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Abstract Let f ∈ C[0, 1] and let the Bn(f, q; x) be generalized Bernstein polynomials based on the
q-integers that were introduced by Phillips. We prove that if f is r-monotone, then Bn(f, q; x) is
r-monotone, generalizing well-known results when q = 1 and the results when r = 1 and r = 2 by
Goodman et al . We also prove a sufficient condition for a continuous function to be r-monotone.
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1. Introduction

Let q > 0. For any n = 0, 1, 2, . . . , the integer [n]q is defined as

[n]q = 1 + q + · · · + qn−1, n = 0, 1, 2, . . . , [0]q = 0,

the q-factorial [n]q! is defined as

[n]q! = [1]q[2]q · · · [n]q, n = 1, 2, . . . , [0]q! = 1,

and the q-binomial coefficient
(
n
k

)
q

is defined as(
n

k

)
q

=
[n]q!

[k]q![n − k]q!

for integers n, k, n � k � 0.
Let Cr[a, b], r = 1, 2, . . . , be the class of all functions f(x) which are r-times continu-

ously differentiable on [a, b]. C[a, b] is the usual class of continuous functions on [a, b].
For a non-negative integer r and f ∈ C[a, b], the rth-order divided difference [x0, x1,

. . . , xr]f of f at points x0, . . . , xr is defined as

[x0, x1, . . . , xr]f =
r∑

i=0

f(xi)∏r
j=0,j �=i(xi − xj)

=
r∑

i=0

f(xi)
ω′

r+1(xi)
,
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where ωr+1(x) =
∏r

j=0(x − xj). And if the inequality

[x0, x1, . . . , xr]f � 0

holds true for all choices of distinct points x0, x1, . . . , xr ∈ [a, b], then f is said to be
r-monotone on [a, b].

In this paper we mainly discuss the r-monotonicity of the generalized Bernstein poly-
nomials defined by

Bn(f, q; x) =
n∑

k=0

fk

(
n

k

)
q

xk
n−k−1∏

s=0

(1 − qsx), (1.1)

where an empty product denotes 1, f ∈ C[0, 1] is r-monotone and

fk = f

(
[k]q
[n]q

)

(see [4]). In § 2 we prove a sufficient condition for a continuous function to be r-monotone
which is different from that in [1]. With the proof of the sufficient condition, we discuss
the relation between the number of sign changes of an r-monotone function f and the
sign-preserving properties of its rth-order divided difference. Finally, it is proved that,
for all integers n, r, n � r � 1 and q ∈ (0, 1], if f is r-monotone, then Bn(f, q; x) is
r-monotone, which is a generalization of the result relating to the classical case q = 1
and the result of Goodman et al . [4]. For more details of q-Bernstein polynomials, see [7].

2. Criterion for r-monotonicity

In [4], Goodman et al . characterized the convexity of a function f ∈ C[a, b] by its number
of sign changes. Motivated by [4], we shall characterize the r-monotonicity of a function
f ∈ C[a, b] by its number of sign changes. For this reason, we shall cite some results
concerning the number of sign changes, which can be found, for example, in [3,4].

Definition 2.1. For any real sequence v, finite or infinite, we denote by S−(v) the
number of strict sign changes in v.

Definition 2.2. For a real-valued function f on an interval I, we define S−(f)I to be
the number of sign changes of f , that is

S−(f)I = supS−(f(x0), . . . , f(xm)), (2.1)

where the supremum is taken over all increasing sequences (x0, . . . , xm) in I for all m.

In [4], Goodman et al . obtained the following theorem.

Theorem 2.3. For any function f ∈ C[a, b],

S−(Bn(f, q))[0,1] � S−(f)[0,1]. (2.2)
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The following definitions and results concerning the rth-order divided differences and
r-monotonicity can be found, for example, in [1,2,8].

Theorem 2.4. For a non-negative integer r and any f ∈ C[a, b], the rth-order divided
difference [x0, x1, . . . , xr]f has the following properties.

(a) [x0, x1, . . . , xr]f is symmetric in x0, x1, . . . , xr.

(b) [x0, x1, . . . , xr]f is a constant if f is a polynomial of degree less than or equal to r,
and is zero for a polynomial of degree less than r if r � 1.

