ninth-order polynomials were used for the quadrature resulting in roughly 44.6 million
grid points. A schematic of the computational domain and the spectral element grid
employed is provided in figure 1(a). In the experimental work of Fernandes (2001) it
is reported that the Kolmogorov length for RBC at this Γ , Ra and Pr is approximately
1.2 × 10−2H, and our simulation’s grid had five points within this range at the wall.
We also determined that this grid satisfies the spatial resolution criteria of Grötzbach
(1983). The temporal resolution for each time step was approximately tε × 10−4 with
a corresponding Courant–Friedrichs–Lewy range of ∼0.6–0.7. In our prior work we
conducted a a-posteriori analysis to evaluate the resolution of our results utilizing the
techniques outlined by Scheel, Emran & Schumacher (2013) and confirmed that our
simulation met the requirements for dissipation continuity across elements, as well as the
resolution with respect to the height dependent Kolmogorov and Batchelor scales (see
Sakievich et al. 2016). Boundary conditions are specified as follows: no-slip conditions
for velocity are set at all bottom, top and side walls. Temperature is set to a constant
value T = Thot at the bottom wall, and T = Tcold at the top wall, with the temperature
difference ΔT = Thot − Tcold used for non-dimensionalization in (2.2) and (2.6), while
adiabatic boundary conditions are used for the temperature at the side walls. Additional
details regarding resolution, convergence and comparison with experiments for the specific
computations in this work can be found in the prior work of Sakievich et al. (2016).

The total run time of the simulations in the current work is 3054 free-fall time units,
or close to 100 eddy-turnover times, which makes it one of the longest DNS studies of
turbulent Rayleigh–Bénard convection up to date (Sakievich et al. 2016; Pandey et al.
2018), and perhaps the longest for the considered Rayleigh number. Note that while
the current study undoubtedly pushes the limit in terms of the simulation time, it still
only covers less that one viscous time unit tv = √

Ra/Pr tf = 3800tf , and only 10 % of
a thermal diffusion time unit td = √

Ra Pr tf = 25 460tf for the current Pr number, once
again highlighting the challenges of accessing the longest possible time scales in the RBC
studies at high Ra number. While the total span of the simulations is more than enough to
capture the superstructures (Pandey et al. 2018) and their dominant dynamics, it might not
be enough to capture the effect of slow diffusive processes on their evolution.

The data for calculating statistical quantities was sampled every three free-fall times.
This choice of a sampling rate is a compromise between fine resolution in time and
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a storage requirement for a very long temporal study, such as the one performed in
the current work. The sampling rate is more than adequate for studying the long time
scales and slow energetic processes associated with the evolution of the large-scale
structures, which is the focus of the current work. For post-processing, each snapshot
is projected onto cylindrical coordinates using spectral interpolation routines native to
Nek5000, and the velocity components are transformed from Cartesian to cylindrical.
This was previously done on a smaller scale (Sakievich et al. 2016), but in this work
the transformation has been extended to the entire domain. Cylindrical coordinates are
the logical choice for analysing the current dataset and facilitate operations along the
domain’s periodic, azimuthal direction. The DNS snapshots are resampled with [160,
2048, 64] points in r, θ and z, respectively, to generate the cylindrical grids used for
analysis. Non-uniform, Gauss–Legendre (GL) quadrature is used to sample in the r and
z directions, but the θ direction uses equispaced sampling points to facilitate Fourier
transforms. Gauss–Legendre quadrature does not include the endpoints and is defined
on the standard interval x ∈ (−1, 1). Gauss–Legendre quadrature is selected to facilitate
high accuracy numerical integration and to remove unnecessary sampling at the walls of
the cell where the system is well defined. Boundaries in the z direction are constrained
with Dirichlet boundary conditions, so that sampling on them for Fourier transforms is
trivial. Points along the central axis (r = 0) are at a spatial singularity in the cylindrical
coordinate representation and provide no additional data when Fourier transforms in θ
and integration over the r–z plane are applied. The points along r = Γ/2 have Neumann
boundary conditions in the temperature field but virtually no information is lost since
the gradient at the wall is zero (adiabatic), and the GL quadrature samples very close to
the boundaries. An example image of a post-processing grid in cylindrical coordinates is
shown in figure 1(b).

The post-processing grid has a little less than half the number of grid points
when compared with the computational grid, but the change in coordinate system and
quadratures leads to non-uniform sampling ratios with respect to the original domain Ω .
In the vertical direction this causes the post-processing grid to have approximately twice
as many points in the boundary layer region, and about half as many in the bulk region.
The horizontal sampling is not as straightforward to compare because the coordinate
systems are fundamentally different. However, it is definitely the case that the centre of
the post-processing grid is sampled more finely than the computational grid. The spectral
interpolation used during resampling ensured that no wavenumber information was lost
on a post-processing grid according to its resolution, but neither is gained, compared
to the original computational grid. Figure 1 provides an example of the two different
grids (computational and post-processing), however, the number of depicted grid points is
reduced in figure 1(b) with respect to the actual post-processing grid used for analysis to
make the visualization comprehensible. The spectral element grid in figure 1(a) does not
require a reduction in sampling for visualization purposes because the GLL points within
each element can be given a different contrast.

2.3. Fourier decomposition
Fourier decomposition in the azimuthal direction renders insights into the structure of
the flow field. Fourier modes are a natural choice because the azimuthal direction is
geometrically periodic. Fourier decomposition provides additional benefits in this study
that extend beyond the mathematical significance of the modes. For example, azimuthal
motions for RBC in cylinders tend to evolve on extremely long time scales, and the
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azimuthal velocity signals are relatively weak (Brown et al. 2005; Mishra et al. 2011).
Performing an analytical decomposition such as Fourier analysis allows the azimuthal
evolution of the flow to be studied in a well understood format with precise measurements.

For a general signal u(r, θ, z, t), azimuthally periodic with a period 2π, the Fourier
series decomposition is given by

u(r, θ, z, t) =
∞∑

k=0

ûk(r, z, t) ejkθ , (2.9)

where j = √−1 and k is the integer Fourier mode number. Fourier coefficients are given
by the inverse operation

ûk(r, z, t) = 1
2π

∫ 2π

0
u(r, θ, z, t) e−jkθ dθ. (2.10)

The Fourier series representation can be approximated by a finite number of modes, N,
and a uniform convergence of a truncated series to the original signal u(x) is guaranteed
given the signal is (a) smooth, and (b) periodic. A discrete Fourier transform in this case
can be defined as

ûk(r, z, t) = 1
N

N∑
i=0

u(r, θi, z, t) e−jkθi . (2.11)

Note that in this formulation, k can be understood as the integer azimuthal mode number,
and, at each particular radius r, the angular wavenumber k̃ could be defined as

k̃ = 2π

2πr
k = k

r
, (2.12)

so that the wavelength, that gives a relation to a physical length of the structures, for each
particular azimuthal mode k at each particular radius is given as

λk(r) = 2π

k̃
= 2πr

k
, (2.13)

where the dependence on r denotes that the wavelength for a certain k mode has been
calculated at a given radius.

Throughout this work, Fourier coefficients are indicated by the û accent, and the Fourier
operator (computed with its discrete representation (2.11)) is indicated by F [u]. For each
complex Fourier coefficient ûk, its amplitude

|ûk| =
√

Re(ûk)2 + Im(ûk)2 (2.14)

and phase

Φ = tan−1 Im(ûk)

Re(ûk)
(2.15)

can be defined, where Re(ûk) and Im(ûk) correspond to the real and imaginary parts of
ûk, respectively. All averages are noted by the brackets 〈〉 and subscripts are listed by the
order in which the averaging operations are applied. For instance, 〈uz(r, θ, z, t)〉θ,t(r, z) is
the vertical profile of the vertical velocity field after averaging in the azimuthal direction
and in time.
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Throughout the paper, we also look at the scaled volume integrated values of the Fourier
coefficients defined as

{ûk}V/2π(t) = 1
2π

∫∫∫
Ω

ûk(r, z, t) dV. (2.16)

Note that the integral defined in (2.16) is also equivalent to

{ûk}V/2π(t) =
∫

z

∫
r
ûk(r, z, t)r dr dz. (2.17)

3. The mean field

The primary interest of this study is to investigate the spatial and temporal properties of
the large-scale structures in the flow field. These structures all have a finite life span and,
therefore, reside in the fluctuating field with respect to Reynolds decomposition. However,
fluctuations must be defined with respect to mean values. Therefore, it is essential to define
the mean field and the averaging operators that create the mean field about which the
fluctuations occur. Turbulence analysis typically employs the assumption of ergodicity
to define the steady-state mean field as a time average. In terms of dynamical systems
ergodicity means that every point in state space is sampled during the system’s evolution,
though in practice it is often sufficient to sample a large number of statistically independent
instances. This has been a challenge in large Γ RBC studies (Bailon-Cuba et al. 2010;
Emran & Schumacher 2015; Sakievich et al. 2016) because the large-scale patterns evolve
over very long periods of time, rendering the available samples statistically correlated, at
least with respect to large scales.

Adrian, Sakievich & Peet (2017) define these large-scale organization as ‘super-coherent
states’ because the strong spatio-temporal coherence persists over many eddy-turnover
times. A super-coherent state can be thought of as a deep basin of attraction in state
space where the realizations within the basin have a strong similarity (i.e. they are highly
correlated) over a very long period of time. It can seem like the system is converging
to a steady state within one of these basins when in reality the total state space can
contain other deep basins, and transitions between these basins may be triggered by some
perturbation events.

Adrian et al. (2017) show that in the case of moderate and large Γ RBC in cylindrical
domains there are multiple states that have the potential for super-coherency and that
some of these states can be identified by the symmetries of the domain and the boundary
conditions. For example, in our previous work (Sakievich et al. 2016) a large, long-lived
updraft was observed in the central region of the cylinder, and this updraft biased the
statistics in an otherwise stationary system. This updraft could just as likely have been a
downdraft in another realization of the flow, just as an evenly balanced coin has equal
probability of landing on heads or tails over a sufficient number of samples. Another
example of a deep basin is highlighted by the azimuthal symmetry of a cylindrical RBC
cell. Since there is nothing to constrain the orientation of the flow’s structure the system
has an equal probability of assuming any azimuthal orientation, and so ergodicity demands
that over a long enough period every orientation must be sampled. Even if the large-scale
structures are not observed to rotate about the cylindrical domain’s central axis during a
simulation or experiment within the state space that defines the Reynolds average, these
different orientations must be sampled. The key mechanisms that have been identified
for reorienting the large-scale structures are cessations and rotations, but up to this point
they have only been observed in Γ ≤ 1 systems (Brown et al. 2005; Mishra et al. 2011).
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The challenge for turbulent RBC is that obtaining a sufficient number of samples, or
sufficient averaging time to sample many of these deep basins of attraction is a non-trivial
task since these dynamic events tend to evolve over long periods of time and state
perturbations occur infrequently.