(c) If f ∈ Cr[a, b], r � 1, xi ∈ [a, b], i = 0, 1, . . . , r, x0 < x1 < · · · < xr, then, for some
ξ ∈ [x0, xr],

[x0, x1, . . . , xr]f =
f (r)(ξ)

r!
. (2.3)

(d) For xi ∈ [a, b], i = 0, 1, . . . , r, r � 1, x0 < x1 < · · · < xr, we have the recurrence
relation

[x0, x1, . . . , xr]f =
[x0, x1, . . . , xr−2, xr]f − [x0, x1, . . . , xr−2, xr−1]f

xr − xr−1
. (2.4)

(e) For xi ∈ [a, b], i = 0, 1, . . . , r, r � 1, x0 < x1 < · · · < xr, f ∈ C[a, b], let Lr(f, x) be
the Lagrange interpolation polynomial of f at x0, x1, . . . , xr. Then for any x ∈ [a, b],
x �= xi, i = 0, 1, . . . , r,

f(x) − Lr(f, x) = [x0, x1, . . . , xr, x]fωr+1(x). (2.5)

Theorem 2.5. For a non-negative integer r and f ∈ C[a, b], let f be r-monotone on
[a, b].

(a) When r � 2, f (r−2) exists and is convex and f (r−1) exists almost everywhere in
(a, b).

(b) If r � 1, and f ∈ Cr−1[a, b], then f (r−1) is increasing and the (r − 1)th-order
divided difference [t1, t2, . . . , tr]f is a increasing function of each of its arguments.

Using the above results, we can characterize the r-monotonicity of function f ∈ C[a, b]
by its number of sign changes S−(f)[a,b]. Firstly, we have the following theorem.

Theorem 2.6. Let f ∈ C[a, b] be r-monotone on [a, b], and integer r � 1. Then the
inequality

S−(f − Pr−1)[a,b] � r (2.6)

holds true for any polynomial Pr−1(x) of degree less than or equal to r − 1.
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Proof. Suppose that there exists a polynomial Pr−1(x) of degree less than or equal
to r − 1 such that S−(f − Pr−1)[a,b] � r + 1. Choose points xi, i = 0, 1, . . . , r + 1 with

a � x0 < x1 < · · · < xr+1 � b

and so that

sgn[f(xi) − Pr−1(xi)] = ε(−1)i, i = 0, 1, . . . , r + 1, ε = ±1. (2.7)

Therefore, there exist yi ∈ (xi, xi+1), i = 0, 1, . . . , r, such that

f(yi) = Pr−1(yi), i = 0, 1, . . . , r. (2.8)

However, a unique polynomial Lr−1(f, x) of degree less than or equal to r − 1 exists that
interpolates f at yi, i = 0, 1, . . . , r − 1. Thus, we must have

Lr−1(f, x) ≡ Pr−1(x).

By Theorem 2.4 (e), we get

f(xr) − Pr−1(xr) = [y0, y1, . . . , yr−1, xr]f
r−1∏
i=0

(xr − yi)

and

f(xr+1) − Pr−1(xr+1) = [y0, y1, . . . , yr−1, xr+1]f
r−1∏
i=0

(xr+1 − yi).

Since f is r-monotone,

sgn[f(xr) − Pr−1(xr)] sgn[f(xr+1) − Pr−1(xr+1)]

= sgn
[ r−1∏

i=0

(xr − yi)
]

sgn
[ r−1∏

i=0

(xr+1 − yi)
]

> 0,

which contradicts (2.7). This completes the proof of Theorem 2.6. �

Next, we shall investigate the sign-preserving properties of the rth-order divided dif-
ference of the function f ∈ C[a, b] satisfying (2.6). For this we need the following lemmas.

Lemma 2.7. Let f ∈ C[a, b], and let r � 1 be integer. If the inequality

S−(f − Pr−1)[a,b] � r

holds true for any polynomial Pr−1(x) of degree less than or equal to r − 1 and there
exist points ti ∈ [a, b], i = 0, 1, . . . , r, t0 < t1 < · · · < tr, such that

[t0, t1, . . . , tr]f > 0, (2.9)

then for any j = 0, 1, . . . , r, x ∈ [a, b], x �= t0, t1, . . . , tj−1, tj+1, . . . , tr, we have

[t0, t1, . . . , tj−1, tj+1, . . . , tr, x]f � 0.
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Proof. For any fixed j, suppose that there exists a point

xj ∈ [a, b], xj �= t0, t1, . . . , tj−1, tj+1, . . . , tr,

such that
[t0, t1, . . . , tj−1, tj+1, . . . , tr, xj ]f < 0.

By (2.9) and Theorem 2.4 (b), we know that xj �= tj and f is not a polynomial of degree
less than r.

The idea of the proof is as follows. We shall find a polynomial Pr−1(x) of degree less
than or equal to r − 1 such that S−(f − Pr−1) � r + 1, which leads to a contradiction.

Assume that xj ∈ (tk−1, tk), k = 0, 1, . . . , r + 1, where t−1 = a (if a < t0) and tr+1 = b

(if tr < b). Let

Ωj(x) = (x − t0)(x − t1) · · · (x − tj−1)(x − tj+1) · · · (x − tr),

and let c be a positive number depending on j such that

c

( r∑
i=0, i �=j

1
|Ω′

j(ti)(ti − tj)|

)
< [t0, t1, . . . , tj−1, tj+1, . . . , tr]f, (2.10)

and

c

( r∑
i=0, i �=j

1
|Ω′

j(ti)(ti − xj)|

)
< |[t0, t1, . . . , tj−1, tj+1, . . . , tr, xj ]f |. (2.11)

We shall construct a different function µ(x), x ∈ [a, b] depending on the value of k, so
that

f(ti) − Pr−1(ti), i = 0, 1, . . . , r

and f(xj) − Pr−1(xj) have r + 1 sign alternations, where Pr−1(x) is the Lagrange inter-
polation polynomial of f(x) − µ(x) at ti, i = 0, 1, . . . , j − 1, j + 1, . . . , r, that is,

f(ti) − Pr−1(ti) = µ(ti), i = 0, 1, . . . , j − 1, j + 1, . . . , r. (2.12)

By the definition of the divided difference and Theorem 2.4 (e), for x ∈ [a, b], x �= ti,
i = 0, 1, . . . , j − 1, j + 1, . . . , r, we have

f(x) − Pr−1(x) =
(

[t0, t1, . . . , tj−1, tj+1, . . . , tr, x]f −
r∑

i=0,i �=j

µ(ti)
Ω′

j(ti)(ti − x)

)
Ωj(x).

(2.13)
Notice that

sgn[Ωj(tj)] = (−1)r−j , (2.14)

sgn[Ωj(xj)] =

{
(−1)r−k, k � j,

(−1)r−k−1, k > j.
(2.15)
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Thus, if |µ(ti)| = c, i = 0, 1, . . . , j − 1, j + 1, . . . , r, then (2.10)–(2.15) imply

sgn[f(tj) − Pr−1(tj)] = (−1)r−j , (2.16)

sgn[f(xj) − Pr−1(xj)] =

{
(−1)r−k−1, k � j,

(−1)r−k, k > j.
(2.17)

Now, we define the function µ(x), x ∈ [a, b], only at points ti, i = 0, 1, . . . , j − 1, j +
1, . . . , r, respectively, in the following cases.

Case 1 (k = j). We define

µ(ti) =

{
(−1)r−i−1c, i � j − 1,

(−1)r−ic, i � j + 1.

Case 2 (k = j + 1). We define

µ(ti) =

{
(−1)r−ic, i � j − 1,

(−1)r−i−1c, i � j + 1.

Case 3 (k < j). We define

µ(ti) =

⎧⎪⎨
⎪⎩

(−1)r−i−1c, i � k − 1,

(−1)r−ic, k � i � j − 1,

(−1)r−ic, i � j + 1.

Case 4 (k > j + 1). . We define

µ(ti) =

⎧⎪⎨
⎪⎩

(−1)r−ic, i � j − 1,

(−1)r−ic, j + 1 � i � k − 1,

(−1)r−i−1c, i � k.

It is easy to see that in any case the numbers f(t0)−Pr−1(t0), . . . , f(tr)−Pr−1(tr) and
f(xj) − Pr−1(xj) have (r + 1) sign alternations. This completes the proof of Lemma 2.7.