Luckily the symmetries of the RBC system can be employed to account for orientation
changes and directional bias of the large-scale structures. Conventionally employed
azimuthal averaging can be used to account for all possible azimuthal orientations of
an observed structure, while Adrian et al. (2017) define an additional transformation to
account for the vertical antisymmetry imposed by the thermal boundary conditions and
the direction of gravity. This transformation can provide a mean field that accounts for
the equal probability of updraft and downdraft. An unbiased mean is defined as a mean
computed based on the sum of the current state u(r, z, θ, t), and a new state S[u(r, z, θ, t)],
where S[ ] is the symmetry transformation operator defined by Adrian et al. (2017), and
is described in more details in appendix A. Due to a commutativity of the azimuthal and
time averaging operators with the symmetry transformation, a new unbiased mean can be
defined as

〈u(r, θ, z, t)〉SM
θ,t (r, z) = 〈u(r, θ, z, t)〉θ,t + S[〈u(r, θ, z, t)〉θ,t]

2
, (3.1)

where the superscript ‘SM’ stands for a symmetrized mean. Fluctuating quantities are then
defined with respect to this new mean field,

u′
i(r, θ, z, t) = ui(r, θ, z, t)− [〈ui(r, θ, z, t)〉SM

θ,t ]. (3.2)

The mean operator 〈〉SM
θ,t can also be expressed in terms of Fourier coefficients, as given

below

〈ui(r, θ, z, t)〉SM
θ,t (r, z) = 〈ûi(r, k = 0, z, t)〉t + S[〈ûi(r, k = 0, z, t)〉t]

2
, (3.3)

since the contribution of any non-zero azimuthal mode will be zero due to azimuthal
averaging. Conversely, this also means that the fluctuating field contains the higher-order
modes k > 0, and the mode k = 0 fluctuations.

In this work we have applied the transformation defined by (A 1) to the azimuthally
and time-averaged mean fields to construct an approximation based on (3.1) for the
Reynolds averaged mean fields from the available finite-time DNS sampled data originally
containing ‘super-coherent states’ (Sakievich et al. 2016; Adrian et al. 2017). Figure 2
shows the symmetrized mean statistics for the temperature and the azimuthal velocity
field, with radial and vertical mean velocities superimposed as vector plots in figure 2(b).
The mean field in figure 2 displays several interesting characteristics. We note that the
transformation (A 1), (3.1) is designed to remove the bias in preferential statistically
significant thermal updraft and downdraft congregations, which primarily targets a
symmetrization of the temperature field and the associated vertical velocity field. Judging
by a relative quiescence in both temperature and vertical velocity non-uniformities in the
central region of the cell in figure 2, one can see that the transformation did successfully
achieve that goal. However, starting at the sidewalls (r = Γ/2), two counter-rotating roll
cells can be observed with stagnation point at z = 0 (horizontal midplane) where the two
roll cells meet. Additionally, a thermal boundary layer can be seen along the adiabatic
sidewalls. These roll cells and the accompanying boundary layers are in-line with the
vertical antisymmetry of the mean temperature field and are not expected to be removed
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FIGURE 2. Azimuthal and temporally averaged mean fields. The colour plot in (a) corresponds
to 〈ϑ〉θ,t and in (b) it corresponds to 〈uθ 〉θ,t, while the vector field in plot (b) is the
two-dimensional vector of 〈{ur, uz}〉θ,t where the peak vector magnitude is 0.06 wf . All length
scales are normalized with H.

by a proposed transformation , and, thus, they are likely to be present in the true Reynolds
averaged flow field due to the effect of side walls. The mean azimuthal velocity component
shows that a preferential direction for rotation or drift is not consistently present across the
entire time series, i.e. net rotation is not a product of the mean that has been constructed
from this dataset. However, local patches of weak non-zero azimuthal velocities can
be observed in the mean field presented in figure 2(b). As noted in the appendix A,
the current transformation is not meant to mitigate a potential bias in the azimuthal
velocities due to a structure drift. Accounting for the azimuthal symmetry with yet another
transformation could further improve the mean statistics in the azimuthal velocity field
shown in figure 2(b). On the other hand, the computed mean azimuthal motions are weak
and will likely asymptotically approach zero ‘in a natural way’ as the number of samples
is progressively increased.

Finally, we would like to note that the observed corner structures in temperature and
velocity fields are solely due to the effect of side walls, no-slip or stress free, and, thus, are
expected to vanish in the situations with periodic boundary conditions and with infinite
aspect ratio Γ → ∞ cells. A mean flow that is identically zero everywhere would thus
be expected for the infinite aspect ratios. However, one has to be careful with periodic
boundary conditions, since they still impose a non-physical domain truncation and, thus,
unphysically affect the length scales of the structures that have to be ‘squeezed’ into a
finite-size domain. It is hard to say what effect, if any, it will have on mean flow in the RBC
problem, but unphysical modifications to mean flow due to periodic boundary conditions
were previously reported in the simulations of channel flows due to a ‘structure locking’
phenomenon (Munters, Meneveau & Meyers 2016; Chatterjee et al. 2018).
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4. Global description of the large-scale structure

In this section the largest scales of the flow field are investigated using azimuthal Fourier
decomposition. They are of interest because of the important role they play in transporting
energy. It will be shown that these large-scale structures contain the majority of the energy
in the flow field, persist for long periods of time, and are responsible for much of the flow
inhomogeneity. Figure 3 shows the scaled volume integrated (see (2.16) for the definition)
and time-averaged energy spectra of the three velocity components, 〈{|û′(r, k, z, t)|2}V/2π〉t,
and temperature (defined analogously).

The spectra in figure 3 indicate that the k = 2 Fourier mode is the most dominant mode
over the range of the simulation. The peak is very pronounced in the temperature and
azimuthal velocity fields, but more subtle in the radial and vertical velocity components.
Even though the spectra in figure 3 indicates that the dominant structure over the life
span of the simulation was the k = 2 mode, it does not provide a clear indication of the
spectra’s evolution in time. In the authors’ previous work (Sakievich et al. 2016) and the
work of Bailon-Cuba et al. (2010) no significant evolution of the large-scale structures
was observed on the time scale of the simulations which was about O(102)tf at similar
aspect ratios. However, in the work of Emran & Schumacher (2015) it was estimated that
the large-scale structures would drift on time scales of O(103)tf , albeit for a higher aspect
ratio, lower Pr and a lower Ra flow field. In the present work the simulation time has
been extended to the order where a global drift of the large-scale structures has been
predicted by Emran & Schumacher (2015). Note that for the current parameter range of
Ra = 9.6 × 107, Pr = 6.7, the drift time scales might be even higher (Brown et al. 2005;
Pandey et al. 2018).

Observations of the evolution in the flow field are provided in this section through
temporal filtering of the dataset. Temporal filtering is defined as a box cut filter
(1/T)

∫ ti+T
ti

G(t′) dt′, where the time period T = 600tf was chosen for the filtering duration,
and the starting times of filtering ti were, respectively, 0, 600tf , 1200tf , 1800tf and 2400tf .
Figure 4 contains the scaled volume integrated energy spectrum of the temporally filtered
temperature field for these time intervals, {|F [〈ϑ ′(r, θ, z, t)〉t ]|2}V/2π. Temporal filtering
removes the majority of the small-scale structures leaving the highly correlated large-scale
structures clearly visible, and it is a good technique for observing the slowly evolving
large-scale dynamics (Sakievich et al. 2016). The temperature field’s spectrum is selected
for comparison because it contains the most distinguished peak in figure 3. Visualizations
of the temporally filtered temperature field as it evolves in time are provided in figure 5,
and the instances in figure 5 correspond to the energy spectra plots in figure 4.

Figure 4 shows that over the first 600tf the dominant mode is k = 3, which corresponds
to the structure observed in Sakievich et al. (2016). However, in the next 600tf , the
dominant mode transitions to k = 2. The first instance of the filtered field also shows
a larger distribution of energy in the other low-order modes, including the zeroth and
the first mode (see figure 4), but by k = 12 the energy content is about the same for
all instances of the filtered field. The second instance of the filtered field shows higher
energy content in modes k = 1 and 3 (which are likely the remnants of the previous state
of the structure), but by the third instance the energy has concentrated predominantly in
k = 2. One possible interpretation of this transition is that the observed k = 3 dominant
structure is less stable than the structure corresponding to k = 2 because the turbulent
thermal energy is distributed among a larger number of low-order modes.

Looking at the individual modes can help explain their contribution to the overall flow
field. The first few low-order modes and their cumulative summations corresponding to
temperature fields in figures 5(a) and 5(e) are provided in figures 6 and 7.
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FIGURE 3. Scaled volume integrated energy spectra averaged in time, (t ∈ [0, 3054tf ]).
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FIGURE 4. Scaled volume integrated energy spectrum for the temporally filtered temperature
field. Filtering is performed by applying a temporal average with a period of 600tf . The legend
entries refer to the averaging period of each instance in multiples of tf .

The modes in figure 6 can be interpreted with the following roles: k = 0 establishes a
central, warm column, k = 1 and 2 shift the central column and bias the structure away
from the centre breaking its symmetry, and k = 3 finalizes the hub-and-spoke like pattern
that was outlined in Sakievich et al. (2016). A qualitative comparison of figures 6(h) and
5(a) show that the total structure is well described by the first 4 (k = 0 : 3) Fourier modes
and figures 6(i) and 6( j) show that three-dimensional representation of these modes takes
the form of large-roll cells that span the entire layer depth.

However, examination of the modes displayed in figure 7 shows that as the simulation
evolves the structure becomes almost fully described by k = 2. This convergence of energy
and structure toward a single mode seems to indicate a stabilization for the system as a
whole. It could be the case that k = 2 is the long-term structure of the flow field at this
Γ , Ra and Pr, but because the k = 3 structure remained coherent for approximately 1/5th
of the total simulation time, nothing definitive can be determined. It is still possible that
the system could undergo yet another transition or modulate back to a k = 3 dominated
structure. For future studies of RBC, it is also worth noting the length of time in which this
transient evolved in moderate to large Γ where multi-roll cell structures persist, especially
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FIGURE 5. Temperature at the mid-plane of the cell and the accompanying in-plane vorticity
represented as a vector field after temporally filtering over a period of 600tf . The time ranges
covered by each subplot are, in multiples of tf : (a) [0, 600), (b) [600, 1200), (c) [1200, 1800),
(d) [1800, 2400), (e) [2400, 3000). Temperature is scaled from [−0.05, 0.05] in all subplots. All
length scales are normalized with H.

since the time scale of this transition is larger than the entire simulation time in many
previous studies. We should also note that even though we are using the dominant modes
to describe the overall structure observed in this study, it is entirely possible for the modes
to decay and emerge independent of one another. For example, it is possible that the k = 0
and/or k = 1 modes will reappear while the k = 2 mode is dominant and create a different
state which could include global updrafts and downdrafts observed with the current k = 3
structure, or cause a reversion back to the k = 3 state. In fact, a slight downward reversal
of the k = 0 mode can already be noticed in figure 5(e), where a weak connection of
cold plumes, as opposed to hot plumes, can be observed, and in figure 7(e), where slight
negative temperatures in the central region resulting form k = 0 mode contribution can be
seen.

To draw a similarity with a turbulent pipe flow, a concentration of energy in a few
low-order azimuthal modes was observed experimentally by Bailey & Smits (2010), and
computationally by Baltzer, Adrian & Wu (2013), with the dominant azimuthal mode
being k = 3 in both studies.