�
Lemma 2.8. Let f ∈ C[a, b], and let r � 1 be integer. If the inequality

S−(f − Pr−1)[a,b] � r

holds true for any polynomial Pr−1(x) of degree less than or equal to r − 1 and there
exist points ti ∈ [a, b], i = 0, 1, . . . , r, t0 < t1 < · · · < tr, such that

[t0, t1, . . . , tr]f � 0, (2.18)

then for any j = 0, 1, . . . , r, x ∈ [t0, tr], x �= t0, t1, . . . , tj−1, tj+1, . . . , tr, we have

[t0, t1, . . . , tj−1, tj+1, . . . , tr, x]f � 0.

The proof is omitted as it is similar to that of Lemma 2.7.
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Remark 2.9. In Lemma 2.8, if [t0, t1, . . . , tr]f = 0, then f(x), x ∈ [t0, tr], is a poly-
nomial of degree less than or equal to r − 1.

Indeed, considering f and −f , respectively, yields that

[t0, t1, . . . , tj−1, tj+1, . . . , tr, x]f = 0

holds true for any j = 0, 1, . . . , r, x ∈ [t0, tr], x �= t0, t1, . . . , tj−1, tj+1, . . . , tr. Let
Lr−1(f, x) be the Lagrange interpolation polynomial of f at t0, t1, . . . , tj−1, tj+1, . . . , tr.
By Theorem 2.4 (e), we have

f(x) = Lr−1(f, x), x ∈ [t0, tr].

The next result follows from Lemma 2.8.

Theorem 2.10. Let f ∈ C[a, b], and let r � 1 be integer. If the inequality

S−(f − Pr−1)[a,b] � r

holds true for any polynomial Pr−1(x) of degree less than or equal to r − 1 and there
exist points ti ∈ [a, b], i = 0, 1, . . . , r, a = t0 < t1 < · · · < tr = b, such that

[t0, t1, . . . , tr]f � 0,

then f is r-monotone on [a, b].

Proof. Let xi ∈ [a, b], i = 0, 1, . . . , r, with x0 < x1 < · · · < xr. The idea of the
proof is as follows. Using Lemma 2.8, we replace tr, tr−1, . . . , t1, t0 in [t0, t1, . . . , tr]f
by xr, xr−1, . . . , x1, x0, successively, where exactly one point is changed at each step.
Therefore, without loss of generality, let xr ∈ (tk1−1, tk1), 1 � k1 � r. By Lemma 2.8, we
have

[t0, . . . , tk1−1, xr, tk1 , . . . , tr−1]f � 0. (2.19)

In this case, if we define

t
(1)
i = ti, i � k1 − 1,

t
(1)
k1

= xr,

t
(1)
i = ti−1, i � k1 + 1,

then (2.19) becomes
[t(1)0 , . . . , t(1)r ]f � 0.

Let xr−1 ∈ (t(1)k2−1, t
(1)
k2

), 1 � k2 � r. By Lemma 2.8 again, we have

[t(1)0 , . . . , t
(1)
k2−1, xr−1, t

(1)
k2

, . . . , t(1)r ]f � 0,

and we continue in this way to derive the inequality

[t0, x1, . . . , xr]f � 0.
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Finally, by Lemma 2.8, we get

[x0, x1, . . . , xr]f � 0,

which implies that f is r-monotone on [a, b]. This completes the proof of Theorem 2.10.
�

The following theorem is a consequence of Lemma 2.7 and Theorem 2.10.

Theorem 2.11. Let f ∈ C(I), I = (a, b) or I = R and let r � 1 be integer. If the
inequality

S−(f − Pr−1)I � r

holds true for any polynomial Pr−1(x) of degree less than or equal to r − 1 and there
exist points ti ∈ I, i = 0, 1, . . . , r, t0 < t1 < · · · < tr, such that

[t0, t1, . . . , tr]f > 0,

then f is r-monotone in I.

Proof. Let xi ∈ I, i = 0, 1, . . . , r, with x0 < x1 < · · · < xr. If xi ∈ [t0, tr], i =
0, 1, . . . , r, then it follows from Theorem 2.10 that

[x0, x1, . . . , xr]f � 0.