Finally, we would like to offer a potential explanation for the dominance of k = 2
and k = 3 modes in the current RBC case with Γ = 6.3. Defining a mode wavelength
(normalized with H) as

Λk = πΓ

k
, (4.1)
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FIGURE 6. Contribution from individual Fourier modes for the temporally filtered temperature
field (F−1[F[〈ϑ(Ω)〉t](k)]) that has been averaged over the interval t ∈ [0, 600), in multiples
of tf : (a–d) corresponding to k = 0 to 3, respectively. Summation of Fourier modes
(F−1[

∑
k F[〈ϑ(Ω)〉t]]) k = 0 (e), k = 0 : 1 ( f ), k = 0 : 2 (g) and k = 0 : 3 (h). Subplots (i)

and ( j) are three-dimensional renderings of subplots (d) and (h), respectively. Temperature is
scaled from [−0.05, 0.05] in all subplots and all horizontal plots are at the mid-plane. All length
scales are normalized with H.

and relating this wavelength Λk to a typical size of the superstructures reported to be
around 6–7H in terms of their spectral wavelength for convection in air (Hartlep et al.
2003; Pandey et al. 2018; Stevens et al. 2018), yields k = 2.8–3.3 for the Γ = 6.3
case. However, we should bear in mind that the current simulations are performed for
convection in water, with Pr = 6.7, versus convection in air, where Pr ∼ 0.7. Pandey
et al. (2018) showed that the structure sizes are supposed to increase for water versus air by
approximately 1.5 times, while Busse (1994) measured the sizes to be around 9–10H for
his experiments with Pr ∼ 7 fluids at Ra = 105–106. For Λk = 10, (4.1) recovers k = 2
precisely, thus hinting that both k = 2 and 3 modes are consistent with the previously
reported structure sizes. Moreover, for Γ = 1, this relationships gives Λ1 ∼ 3 being the
largest possible wavelength fitting into a Γ = 1 cell, which is still smaller than the natural
size of the superstructures that would want to be formed, explaining why the k = 1 mode
is dominant in the Γ = 1 case. Note that the wavelength Λk defined in (4.1) is essentially
equivalent to λk(r) in (2.13) evaluated at r = Γ/2 for a given RBC cell.
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FIGURE 7. Contribution from individual Fourier modes for the temporally filtered temperature
field (F−1[F[〈ϑ(Ω)〉t](k)]) (Write Ω as (r, θ, z, t)) that has been averaged over the interval
t ∈ [2400, 3000), in multiples of tf : (a–d) corresponding to k = 0 to 3, respectively. Summation
of Fourier modes (F−1[

∑
k F[〈ϑ(Ω)〉t]]) k = 0 (e), k = 0 : 1 ( f ), k = 0 : 2 (g) and k = 0 : 3

(h). Subplots (i) and ( j) are three-dimensional renderings of subplots (c) and (g), respectively.
Temperature is scaled from [−0.05, 0.05] in all subplots and all horizontal plots are at the
mid-plane. All length scales are normalized with H.

5. Temporal dynamics of the large-scale structure

5.1. Temporal evolution of the flow field
In the previous section it was shown that the large-scale flow transitioned from a structure
dominated by a k = 3 Fourier mode to one dominated by a k = 2 Fourier mode. In this
section the temporal evolution of the transition will be investigated in greater detail using
visualization of the unfiltered mid-plane temperature field.

Figure 8 presents snapshots of ϑ(r, θ, z = 0, t) at times that bracket the transition each
separated by 90tf . In figure 8(a) the flow is dominated by the k = 3 mode, albeit with the
warm spokes located at two o’clock being rather weaker than the other two spokes. In
figure 8(b) the one o’clock spoke weakens more as the upward plume at the centre of the
cylinder becomes stronger. The process continues in figure 8(c) wherein the warm plume
at one o’clock has almost vanished, and the central updraft plume has moved toward the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

58
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.588


901 A31-18 P. J. Sakievich, Y. T. Peet and R. J. Adrian

3.0

2.0

1.0

–1.0

–2.0

–3.0
–3.0 –2.0 –1.0 0 1.0 2.0 3.0

0

3.0

2.0

1.0

–1.0

–2.0

–3.0
–3.0 –2.0 –1.0 0 1.0 2.0 3.0

0

3.0

2.0

1.0

–1.0

–2.0

–3.0
–3.0 –2.0 –1.0 0 1.0 2.0 3.0

0

3.0

2.0

1.0

–1.0

–2.0

–3.0
–3.0 –2.0 –1.0 0 1.0 2.0 3.0

0

y-
ax
is

y-
ax
is

Time = 757.328 Time = 847.328

Time = 937.328 Time = 937.328

x-axis x-axis

–5.0 × 10–2 5.0 × 10–2–2.5 × 10–2 2.5 × 10–20

(a) (b)

(c) (d )

FIGURE 8. Instantaneous snapshots of temperature at the mid-plane during the transition of the
global pattern. Snapshots are spaced 90tf apart covering approximately 8.7 eddy-turnover time
units.

spoke at ten o’clock. Finally, in figure 8(d) the central upward plume has merged with
the ten o’clock spoke and the one o’clock spoke has vanished completely, leaving a large
structure that is clearly dominated by the k = 2 mode. Compare figure 8(d) to the pure
k = 2 mode in figure 7(c) and the mixture of k = 0, 1, 2 modes in figure 7(g). The process
illustrated by the snapshots in figure 8 requires 270tf , or approximately 8.7 eddy-turnover
times.

A more detailed investigation of the transition is performed by plotting the
scaled volume integrated Fourier coefficients for a given mode defined by (2.16).
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Volume integration removes the localized spatial variations of the mode and allows
the temporal evolution to be investigated from a macro perspective. Even though the
volume integrated Fourier coefficients only depend on wavenumber and time, they are
still complex variables. The phase and amplitude of the volume integrated coefficient can
simultaneously change with time.

Figures 9 and 10 display the temporal evolution of ûr and ϑ̂ fluctuations for the first
five (k = 0 : 4) volume integrated Fourier modes in terms of their phase and amplitude.
Note that the k = 0 modes represent an azimuthal mean of the corresponding physical
quantities, and their further integration with (2.17) results in volume averaging in physical
space, which is identically zero for ûz and ûr due to mass conservation. The reader is
cautioned that while interpreting figures 9 and 10 to remember that any phase jumps of
2π in the plots are continuous in phase space. In general, the modes in figures 9 and
10 share some common behaviour. The variables and plots are divided into two highly
correlated groups, ûz with ϑ̂ in figure 9 and ûr with ûθ in figure 10. A strong degree
of correlation between ϑ̂ and ûz dynamics testifies that temperature and vertical velocity
are the signatures of the same large-scale structure, consistent with the findings of Krug
et al. (2019). The ϑ̂ and ûz coefficients for the low-order modes except for k = 2 show
larger mean amplitudes and smaller fluctuations in phase during the initial part of the
simulation. During the transition from a k = 3 to k = 2 in the interval 500 < t/tf < 1000,
the amplitude of the dominant structures tends to decrease, and the phase fluctuations tend
to increase.

While the signature of the transition from a k = 3 to k = 2 dominant structure around
500–1000tf can be seen in each of the low wavenumber modes, the effects are most
clearly displayed in the k = 2 and k = 3 modes. Inspection of the amplitude and phase
for k = 2 and k = 3 shows that the amplitude of k = 3 starts out at a relatively large value
and, beginning at around 500tf , decays steadily to a negligible value over another 500tf ,
completing the process around 1000tf . Furthermore, while the amplitude is large, the
phase remains relatively constant, but once the amplitude dies down the phase fluctuations
increase. The opposite effects are seen in the k = 2 mode where the amplitude is initially
low but then gradually increases over the same period that k = 3 decays.

A simple analysis of the time scales involved with the dynamical processes occurring
in Rayleigh–Bénard convection can be presented by estimating a ‘mode turnover time’,
which is the time it takes a particle to travel one full circuit in a particular mode k. The
full circulation length for each mode (normalized with H) can be defined as

L = 2 +Λk, (5.1)

where Λk is the kth mode wavelength given by (4.1), which yields

L = 2
(

1 + πΓ

2k

)
. (5.2)

The ‘mode turnover’ time therefore can be defined through a classical eddy-turnover time
as

tk =
(

1 + πΓ

2k

)
tε. (5.3)

Note that in the eddy-turnover time definition, (2.8), the variance of the vertical velocity
fluctuations is used as a velocity scale. In the present study the magnitude of the horizontal
and vertical velocity fluctuations is of the same order, consistent with the observations in
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FIGURE 9. Temporal evolution of the scaled volume integrated Fourier coefficients of ûz and ϑ̂
for k = 0 : 4 plotted in terms of amplitude (a,c,e,g,i) and phase (b,d, f,h,j). Each row of figures
corresponds to a separate wavenumber with the top row corresponding to k = 0 and the bottom
row corresponding to k = 4. The units of Φ are in radians. The phase plots have been rescaled
to cover a range of 4π to highlight the low frequency cycles that occur in the temporal evolution
of these modes. (a,b) k = 0, (c,d) k = 1, (e,f) k = 2, (g,h) k = 3, (i,j) k = 4.

Stevens et al. (2018), so the same velocity scale can be used in the mode turnover time
definition. It can be seen that both the mode number and the aspect ratio play a role in the
calculation of a mode turnover time. The presented time scale definition is similar in spirit
to the filtering time scale defined in Pandey et al. (2018), albeit they use the statistically
averaged structure size in their definition, while we adapt the mode circulation length as
the length scale, which allows us to distinguish between the temporal scales of the different
modes that contribute to the overall dynamics of the large-scale structure. Also note that
Pandey et al. (2018) introduce an empirical factor of three into their time scale definition,
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|û′|

|û′|
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FIGURE 10. Temporal evolution of the scaled volume integrated Fourier coefficients of ûr and
ûθ for k = 0 : 4 plotted in terms of amplitude (a,c,e,g,i) and phase (b,d,f,h,j). Each row of figures
corresponds to a separate wavenumber with the top row corresponding to k = 0 and the bottom
row corresponding to k = 4. The units of Φ are in radians. The phase plots have been rescaled
to cover a range of 4π to highlight the low frequency cycles that occur in the temporal evolution
of these modes. (a,b) k = 0, (c,d) k = 1, (e,f) k = 2, (g,h) k = 3, (i,j) k = 4.

which ‘accounts for the fact that an individual parcel is not perfectly circulating around in
such a roll when the flow is turbulent’. We choose not to introduce any empirical factors,
but admit that the proposed time scale is only an order of magnitude estimate, and it might
take several of such time scales for a particular event to happen, as discussed below.

Since the mode turnover time reflects the time it takes an information (disturbance)
to propagate across the entire mode, it should be representative of the time scales
associated with the mode destabilization. The time scale analysis with (5.3) predicts, for
an aspect ratio Γ = 1, where a single k = 1 mode dominates, a time scale of t(1)1 = 2.57tε .
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For an aspect ratio Γ = 1, Mishra et al. (2011) identified a time scale of 10tε as the time
scale associated with the LSC reversal, while Brown et al. (2005) reported 30tε as the
average time between reorientations. However, these time scales refer to the time between
the reorientation events, and not to the duration of the events themselves. If one closely
examines the data presented in, for example, Brown et al. (2005), Mishra et al. (2011) and
Zürner et al. (2019) one can see that the time scale associated with the process of transition
of the global structure into a state with a new LSC reorientation, i.e. from the beginning
of the mode destabilization to the time when it stabilizes again, is on the order of 2tε in
Brown et al. (2005) and Zürner et al. (2019), and on the order of 2.63tε in Mishra et al.
(2011), well in line with the predicted t(1)1 = 2.57tε from (5.3). Thus, while cessations in
unit aspect-ratio cells are often perceived as instantaneous events, they are, in fact, events
of a finite, albeit short, duration. While a phase reversal happens almost instantaneously
during the LSC reorientation, the other accompanied events, such as a decrease of the
k = 1 mode amplitude preceding the phase reversal (or partial reversal), and a subsequent
increase back to its original value, happen more gradually (Brown et al. 2005; Brown &
Ahlers 2007). For a current aspect ratio of Γ = 6.3, the time scales associated with the
destabilization of the modes are about six times larger for a given k. The corresponding
time scales for the first three modes k = 1, 2, 3 would be t(6.3)1 = 10.90tε , t(6.3)2 = 6.00tε and
t(6.3)3 = 4.30tε , which, if scaled with the free-fall time units, are t(6.3)1 ∼ 300tf , t(6.3)2 ∼ 200tf

and t(6.3)3 ∼ 130tf . Note that the duration of the observed 3 to 2 mode transition correlates
well with these time scales.

One can observe that as the mode number k → ∞, the mode turnover time converges
to a constant value of tε , irrespective of Γ . This perhaps can explain a self-similarity of
higher-order modes, and an apparent lack of dependence on the problem geometry, as will
be illustrated below. This also shows that the time scale of an eddy turnover is still a valid
measure to describe the fast processes in the RBC cell.

The 3 to 2 mode transition in the global structure in the current Γ = 6.3 domain occurs
on a time scale of approximately 500tf , or 16 eddy turnovers, but it involves not only
modes k = 2 and k = 3, but the other low-order modes, for example, k = 1. A careful
observation of the k = 1 mode behaviour in figure 9(c) shows a rather rapid decrease in
its amplitude around the time t = 500tf followed by a relatively rapid increase back to its
original value, with another event of a vanishing amplitude for k = 1 at t = 1000tf . A rapid
decay in amplitude remarkably resembles the cessations observed in Mishra et al. (2011)
where it was shown that the k = 1 mode amplitude rapidly vanishes during cessation. A
close inspection of the phase diagram in figure 9(d) reveals that this rapid decrease is
indeed accompanied by a phase shift close to 180◦, pointing to a reorientation in a mode 1.
These mode 1 cessations happen to fall onto the interval corresponding to the mode k = 3
to 2 transition, which suggests that the two events might be associated with each other.
Interestingly, the duration between the consecutive cessations correlates well with t(6.3)1
predicted by (5.3), which might signify that they are associated with the same k = 1
destabilization event and might resemble double cessations identified in Γ = 1 cells (Xi
et al. 2006; Mishra et al. 2011), albeit on longer time scales here than in unit aspect-ratio
domains, commensurate with the 6.3 times difference in the aspect ratio. Note that mode
2 also exhibits an event similar to a cessation at a time of approximately 300tf where its
amplitude essentially vanishes and its orientation rapidly changes. While such cessations
in a dominant mode would lead to a complete reorientation of the structure, they do not
result in observable changes when the modes are not dominant. This once again testifies
of a relative complexity of a wide aspect-ratio system, where a global reorganization is a
more complex process that involves the mode interaction.
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FIGURE 11. Temporal evolution of the scaled volume integrated Fourier coefficients plotted
on the complex plane for k = 2 (a,c) and k = 3 (b,d), where (a,b), ◦ = ûr, and (c,d), � = ûθ .
Markers are colour-coded according to their time, from blue (start of the simulations) to red
(finish).

In general, the k = 2 and k = 3 modes exhibit similar characteristics during the time
periods when each respective mode is the most dominant mode in the flow field. However,
there is one notable difference between the temporal evolution of the phases for these
two modes. While the phase of k = 3 remains virtually constant during its period of
dominance (albeit showing signs of low-amplitude, low-frequency fluctuations), the k = 2
mode’s phase changes at a relatively constant rate. This indicates a steady rotation event
for the k = 2 mode that becomes strikingly clear when the scaled volume integrated
coefficients are plotted on the complex plane. Plotting on the complex plane (see figures 11
and 12) is another intuitive way to view the changes in amplitude and phase for a given
wavenumber.

The trajectory of the k = 2 mode for the temperature ϑ̂ in figure 12(c) begins near the
origin and as time progresses it tracks up along the imaginary axis and then begins to
drift into quadrant two of the real-complex plane. The rate of rotation manifested by a
steady increase in the phase angle Φ is measured to be 1.1 degrees per eddy turnover by
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FIGURE 12. Temporal evolution of the scaled volume integrated Fourier coefficients plotted
on the complex plane for k = 2 (a,c) and k = 3 (b,d), where (a,b), � = ûz, and (c,d), 
 = ϑ̂ .
Markers are colour-coded according to their time, from blue (start of the simulations) to red
(finish).

employing a least squares fitting of the k = 2 phase in figure 9( f ) from a time of 1800tf
to the end of the simulation. Careful inspection of figure 5 also shows that a very slow
clockwise rotation is starting to occur in the large-scale structure. However, it is hard to
discern by just looking at visualizations of the flow field because the individual lobes of
the large-scale structure modulate and shift in size. Figures 12(a) and 12(c) give a more
clear indication that rotation is indeed occurring in the large-scale structure of the flow.

The trajectory of ϑ̂ for k = 3 in figure 12(d) begins in quadrant three of the real-complex
plane. Low-amplitude fluctuating azimuthal motions of this mode manifested in a
swinging shift in phase are noticeable in the early parts of the trajectory. As time
progresses, the ϑ̂ coefficient moves toward the origin and upon arrival it begins to fluctuate
about the origin.

As a general observation, when the mode is the dominant mode in the large-scale
structure, its complex Fourier coefficient drifts away from the origin, and when it loses
its dominance it becomes centred around the origin with a rapidly changing amplitude
scattered between zero and some threshold value. The same can be said about the
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behaviour of ûr and ûθ coefficients, even in the modes 2 and 3, shown in figure 11, which
reflects the fact that these variables do not play an active role in the global structure
dynamics. The key observation here is that active components of the dominant modes
display persistence in terms of phase and amplitude of their Fourier coefficients, while
the supporting modes display chaotic behaviour with zero mean in all their Fourier
coefficients.

Even though there appears to be no net rotation when the k = 3 mode is dominant on a
time scale while it persisted, a rotation event is occurring in the k = 1 mode. Figure 9(d)
shows a steady change in phase for the first 1500tf of the simulation, after which it suddenly
begins to see large fluctuations in phase like the k = 3 mode.

During the first 500tf , the k = 1 mode rotates approximately 60◦ with a least squares
fit providing a rotation speed of approximately 3 degrees per eddy turnover. The phase
jumps up and down during the period 500–1000 tf between the two cessations (marking
the period of mode 3 to 2 transition), when at the time of 1000tf , a sudden acceleration
occurs, and a higher value of rotation velocity persists until 1500tf , at which time the phase
randomizes. Interestingly, the moment of sudden acceleration in k = 1 rotation coincides
with a second cessation of this mode, and a completion of k = 3 to k = 2 transition. Brown
& Ahlers (2007) reported a similar phenomenon of a rapid acceleration of motion in the
azimuthal direction accompanying a cessation predicted by their stochastic LSC model
which was explained by the fact that when the amplitude becomes small, the azimuthal
motion becomes fast, due to a reduction in the LSC angular momentum. The above
observations indicate that there may be a connection between the dynamics of the k = 1
mode, i.e. rotation and cessation, and the transition of the flow’s global structure. The
k = 1 mode rotation and cessation supports our observation that the transition is marked
by the movement of the central column, while the phase fluctuations of the k = 3 mode
can explain the azimuthal shifts of the large-scale structure lobes along the edge of the
domain (see figure 8).

The rotation rate of 3 degrees per eddy turnover corresponds to a time scale of rotation
of approximately 40–60 eddy turnovers (per 1/2 revolution). A rotation rate of 1.1 degree
per eddy turnover observed for mode 2 corresponds to the time scale of 160 eddy
turnovers (per 1/2 revolution). Interestingly, very different time scales associated with the
rotation were also observed in Brown et al. (2005). Fast rotation typically classified as a
reorientation seemed to scale with the time of about 10 eddy turnovers for Γ = 1, which is
approximately 3.6t(1)1 , while much slower drift that was not associated with a reorientation
event would occur on time scales of an order of magnitude larger. Similar time scale
discrepancy in a duration between different reorientation events was observed with Γ = 1
in Sreenivasan, Bershadskii & Niemela (2002). The current Γ = 6.3 cell is shown to
exhibit similar dynamics, where the rotation of mode 1 accompanied by a mode transition
scales on a mode turnover time 3.6–5.5t(6.3)1 , while a slow rotation in a persistent mode 2,
not undergoing a transition, is approximately 26.6t(6.3)2 . Brown & Ahlers (2006, 2007)
attributed slow rotations, or drifts, to diffusive processes. Viscous time scale is given by
tv = √

Ra/Pr tf (Pandey et al. 2018), which, for given flow parameters, is equal to 3800tf ,
or 120tε , while a thermal diffusion time scale is td = √

Ra Pr tf = 25 460tf = 804tε for
the current Pr = 6.7 case. It is seen that the slow mode rotation events (‘azimuthal jitter’)
are expected to occur on very long time scales in the current case, and a slow rotation
observed in mode 2 indeed falls in between these time scales.

So far virtually all of the discussion for the volume integrated Fourier coefficients has
centred on the ϑ̂ and ûz fields. These two fields are highly correlated, and they tend
to describe the events that are oriented in the inhomogeneous, vertical direction, and
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provide a profound amount of information regarding the time scales and dynamics that
are associated with the large-scale structure’s transition.

Figure 10 shows that the amplitude of ûr changes rapidly in time, but the magnitude of
these fluctuations stays within a specific band for each wavenumber. Meanwhile, the phase
of ûr for each wavenumber tends to evolve at a slower pace with several low frequency
components. These time scales are measured by performing a fast Fourier transform (FFT)
analysis of the ûr and ûθ signals in figure 10 (using time as the abscissa). This analysis
allows us to identify the temporal frequencies and their accompanying periods that are
associated with the consistent phase oscillations in these fields. Since these temporal
signals are not strictly periodic, a Blackman window function is multiplied with the signal
prior to taking the FFT to improve peak detection by limiting spectral leakage (Blackman
& Tukey 1958). The measured peaks are not consistent between wavenumbers, but the
general trend is that the ûr and ûθ amplitudes fluctuate with time scales on the order of
1 eddy-turnover time, while the phases change at a much slower rate with time scales of
O(10) eddy turnovers. This is consistent with the behaviour that is exhibited by ûz and ϑ̂ in
the non-dominant modes. Non-dominant modes are characterized by the mode numbers k
below 2, and k greater than 3. The k = 2 mode is non-dominant at a time below 500tf , and
the k = 3 mode is non-dominant at a time above 1000tf . The primary difference between
{ûz, ϑ̂} and {ûr, ûθ } groups of variables is that the {ûr, ûθ } coefficients of the non-dominant
as well as the dominant modes show no noticeable change in the behaviour of their phase
and amplitude throughout the course of the simulation, and, thus, seem to be unaffected
by the large-scale mode transition, as was previously observed in figure 11.

The distinction between the coefficients of the horizontal velocity components and
ûz and ϑ̂ becomes less clear at higher wavenumbers. The temporal evolution of two
additional modes (k = 5 and k = 10) is plotted in figure 13 to show how the phase
and amplitude of the volume integrated coefficients are affected by increasing Fourier
wavenumber. Figure 13 shows that as the wavenumber increases, so do the frequencies
associated with the temporal evolution of the coefficients, consistent with the tk prediction
in (5.3). The rapid oscillations and lack of distinction between the behaviour of the
individual variables indicates that the high-wavenumber fields are becoming increasingly
random in nature, and less descriptive of the physical system as a whole. Also, it is
worth noting that the amplitudes of the high-frequency modes are higher for the vertical
and radial velocities as opposed to the temperature and the azimuthal velocity. Stronger
high-frequency contributions to the energy content for the vertical velocity rather than the
temperature were also previously observed by Krug et al. (2019).

5.2. Integral time scale
In this section we attempt to quantify the temporal behaviour of the modes by measuring
the classical integral time scale, T . Normally T is interpreted to be the coherence time of
the flow field. It is defined in terms of the autocorrelation function,

Rii(Ω, τ) = 〈ψi(Ω, t + τ)ψi(Ω, t)〉t, (5.4)

where ψ is a vector containing variables of interest and τ is the temporal offset between
the two instances of the flow field, or snapshots. Usually ψ is taken to be the turbulent
velocity field (ψ = {u′

r, u′
θ , u′

z}), where the prime indicates the fluctuating portion of the
velocity. An autocorrelation based on this particular vector will determine a correlation
based on the turbulent kinetic energy. A summation over the indices i = 1 . . . d, where
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|û′| Φ
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FIGURE 13. Temporal evolution of the scaled volume integrated Fourier coefficients of ûz, ϑ̂
(left pane) and ûr, ûθ (right pane) for k = 5 (a–d), k = 10 (e–g) plotted by amplitude (left) and
phase (right). The phase plots have been rescaled to cover a period of 4π to highlight the low
frequency cycles that occur in the temporal evolution of these modes.

d is the dimension of the vector, is then implied in the definition of the autocorrelation
function in (5.4).

The interest of this work includes the global correlation times as well as the time
scales of the individual Fourier modes, since the large-scale structures have been shown
to contain a relatively small number of Fourier modes. In terms of the Fourier coefficients

Rii(r, θ, z, τ ) =
〈 ∞∑

k=−∞

∞∑
k′=−∞

ψ̂i(r, k, z, t + τ)ψ̂i(r, k′, z, t) e j(k+k′)θ

〉
t

(5.5)

averaging (5.5) over θ gives us

〈Rii(r, θ, z, τ )〉θ = Rii(r, z, τ )

=
∞∑

k=−∞

∞∑
k′=−∞

〈〈ψ̂i(r, k, z, t + τ)ψ̂i(r, k′, z, t) ej(k+k′)θ 〉t〉θ
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=
∞∑

k=−∞

∞∑
k′=−∞

〈ψ̂i(r, k, z, t + τ)ψ̂i(r, k′, z, t)〈 ej(k+k′)θ 〉θ 〉t

=
∞∑

k=−∞

∞∑
k′=−∞

〈ψ̂i(r, k, z, t + τ)ψ̂i(r, k′, z, t)δk,−k′ 〉t, (5.6)

where δk,−k′ is the Kronecker delta function, in which statistical stationarity in θ requires
k = −k′.

Since all the flow variables are real signals, the negative Fourier mode −k can be
expressed as the complex conjugate of the positive Fourier mode k. Therefore, the Dirac
delta function in (5.6) shows that all wavenumbers will contribute to the correlation when
multiplied by their complex conjugates. This also ensures that the correlation will be
comprised entirely of real numbers which is required since the dependent variables are
all defined in real space. The discrete representation of (5.6) is

Rii(r, z, τ ) =
Nθ /2−1∑

k=−Nθ /2−1

〈ψ̂i(r, k, z, t + τ)ψ̂∗
i (r, k, z, t)〉t, (5.7)

where Nθ is the number of samples for the Fourier transform in the θ direction and ∗

indicates the complex conjugate. Defining an autocorrelation function per wavenumber

Rii(r, k, z, τ ) = 〈ψ̂i(r, k, z, t + τ)ψ̂∗
i (r, k, z, t)〉t (5.8)

and recognizing that
Rii(r,−k, z, τ ) = R∗

ii(r, k, z, τ ), (5.9)

which follows from the corresponding properties of the Fourier coefficients (Canuto et al.
1988), one can see that (5.7) can be rewritten as

Rii(r, z, τ ) = Rii(r, 0, z, τ )+
Nθ /2−1∑

k=1

Rii(r, k, z, τ )+ Rii(r,−k, z, τ )

= Rii(r, 0, z, τ )+
Nθ /2−1∑

k=1

Rii(r, k, z, τ )+ R∗
ii(r, k, z, τ )

= Rii(r, 0, z, τ )+
Nθ /2−1∑

k=1

2Re{Rii(r, k, z, τ )}, (5.10)

where Re{Rii(r, k, z, τ )} is the real part of the autocorrelation (5.8).
Utilizing (5.7) and (5.8), the total integral time scale (T ) and the integral time scales

for each wavenumber (Tk) are

T (r, z) =
∫ ∞

0

Rii(r, z, τ )
Rii(r, z, 0)

dτ, (5.11)

Tk(r, z) =
∫ ∞

0

Rii(r, k, z, τ )+ Rii(r,−k, z, τ )
Rii(r, k, z, 0)+ Rii(r,−k, z, 0)

dτ, k ≥ 0, (5.12)
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which is equivalent to

Tk(r, z) =
∫ ∞

0

Re{Rii(r, k, z, τ )}
Re{Rii(r, k, z, 0)}dτ, k ≥ 0. (5.13)

The quantity under the integral in (5.11) can also be referred to as a normalized
autocorrelation,

R̄ii(r, z, τ ) = Rii(r, z, τ )
Rii(r, z, 0)

. (5.14)

These integral time scales depend on the field ψ that is chosen. ψ = {u′
r, u′

θ , u′
z}, We

used ψ = {ϑ ′} and ψ = {u′
r, u′

θ , u′
z, ϑ

′} to perform proper orthogonal decomposition in
the study of Bailon-Cuba et al. (2010) on data from turbulent RBC simulations at various
Γ . We shall also, likewise, be referring to the norms of these fields as the turbulent
kinetic energy, thermal energy and total energy, respectively. Thus, in the definition of the
autocorrelation functions in (5.4)–(5.14), the values i = 1 : 3 are assumed for the turbulent
kinetic energy, i = 4 for the thermal energy and i = 1 : 4 for the total energy.

Figure 14(a–c) shows T for the entire field when ψ is defined as the turbulent kinetic
energy, the turbulent thermal energy and the total turbulent energy, respectively. The r–z
plots of T also give insight into the structure of the flow field by indicating which regions
of the flow field have longer correlation times, and also by how much the correlation times
vary.

Figures 14(a) and 14(b) show very different behaviour between the correlation of the
turbulent kinetic and thermal energy fields. The two fields have little overlap between
regions with very long correlation times. The kinetic energy field has its longest
correlation times in the boundary layer while the turbulent thermal energy field has its
longest correlation times in the bulk region. Regions where the fluctuations change sign
frequently tend to have lower correlation times while regions where fluctuations maintain
the same sign for long periods of time have longer correlations.

Further understanding of these correlation times can be gained by reviewing the
variance of the various components that comprise the correlation metrics. Variance of the
velocity and temperature fluctuations is plotted in figure 15 to show where the strongest
fluctuations most frequently appear. Variance is defined as azimuthally and temporally
averaged turbulence fluctuations σui(r, z) = 〈u′

i(r, θ, z, t)2〉θ,t. The peak variance of the
velocity components are aligned with the shape of the large-scale structures. The
horizontal components (ur and uθ ) have a strong variance in the boundaries where the
large-scale roll cells will have the strongest horizontal velocity contributions. Likewise
the vertical velocity (uz) has a larger variance in the bulk region where the large-scale
structures are principally updrafts or downdrafts. This is where the opposing plumes pass
one another as they cross the layer depth (see figure 15d), and this appears to be the factor
that is driving the correlation times of the turbulent kinetic energy field down in the bulk
region, due to a prevalence of the opposite sign fluctuations in this region.

The variance of uz also shows a peak in the central region near r = 0 which can be
attributed to the time period when k = 3 was the dominant structure, and the uncertainty
as the lobes of the k = 2 structure dance back and forth across the centre of the convection
cell.

The peak variance of the temperature near the boundaries in figures 15(a) and 16(b)
highlight how well mixed the thermals are in the bulk region. Note that the variance of the
total energy (figure 15f ) has its peak values in the thermal boundary layers, the same as
the variance of temperature, showing a noticeable contribution of the thermal fluctuations
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FIGURE 14. Spatially varying, azimuthally averaged integral time scales T (r, z) based on the
kinetic energy (a) (min: 12.9tf , max: 617tf ); temperature fluctuations (b) (min: 10.5tf , max:
663tf ); and total turbulent energy (c) (min: 13.8tf , max: 569tf ). White boxes (�) and circles
(◦) indicate the locations of minimum and maximum integral scales, respectively. Here τ is in
multiples of tf . All length scales are normalized with H.

into a variance of the total energy field. However, in the bulk region, the variance of the
total turbulent energy is similar to the variance in kinetic energy. This also explains while
integral time scales shown in figure 14 are similar for the total and kinetic turbulent energy
fields in the bulk region, but different from the thermal energy field: the large integral
time scales for the temperature in the bulk are generated by relatively small temperature
fluctuations divided by a small variance (the denominator of (5.11)), which account for
a negligible contribution to the time scales when added to the velocity field with larger
values of the fluctuations and the larger variance in the bulk. However, an increase of
integral times scales for the total turbulent energy on the side walls due to a thermal field
contribution is pronounced.

Figure 15 also shows the skewness of the temperature field defined as

Sϑ(r, z) = 〈ϑ ′(r, θ, z, t)3〉θ,t
σϑ(r, z)3/2

, (5.15)

which is a measure of asymmetry of the probability distribution of a fluctuating
temperature field about its mean. It can be seen that the skewness of temperature peaks
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FIGURE 15. Variance σ = 〈u′2(r, θ, z, t)〉θ,t of ϑ (a) (min: 5.48 × 10−3, max: 2.29 × 10−1), ur
(b) (min: 0.0, max: 6.80 × 10−3), uθ (c) (min: 0.0, max: 9.82 × 10−3), uz (d) (min: 0.0, max:
8.12 × 10−3), turbulent kinetic energy (e) (min: 0.0, max: 1.68 × 10−2), and total energy ( f )
(min: 2.33 × 10−3, max: 2.29 × 10−1) in the r–z plane. White boxes (�) and circles (◦) indicate
the locations of minimum and maximum values, respectively. Also, note that the variance for
the velocity components and turbulent kinetic energy is analytically 0.0 at the walls. All length
scales are normalized with H.

just as the variance begins to increase, and the two quantities are anti-correlated as they
approach the wall (see figure 16b,c). The skewness profile shows that even though the
fluctuations about the mean are very small in the bulk region, the lower half of the domain
is still biased toward warmer fluid and the upper half toward colder.

When the integral time scales are averaged over the volume, the differences between
the three metrics narrows (see table 1). Following (2.16), volume integrated integral time
scales (scaled with 2π) are defined as

{Tk}V/2π = 1
2π

∫∫∫
Ω

Tk(r, z) dV =
∫

z

∫
r
Tk(r, z)r dr dz. (5.16)

The turbulent kinetic energy shows the correlation time averaged across all Fourier modes
that is about 50 % longer than the turbulent thermal energy, but the total turbulent energy
shows about the same correlation time as the turbulent thermal energy. This means
that there are regions where correlation among the velocity components cancels out
correlation from the thermal region. Table 1 and figure 17 further demonstrate the effect
of the dominant Fourier modes where the scaled volume integrated integral time scales
are shown per mode number, {Tk}V/2π. Here it can be seen that correlation times for
the low-order modes, and specifically the k = 2 mode increase in magnitude in all the
presented metrics. It is also noteworthy to see that the correlation time of the k = 2 mode is
dramatically larger than the other modes with the second longest mode (k = 0 for thermal
energy and k = 3 for kinetic and total energy) being almost five times shorter.

Table 1 and figure 17 clearly show that the low frequency modes are responsible for the
large integral time scales, and that the majority of the correlation time can be attributed to
the k = 2 mode. Further evidence of this can be seen by comparing the spatial distribution
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FIGURE 16. (a) Skewness of temperature, (5.15), in the r–z plane; line plots of variance (b) and
skewness (c) of temperature at select radial locations. All length scales are normalized with H.

Mode (k) Total turb. energy Turb. kinetic energy Turb. thermal energy
ψ = {ur, uθ , uz, ϑ} ψ = {ur, uθ , uz} ψ = {ϑ}

All 213 217 331
0 100 90.2 267
1 20.3 17.8 93.2
2 787 742 1048.421
3 184 184 228
4 46.6 46.9 34.3
5 16.1 16.8 11.3
6 46.6 48.1 48.2
7 10.9 11.4 8.86
8 7.52 7.3 6.37
9 11.1 11.5 7.19
10 11.1 11.6 6.61
11 7.13 7.33 4.95
12 5.23 5.20 4.39
13 3.54 3.57 3.03

TABLE 1. Scaled volume integrated integral time scales (in multiples of tf ) for the total field
{T }V/2π and a selection of Fourier modes {Tk}V/2π.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

58
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.588


Large-scale structures in Rayleigh–Bénard convection 901 A31-33

104

103

102

101

100
100 101 102 103 104

k+1
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FIGURE 17. Scaled volume integrated integral time scales (in multiples of tf ) for each mode
number, {Tk}V/2π. Modes are plotted versus k + 1 to make the k = 0 mode visible on the
log-scale plot and ui is a shorthand reference for all three velocity components. This data includes
the values listed in table 1, and all the additional wavenumbers that were not included in table 1.

of the integral time scale for k = 2 (figure 19c) and the entire system (figure 14c). Figure 17
also shows that Tk decays to a value of approximately 3tf for all three energy vectors
after the first 12 Fourier modes. This is the minimum limit that can be obtained with this
dataset since the snapshots were sampled 3tf apart. Shorter Tk’s are probable for the higher
wavenumbers.

6. Effects of the spatial inhomogeneity

In the previous sections the effects of spatial inhomogeneity have been seen in the mean
flow and integral time scales. In this section the effects of spatial inhomogeneity will be
analysed more carefully by looking at the r–z variations in the normalized autocorrelation,
the integral time scale, T , and the Fourier spectra.

6.1. Spatial variability of the integral time scales
In the previous section we presented the integral time scales for three different quantities.
Moving forward we will restrict our analysis to the integral time scale of the total turbulent
energy since it is an aggregate of the other two. The normalized autocorrelation for the
total turbulent energy field, R̄ii(r, z, τ ), i = 1 : 4, is plotted versus snapshot spacing in
figure 18 at a selection of points in the r–z plane. While the entire simulation time is over
3000tf , only about half of that period is used to calculate the autocorrelations, due to the
large values of the maximum time separations.

By definition (see (5.11)), T (r, z) is equal to the area under each of the plots in
figure 18(a). Figure 18(a) shows that while fluctuations at points C and D in the highly
correlated viscous boundary layer monotonically decay, they remain correlated over the
entire dataset. Linear extrapolation of the lines in figure 18 can be used to estimate the time
it will take for R̄ii(r, z, τ ) at points C and D to reach a value of zero. This time turns out to
be approximately 90–100 eddy turnovers (≈2700–3000tf ). Based on the measured rotation
rate of 1.1 degrees per eddy turnover, a rotation during the decorrelation time is ≈90◦,
corresponding to the k = 2 mode changing from positive to negative vertical velocity. The
updraft and downdraft of the k = 2 mode will exactly cancel one another. This suggests
that decorrelation of the most persistent structures in this flow is caused by the observed,
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FIGURE 18. Temporal normalized autocorrelation based on total turbulent energy at select
points throughout the domain. Subplot (a) shows the normalized autocorrelation R̄ii(r, z, τ ), i =
1 : 4, (5.14), and subplot (b) marks (r, z) points where the temporal normalized autocorrelations
are calculated. τ , T are in multiples of tf . All length scales are normalized with H.

global rotation. The other two probes are taken at the mid-plane. The probe at point B is at
a local minimum in T and shows sufficient decay in R̄ii(r, z, τ ) to indicate that the values
become uncorrelated during this computation. The other probe at point A is near a local
maxima in T . It shows signs of a weak long-lived transient as the correlation decays to
zero with a separation time of approximately 800tf , but then begins to grow again. Some
possible sources for this transient include the low-amplitude, low-frequency transient in
the magnitude of ϑ̂ ′ for k = 0 (see figure 9a), which can potentially be associated with a
time scale of updraft and downdraft reversals (Sakievich et al. 2016).

Note also the higher-frequency oscillations in the correlation function at all the probes
A,B,C and D. The time scale of these higher-frequency processes stays very close between
all the probes and varies between 84–94 tf , which corresponds to roughly 3 eddy turnovers.
This time correlates well with the mode turnover time for the high-order modes that
converges to a scale of an eddy turnover. Since the correlation functions here include the
representation of all the modes, it is probable that higher-order modes are responsible for
these high-frequency oscillations. Similar oscillations in a correlation function have been
observed in Xi et al. (2006) and Mishra et al. (2011) in unit aspect-ratio cells with a time
scale close to an eddy-turnover time. This suggests a similar origin of these oscillations in
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FIGURE 19. Spatially varying integral time scale based on total turbulent energy for modes k =
0 (a) (min: −0.939tf , max: 397tf ), k = 1 (b) (min: −2.05tf , max: 77.0tf ), k = 2 (c) (min: 0.083tf ,
max: 1260tf ) , k = 3 (d) (min: 0.015tf , max: 392tf ), k = 4 (e) (min: −1.02tf , max: 1050tf ) and
10 ( f ) (min: −7.07tf , max: 45.3tf ), where white boxes (�) and circles (◦) indicate the locations
of minimum and maximum integral scales, respectively. Time scale T is in multiples of tf . Note
the difference in maximum T in each subfigure. All length scales are normalized with H.

different aspect-ratio cells, coming from the contribution of high-order modes which are
independent of geometry.

Additional insight into the spatial variance of Tk(r, z) can be found by investigating the
contribution from the individual Fourier modes. Recall that Rii(r, z, τ ) can be defined as
a summation of Rii(r, k, z, τ ) over all k’s. A Tk(r, z) field (5.13) can be calculated for each
Fourier mode giving an indication as to how the individual modes contribute in the total
correlation. Plots of the total turbulent energy based Tk(r, z) for a selection of Fourier
modes is provided in figure 19. Note that the values of the integral time scales for some
modes can be negative, which explains why the modal values at some locations exceed
their cumulative value in figure 14(c). Only low wavenumber plots are included in figure 19
due to the short correlation times of modes k > 10 (see figure 17 and table 1).

One observation of the subplots in figure 19 is that the globally dominant, highly
correlated modes (subplots (c) and (d), and also subplot (a)) show a high level of
symmetry about the mid-plane with long correlation times covering a substantial portion
of the r–z plane, but the other modes do not. Subplots (b), (e) and ( f ) also show much
smaller peak values for Tk. The long correlation times in the dominant modes support our
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previous observations that the k = 2 and k = 3 modes are the primary sources for the long
correlation times, and the high level of symmetry indicates that the shapes of these modes
do not see much spatial variation over time. It is interesting to see that the peak in the
correlation time Tk for the mode k = 0 (subplot (a)) is the same as for the mode k = 3, but
the spatial locations of the highly correlated events are different. This supports an earlier
observation that the modes k = 0 and k = 3 coexisted when the mode k = 3 was strong,
where mode k = 0 was dominant in the central region and the mode k = 3 was responsible
for the formation of the side plumes. The lack of spatial symmetry and smaller range of Tk
in the non-dominant modes indicate that these modes see a large amount of variation in
their spatial structure and could contain rare energetic events in the flow field which have
life spans much less than the length of the simulation, but much longer than the sampling
rate of 3tf .

6.2. Statistics of the Fourier modes and their spatial variability
In this section the temporally averaged statistics is presented for the Fourier modes
which allows one to judge about the spatial variability of modes and the contribution
of different length scales into the overall flow structure. This is achieved by evaluating
the time-averaged energy spectra of the modes at different r–z locations. Up to this point
in the paper all data has been presented with respect to the azimuthal Fourier modes,
which, as discussed in § 2.3, are simply the integer mode indicators and are not directly
related to the structure sizes. Therefore, seven different locations is provided iexamining
Fourier coefficients at different radii corresponds to different physical length scales and
energy densities per unit length. A more consistent way to compare the flow structure
at various locations in the flow field is to normalize the energy spectra and frequency
with respect to a geometric length scale, which is the wavelength λk(r) = 2πr/k defined
in (2.13). This is done by premultiplying the energy spectra with the radial location and
plotting against the inverse of the wavelength 1/λk(r). A sampling of the spectra at seven
different locations is provided in figure 20. These locations are at various points within the
boundary layers (bottom plate and side walls), and bulk region of the flow field; regions
where different physical phenomena dominate. Here z = −0.45 and r = 3.1 are within the
viscous boundary layers for the bottom and side walls, respectively, while z = −0.4 is just
outside the viscous boundary layer in the vertical direction.

6.2.1. Variations in radial location
Spectra of ϑ , uθ and uz evaluated at various radial locations with a fixed height z = −0.4

(figure 20a, c, e and g) show a good collapse across virtually all length scales. For length
scales that are greater than Γ = 6.3 (k/2πr � 2 · 10−1), ϑ and uθ collapse less well, and
this behaviour is also seen in the ur plot. From the plots, it can be concluded that the effect
of the side wall boundary conditions is rather small and is mostly prominent in the ur
variable. It is not unexpected, since ur analytically must tend to zero at the wall. In fact,
the same can be said about the centreline location, where ur is, again, analytically zero,
and a lack of collapse in ur is again observed at low wavenumbers. The same behaviour is
manifested in uθ . Other than ur, the side walls influence the large length scales in all the
variables but uz, which shows an almost perfect collapse across all radii.

Failure to collapse in the larger length scales can be attributed to the dominance
of low-order Fourier modes that describe the flow field’s large-scale structure. Since
Fourier mode k = 2 contains a large amount of energy throughout the entire domain it
will disrupt the collapse of the spectra by affecting different length scales at each radii.
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FIGURE 20. Time-averaged energy spectra for each of the components in the total turbulent
energy vector at various locations in the flow field. Subplots (a) and (b) are for the temperature
field, (c) and (d) are for the radial velocity component, (e) and ( f ) are for the azimuthal velocity
component and (g) and (h) are for the vertical velocity component. Subplots (a), (c), (e) and (g)
are at a fixed height of z = −0.4, and various radii. Subplots (b), (d), ( f ) and (h) are at a fixed
radius r = 2.0 and various vertical locations. All length scales are normalized with H.

In fact, if the spectra were to collapse across all length scales for all variables then it
would be horizontally homogenous as in the canonical form of RBC with infinite Γ .
In a sense the side walls of the convection cell act as a high pass filter because they
limit the size of the largest length scales that can be observed in the flow. The fact
that the k = 2 mode dominates the energy spectra at multiple length scales indicates
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k 〈{|ϑ̂k(r, z, t)|2}V/2π〉t 〈|ϑ̂k(r, z, t)|2〉t 〈|ϑ̂k(r, z, t)|2〉t 〈|ϑ̂k(r, z, t)|2〉t
r = 1 r = 2 r = 3

0 1.334 × 10−6 8.202 × 10−5 1.789 × 10−5 4.186 × 10−5

1 7.648 × 10−7 4.068 × 10−5 2.003 × 10−5 1.986 × 10−5

2 5.097 × 10−6 5.862 × 10−5 1.480 × 10−4 2.490 × 10−4

3 1.102 × 10−6 2.693 × 10−5 3.358 × 10−5 4.376 × 10−5

4 5.367 × 10−7 2.484 × 10−5 1.608 × 10−5 1.495 × 10−5

5 4.496 × 10−7 2.274 × 10−5 1.404 × 10−5 1.121 × 10−5

6 4.416 × 10−7 2.116 × 10−5 1.321 × 10−5 1.170 × 10−5

7 3.991 × 10−7 2.017 × 10−5 1.222 × 10−5 1.031 × 10−5

8 3.761 × 10−7 1.845 × 10−5 1.114 × 10−5 8.766 × 10−6

9 3.597 × 10−7 1.856 × 10−5 1.092 × 10−5 8.432 × 10−6

10 3.497 × 10−7 1.717 × 10−5 1.067 × 10−5 8.157 × 10−6

11 3.334 × 10−7 1.636 × 10−5 9.976 × 10−6 7.570 × 10−6

12 3.215 × 10−7 1.551 × 10−5 1.034 × 10−5 7.876 × 10−6

13 3.112 × 10−7 1.502 × 10−5 1.002 × 10−5 7.575 × 10−6

14 2.980 × 10−7 1.450 × 10−5 9.528 × 10−6 6.963 × 10−6

15 2.910 × 10−7 1.382 × 10−5 9.394 × 10−6 7.204 × 10−6

TABLE 2. Time-averaged energy of Fourier coefficients from the temperature field with
variations in the radial location for the first 16 modes at z = −0.4.

that the underlying structure has a modal nature, and that it is the principle cause for
radial inhomogeneity. This is most likely due to the confining, geometric effects of the
cylinder. Table 2 illustrates this point by providing the time-averaged energy values for
the first several Fourier coefficients at several different radial locations at z = −0.4. For
a reference, the scaled volume integrated value of |ϑk|2 corresponding to the values in
figure 3 is also provided. This data complements the data in figure 20 for z = −0.4. Table 2
shows that the k = 2 mode is indeed energetically dominant at two of the three tabulated
radii, and is responsible for the peaks in energy observed in figure 20. The k = 0 mode
is approximately 40 % more energetic at r = 1.0, z = −0.4. This is most likely due to the
residual effects of the central updraft early in the time series combined with geometric
effects. Careful observation of figure 20(a) shows that as the radius decreases, the strength
of the energy peak associated with the k = 2 mode decays. Due to a singular nature of
approaching r = 0, an azimuthal alignment of the most dominant energetic structures
might break, contributing its energy to an azimuthally invariant k = 0 mode. However, it is
worth noting that the k = 2 mode is still larger than the k = 1 and k = 3 modes at r = 1.0,
z = −4.0, thus breaking a monotonic decay of the energy spectrum and displaying a level
of dominance as the second most energetic mode.

6.2.2. Variations in vertical location
When spectra are sampled at various heights at a fixed radius, the behaviour is virtually

opposite to the fixed height, varying radius situation (see figure 20b, d, f and h). In the
previous case ϑ and uz’s spectra showed the best collapse, but when the vertical location
is varied their collapse is considerably worse than ur and uθ . Additionally, ur and uθ show
the best collapse at the lowest frequencies, and a poorer collapse at higher frequencies.
In fact, divergence at high frequencies is seen for all three velocity components and the
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temperature, and their energy content decreases as the vertical position approaches the
mid-plane. This is because there are more small-scale fluctuations for all the variables in
the boundary layer region.

The spectrum of ϑ shows a strong collapse at the frequency associated with the k = 2
Fourier mode, indicating the dominance of the k = 2 mode in the temperature field
across the entire depth of the domain but a decay with increasing distance from the
wall for all other frequencies, commensurate with the presence of stronger high-frequency
fluctuations in the near-wall region. A persistence of a dominant low-order mode all the
way down to the wall presents evidence of the influence of the large-structure organization
on the boundary layer flow, observed in previous studies (Sakievich et al. 2016; Pandey
et al. 2018; Krug et al. 2019).

The spectrum for uz in figure 20(h) shows some special characteristics that deserve a
discussion of their own. Perhaps the most notable is that at the mid-plane the smallest
energy among the heights occurs at high frequencies and the largest energy among
the heights at lower frequencies. The point in the spectrum where the energy in the
mid-plane is no longer smallest occurs at a non-dimensional frequency of approximately
8.5 corresponding to a physical length scale of 0.118H. For lower frequencies (larger
length scales), there is a region where the spectrum collapse for the vertical positions
that are outside the viscous boundary layer. This region of collapse starts to break apart at
a non-dimensional frequency of 2 corresponding to a length scale of 0.5H, and the energy
in frequencies lower than 2 increases with the distance from the wall. The absence of a
clear peak in the vertical velocity spectrum for the k = 2 mode can perhaps be explained
by more effective mechanisms of energy transfer from large to small scales in this field,
which also amounts to a larger amplitude of higher-order modes in the vertical velocity
(as opposed to, e.g. temperature) observed in figure 13. A similar phenomenon of a higher
small-scale contribution to the energy associated with the vertical velocity fluctuations as
opposed to the temperature is discussed in Krug et al. (2019). In general, a collapse of the
temperature spectrum in the large scales across z planes, and the vertical velocity spectra
in the intermediate scales, but not large or small, is commensurate with the findings of
Krug et al. (2019).

7. Discussion and conclusions

It has been shown that Γ > 1 turbulent RBC has dynamics that occur on much longer
time scales and affects more spatial Fourier modes than RBC in a Γ = 1 cell. A general
explanation for the increase of time scales in wider aspect-ratio cells can be provided
that is due to the increase of the length scales of the coherent motions that are able
to settle in larger aspect-ratio domains. The long correlation time scales of coherent
structures observed in the current study resonate well with the recent studies of Pandey
et al. (2018) who examined the evolution of times scales of turbulent superstructures in
the square domain with Γ = 25. While previous works on the large-scale patterns in
Rayleigh–Bénard convection in wide aspect-ratio cells were primarily concerned with
the statistical analysis of the flow field, and, thus, the properties of the ‘average’ flow
structure (Hartlep et al. 2003; Pandey et al. 2018; Stevens et al. 2018; Krug et al. 2019),
the current study focuses on the individual structure and a detailed analysis of its temporal
dynamics. This is achieved via investigating each spatial Fourier mode independently. The
individual modal analysis shows that the correlation times of the dominant Fourier modes
are substantially longer than the other modes and that these individual modal correlation
times can exceed the total correlation time of the system (see table 1). Furthermore,
the spatial variation of integral time scales shows an alignment between the location of
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maximum temporal correlation for the entire system (figure 14) and the individual modes
(figure 19). This is a noteworthy observation since the integral time scales have been shown
to vary by three orders of magnitude across the r–z plane (figure 14). Examination of the
temporal correlation in the regions where the integral scale is largest provides a further
connection between the system’s behaviour and the dominate modes. The rate at which
temporal correlation decays was found to match the measured rate of rotation for the most
energetic Fourier mode (k = 2) at 1.1 degrees per eddy turnover. From these observations
we can conclude that the dominant Fourier modes leave a strong signature on the temporal
scales of the system.

While mode 2 has clearly emerged as being a dominant mode after approximately 1000
tf of the simulations, it is not the only mode that influences the overall organization of
the structure. In general, the dynamics of the large-scale structure in the current study
exhibits a complex interplay between several low-order modes. For example, the transition
of dominant mode from k = 3 to k = 2 occurs gradually over approximately 1000tf . This
event can be observed in the time-averaged field (figure 5) and through careful observation
of instantaneous fields (figure 8), but becomes blatantly obvious when analysing the
dynamics of the individual Fourier modes (see figures 6, 7, 9). Interestingly, dynamics
of the first, k = 1, Fourier mode also play a role in the overall organization of the structure
and the mode interplay observed in the current study, at least for the first 1000tf , including
the rotations and the cessations of the k = 1 mode, similar to k = 1 dynamics in the unit-Γ
cells (Brown et al. 2005; Mishra et al. 2011). However, this mode never dominates the
overall structure dynamics, as opposed to the Γ = 1 case.

The dominance of modes 2 and 3 in a Γ = 6.3 aspect-ratio cell can potentially be
explained by considering the ‘natural’ sizes of the superstructures, reported to be of the
order of 6–7 of the domain height as deduced from numerical studies in the domains
with Γ = 10–60 and Pr ∼ 0.7 (Hartlep et al. 2003; Pandey et al. 2018; Stevens et al.
2018), while the sizes up to 10H can be expected for Pr = 6.7 (Busse 1994; Pandey
et al. 2018). The sizes reported in these studies, however, correspond to the spectral
wavelength, which equalsΛk = πΓ/k (normalized with H) according to (4.1), thus giving
k ∼ 2–3 when the sizes of Λk = 6–10 are substituted into this equation for Γ = 6.3.
Following the same logic, in a unit aspect-ratio cell, the longest mode that can settle
(k = 1) gives the wavelength of Λ1 = πΓ ∼ 3, which is still smaller than the size of a
natural superstructure, thus explaining why the mode k = 1 is clearly dominant in a unit
aspect-ratio case, since higher-order modes would have even smaller wavelengths. In this
sense, the existence of the k = 1 mode in the current Γ = 6.3 case is interesting, since
it manifests an existence of the correlated structures of even larger length scales than an
average size of the superstructures.

The concept of a ‘mode turnover time’ has been introduced in this study as an initial
hypothesis for explaining the interactions between the mode number, Γ , and the time
scales. Conceptually, a mode turnover is the time it would take a particle moving at
the r.m.s. velocity to traverse a modal structure at a given Γ . The observed time scales
of the mode transition, on the order of 20–30 eddy turnovers, were shown to correlate
well with the introduced concept of a mode turnover time. Moreover, the concept of the
‘mode turnover time’ also predicts similar time scales associated with the duration of
destabilization events associated with reorientations observed in Γ = 1 cells; see Brown
et al. (2005) and Mishra et al. (2011). We note that the time scales are not expected to
grow indefinitely as the aspect ratio increases, due to a saturation of the sizes of the
superstructures. Indeed, time scales identified in larger aspect-ratio studies (Emran &
Schumacher 2015; Pandey et al. 2018) are similar to the time scales observed here, and
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not 5 to 10 times larger which would be commensurate with the considered aspect-ratio
sizes.

We also propose to separate the influence of ‘fast’ and ‘slow’ time scales on the
processes observed in turbulent RBC at Ra = 9.6 × 107 and Pr = 6.7. ‘Fast’ time scale
correlates with the mode turnover time, while ‘slow’ time scale is based off the diffusion,
or viscous, time scale. Viscous time scale can be estimated as tv = √

Ra/Pr tf (Pandey
et al. 2018), equal to tv ∼ 3800tf ∼ 120tε in the current case, while the diffusion time
scale td = √

Ra Pr tf ∼ 25 460tf ∼ 804tε is even larger. The current results indicate that
the effects associated with the mode transition, as well as the fast rotation observed in
the first mode both scale with the mode turnover time (‘fast’ time scale), while the slow
azimuthal drifts, reported previously for unit aspect-ratio cells (Brown et al. 2005; Brown
& Ahlers 2006) and also observed here in a mode 2 once it stabilized, occur on time
scales that are at least an order of magnitude larger (‘slow’ time scale). We hypothesize
that the difference in the time scales can be explained by the difference in the physical
mechanisms that cause these events. The slow rotations, or drifts, are associated with the
slow diffusive processes (Brown & Ahlers 2006, 2007), while the fast rotations, as well
as the mode cessations and transitions, are related to the destabilization processes, which
has been previously linked to the interaction between buoyancy and friction (Sreenivasan
et al. 2002; Brown & Ahlers 2007).

In a conceptual model of an LSC reversal by Sreenivasan et al. (2002), the reversal
is explained as a loss of equilibrium in the dynamics associated with the ascending and
descending plumes within the LSC circulation cycle. Their model fits very well with the
current hypothesis that such a process would occur on a mode circulation time scale.
Previous studies demonstrated a stochastic nature of the reorientation processes, caused by
the perturbations. These perturbations, likely appearing locally, need to propagate through
an entire mode to cause a mode destabilization, which would require a time scale of the
order of the mode turnover time. We would like to stress once again that the mode turnover
time scales, of the order of 2.75tε for k = 1 in Γ = 1 cells, correspond to the duration of
the transition events (such as an LSC reorientation), from destabilization to restabilization,
following the origination of the perturbation. The origin of the perturbations themselves is
stochastic, so the time scales between events are much larger, e.g. reported to be around 10
tε to 30 tε in Γ = 1 cells (Sreenivasan et al. 2002; Brown et al. 2005; Mishra et al. 2011).
Brown & Ahlers (2007) elaborated on the physical processes accompanying the dynamics
of the LSC reversal by showing that a destabilization can also lead to an onset of a fast
azimuthal motion, ultimately responsible for the structure reorientation. The reason for
the increased rotation rate during the mode destabilization is a reduction of an angular
momentum of a weakened mode associated with a reduction in the mode’s amplitude
(Brown & Ahlers 2007). Both cessations and rotations were shown to be accompanied by
this fast azimuthal drift (Brown et al. 2005; Brown & Ahlers 2007; Mishra et al. 2011),
the difference being that the mode amplitude essentially vanishes during the cessation,
but stays finite (although often reduced) during the rotation-led reorientations. Similar
cessation-like events accompanied by fast rotations of the modes were observed twice
in mode 1 and once in mode 2 in this study, all during the global structure transition
process. Even though cessations are perceived as instantaneous events, the processes that
lead to it and follow it until a mode stabilization is completed are finite scale, evidence
of this can be seen in time series presented in Brown et al. (2005), Mishra et al. (2011)
and Zürner et al. (2019), as well as in the current DNS results. It is conjectured here
that both cessation-led and rotation-led reorientation events have a similar origin and
operate on similar time scales, and are, in fact, just different manifestations of the same

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

58
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.588


901 A31-42 P. J. Sakievich, Y. T. Peet and R. J. Adrian

destabilization process. Moreover, it is likely that, during the process of destabilization,
multiple rotations, cessations (double cessations), as well as the mode transitions in wider
aspect-ratio systems, can occur simultaneously as a signature of the same destabilization
process that leads to an eventual reorganization of the structure. Since destabilization
events are caused by stochastic perturbations, the duration between them is random
(Sreenivasan et al. 2002; Brown & Ahlers 2007). We were only able to observe one
destabilization event over the 3000 tf duration of the simulation. Note, once again, that
due to a high aspect ratio, the relevant times scales are several times larger in our system
than in unit aspect-ratio cells, which significantly reduces the probability of observing the
reorganization events in higher aspect-ratio systems, experimentally, or numerically.

The current study is also in a position to contribute to the discussion initiated in the
previous works of Pandey et al. (2018), Stevens et al. (2018) and Krug et al. (2019) on
whether the vertical velocity and temperature fields correspond to the signature of the
same large-scale structure, or whether there are structures of different sizes that are formed
by the temperature and the vertical velocity components. The results in the current study
and in our prior work (Sakievich et al. 2016) support the conclusion of Krug et al. (2019)
that ϑ and uz correspond to the same structure for several reasons: (i) temporal dynamics
of the low-order Fourier modes of temperature and vertical velocity is highly correlated,
which illustrates that they go through the same processes of transition and reorganization
testifying their link to the same large-scale structure; (ii) the imprint of the low-order
modes on the spatially and temporally averaged spectra of ϑ and uz is similar and seems to
produce a clear peak at the k = 2 wavenumber, albeit this peak is stronger in temperature
than in vertical velocity; (iii) visualizations in our previous work (Sakievich et al. 2016)
show a high degree of coherence between the spatial location of the thermal updrafts and
downdrafts, and the velocity roll cells identified by a visualization of the three-dimensional
velocity field, illustrating that both temperature and velocity fields are effected by the same
large-scale organization. Similar to the study of Krug et al. (2019), we also find that there
are more small-scale fluctuations in the vertical velocity rather than in the temperature
field, manifested by the fact that the amplitudes of the higher-order modes are larger for
the vertical velocity than for the temperature manifested in figure 13. This abundance of
small-scale energy contribution in the vertical velocity is responsible for the shift of the
spectral peak towards higher frequencies compared to the temperature in the works of
Pandey et al. (2018), Stevens et al. (2018) and Krug et al. (2019). Similarly, it results in
weakening of the k = 2 peak in the volume integrated spectra of uz in the current work (see
figure 3), and eliminating it from the local (in r, z) azimuthal spectral plots (see figure 20).
Again, commensurate with the findings of Krug et al. (2019), we see a good collapse of
the spectra of the temperature in the low-order modes across the vertical planes in the
RBC cell (also showing a clear k = 2 peak across all vertical locations), while the vertical
velocity collapses in the intermediate scales, but not in large and small scales. This striking
similarity of the current data and the results of Krug et al. (2019) testifies to the similar
principles of the spatial organization of structures between the current Γ = 6.3 case and
the superstructures found in the larger domains.

While the length scales, time scales and the principles of spatial organization similar to
the properties of the superstructures have been observed in the current work, cylindrical
geometry and the side wall boundary conditions in the current Γ = 6.3 case do influence
the organization of structures observed in this study. It is mostly manifested via the fact
that the structures organize themselves in line with the azimuthal Fourier modes. It also
influences the length scales in the core of the cylindrical cell, which do not correspond
to the same size motions, but rather to the same wavenumber motions, which shortens

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

58
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.588


Large-scale structures in Rayleigh–Bénard convection 901 A31-43

the physical length scales as one tends toward the centre of the cell (see figure 20).
Similar azimuthal mode organizations have been observed for large-scale-motions and
very-large-scale-motions (VLSM), otherwise known as superstructures, in pipe flow. For
example, studies of Bailey & Smits (2010) and Baltzer et al. (2013) showed that VLSM
have large streamwise scales that concentrate around a single azimuthal mode, with the
dominant azimuthal mode being k = 3 in both studies. It remains to be answered whether
this concentration of energy towards the same azimuthal modes found in pipe flow and in
the current RBC case has far-reaching consequences, or whether it is a pure coincidence,
given that the k = 2, 3 modes are likely emerged in the current study due to a spatial
fit of the natural RBC superstructures into the given cylinder size. Further studies of the
mode dynamics in cylindrical and other shape domains in the turbulent Rayleigh–Bénard
convection with even larger aspect ratios would be of interest in this respect, so that
the principles via which superstructures are organized geometrically and are evolved
dynamically can be investigated with a minimum influence of the confining geometry.

Finally, since only a single regime of Ra and Pr numbers has been investigated in the
current study, it naturally leads to a question: what is expected to change, and what will
likely stay the same, for different parameter values? It can be said almost for certain,
that the time scales when defined with respect to a free-fall time will change when other
Ra and Pr are considered (Pandey et al. 2018). However, the mode destabilization time
scales as defined through the eddy-turnover time, see (5.3), and the role of the aspect
ratio and the mode number in the global structure dynamics across different Ra and Pr
is expected to be robustly represented by this scaling. The reason is that the dependence
on Ra and Pr is already encoded in the r.m.s. value of the turbulent velocity fluctuations
〈u2

z 〉V,t, while the role of the individual mode dynamics with respect to 〈u2
z 〉V,t is solely

reflected by the mode circulation length, which is only a function of k and Γ . Indeed,
a robust scaling of ∼2 eddy turnovers for the duration of the LSC reorientation process
in Γ = 1 cells was observed, at least, for the ranges of Pr numbers from 0.029 (Zürner
et al. 2019) to 0.7 (Mishra et al. 2011) to 4.4 (Brown et al. 2005). The time scale of the
azimuthal meandering (slow azimuthal rotation) is likely to change with Pr, both in free
fall and eddy-turnover scaling, favouring longer rotation time scales at either very low or
very high Pr, due to a large difference between viscous and diffusion time scales (Pandey
et al. 2018; Zürner et al. 2019). A spatial organization of the modes in a container of a
given size will also likely change with Ra and Pr. This is due to different length scales
of the favoured structures observed at different Ra and Pr regimes (Hartlep et al. 2003;
Pandey et al. 2018). Due to a difference in length scales, the mode numbers which will
settle in a given container will be different, which will determine the overall appearance
and dynamics of the global structure. Additionally, apart from the length scales, a striking
difference of the spatial convection patterns at different Ra and Pr numbers might also
play a role. For example, at a low Pr, the Rayleigh–Bénard convection was found to be
dominated by rolls, or elongated ‘rivers’, while at high Pr, the convection pattern takes a
form of cells connected by ridges (Malevsky 1995; Breuer et al. 2004; Pandey et al. 2018).
Interestingly, the current Pr = 6.7 case is near a transitional regime, where the convection
pattern changes from rolls to cells, and, according to Hartlep et al. (2003), both styles of
convection may coexist. It would be interesting to explore if the 3 to 2 mode transition
observed here and the disappearance of the central column (k = 0 mode) might be related
to a potential switch in a convection pattern.

Extension of the presented study to other parameter regimes and other aspect ratios
would be a natural important direction for future work. It must be realized, however,
that the time scales of interest, considering the findings of the current study and similar
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works, are extremely long. For example, it would be of interest to increase the temporal
duration of the current DNS by another decade, to observe even longer-term dynamics of
the structure which we just started to uncover, such as: will the structure be destabilized
again, and how a newly formed structure will look? Will it transition back to a 3 mode?
Will a central column reappear or reverse its direction? Will a structure rotate around a
full circle? Similar long-time studies must also be performed at different Γ , Ra and Pr
regimes. In this context it would be important to evaluate whether other, lower-fidelity,
but computationally more efficient approaches, such as large eddy simulations, would
be able to predict the important dynamical events in Rayleigh–Bénard convection. While
formulation of reliable subgrid closure models for turbulent heat transfer problems remains
challenging, the current physical problem presents a clear motivation and the need for
these efforts to be undertaken on a large-scale basis.
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Appendix A. Symmetry transformation

In this section a symmetry transformation S[u(r, θ, z, t)] proposed in Adrian et al.
(2017) is described. The transformation defines a new complementary flow field
constructed according to the following rules:

S[ur(r, θ, z, t)] = ur(r, θ, zt + zb − z, t),

S[uθ (r, θ, z, t)] = uθ (r, θ, zt + zb − z, t),

S[uz(r, θ, z, t)] = −uz(r, θ, zt + zb − z, t),

S[ϑ(r, θ, z, t)] = ϑt + ϑb − ϑ(r, θ, zt + zb − z, t).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 1)

Here, the subscripts t and b refer to the values at the top and bottom boundaries,
respectively. What this transformation essentially does is that it converts the hot plumes
rising from the bottom into the cold plumes descending from the top, while recasting
the velocity field accordingly. The transformation preserves the governing equations for
the Rayleigh–Bénard convection exactly. It was shown in Adrian et al. (2017) that if the
transformation given by (A 1) is applied to an instantaneous flow field, the simulations
run with the transformed flow field as the initial conditions will produce statistics
that is complementary (in terms of the problem symmetries) to the statistics of the
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original field. That is, if the original field’s statistics had a bias due to preferential
large-scale updrafts, the simulations starting from a transformed field will give statistics
commensurate with the prevalence of the downdrafts (over the same run time). The sum
of the two statistics produced an essentially unbiased statistics in very good agreement
with carefully conducted long-time experiments (Fernandes 2001; Fernandes & Adrian
2002). Since the transformation defined by (A 1) commutes with the azimuthal and time
averaging operators, in this paper, instead of running new simulations starting with the
transformed field, we are applying a symmetry transformation onto a computed 〈 〉θ,t
averaged field directly, so that the sum of the two statistics presented in § 3 is unbiased
to the extent possible given the finite time of the simulations. Note that the transformation
described here is geared towards removal of a bias due to a formation of the preferential
thermal plumes and the associated large-scale vertical motions. There are other potential
symmetries in the RBC problem, for example, associated with a preferential direction of
an azimuthal rotation of the structure in the RBC cell, which the current transformation
would not be able to mitigate.
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