If ti ∈ [x0, xr], i = 0, 1, . . . , r, then

[x0, x1, . . . , xr]f � 0,

for otherwise Theorem 2.10 with −f yields

[t0, t1, . . . , tr]f � 0,

which contradicts the assumption [t0, t1, . . . , tr]f > 0. Therefore, without loss of gener-
ality, let x0 < t0 and xr < tr. In this case, by Lemma 2.7, we have

[x0, t1, . . . , tr]f � 0.

It follows from this and Theorem 2.10 that

[x0, x1, . . . , xr]f � 0.

This completes the proof of Theorem 2.11. �

For f ∈ Cr[a, b], r � 1, we have the following theorem.

Theorem 2.12. Let f ∈ Cr[a, b], and let r � 1 be integer. If the inequality

S−(f − Pr−1)[a,b] � r

holds true for any polynomial Pr−1(x) of degree less than or equal to r − 1, and there
exist point x0 ∈ [a, b] such that f (r)(x0) > 0, then, for any x ∈ [a, b], f (r)(x) � 0, and
hence f is r-monotone on [a, b].
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Proof. Suppose that there exists a point x1 ∈ [a, b] such that f (r)(x1) < 0. Then there
exists δ > 0 such that f (r)(x) < 0 for any x ∈ (x1 − δ, x1 + δ) ∩ [a, b]. Therefore, taking
points ti ∈ (x1 − δ, x1 + δ)∩ [a, b], i = 0, 1, . . . , r, t0 < t1 < · · · < tr, from Theorem 2.4 (c)
we have

[t0, t1, . . . , tr]f < 0.

It follows from Theorem 2.11 with −f and Theorem 2.5 (b) that f (r)(x) � 0 for any
x ∈ [a, b], which contradicts the assumption f (r)(x0) > 0. This completes the proof of
Theorem 2.12. �

3. The r-monotonicity of generalized Bernstein polynomials

In [4], Goodman et al . proved the following theorem.

Theorem 3.1. Let f ∈ C[0, 1], q ∈ (0, 1]. If f is increasing on [0, 1], then Bn(f, q; x)
is increasing on [0, 1], and if f is convex on [0, 1], then Bn(f, q; x) is convex on [0, 1].

In this section, we shall prove the following theorem, which generalizes Theorem 3.1.

Theorem 3.2. Let f ∈ C[0, 1], q ∈ (0, 1]. For positive integers n, r, with n � r, if f

is r-monotone on [0, 1], then Bn(f, q; x) is r-monotone on [0, 1].

To prove Theorem 3.2 we need the following lemma.

Lemma 3.3. For f ∈ C[0, 1], q ∈ (0, 1] and positive integer n, let xi = [i]q/[n]q,
i = 0, 1, . . . , n, and let

∆kf =
k∑

i=0

(−1)k−iq(k−i)(k−i−1)/2
(

k

i

)
q

fi (3.1)

denote the kth q-difference of f at points x0, x1, . . . , xk, k � n, where fi = f(xi) [4, (2.1)].
Then we have the following formula:

∆kf =
[k]q!
[n]kq

qk(k−1)/2[x0, x1, . . . , xk]f. (3.2)

This is a slight modification of Theorem 1.5.1 in [6].

Proof of Theorem 3.2. It is easy to see from [4, (2.4)] that Bn(ei, q; x), i =
0, 1, . . . , r − 1, are linearly independent, where ei(x) = xi, i = 0, 1, . . . , r − 1. There-
fore, for any polynomial Pr−1(x) of degree less than or equal to r − 1, there exists a
unique polynomial P̃r−1(x) of degree less than or equal to r − 1 such that

Pr−1(x) = Bn(P̃r−1, q; x).

If f is r-monotone on [0, 1], then Theorems 2.3 and 2.6 yield

S−(Bn(f, q) − Pr−1) = S−(Bn(f − P̃r−1, q))

� S−(f − P̃r−1)

� r. (3.3)
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On the other hand, it follows from [4, (2.2)] (see also [5]) that

Bn(f, q; x) =
n∑

i=0

(
n

i

)
q

∆ifxi.

By virtue of (3.2), this gives

B(k)
n (f, q; 0) = k!

(
n

i

)
q

∆kf = k!
(

n

i

)
q

[k]q!
[n]kq

qk(k−1)/2[x0, x1, . . . , xk]f, k = 0, 1, . . . , n.

(3.4)
Thus, if f ∈ C[0, 1] is r-monotone, then B

(r)
n (f, q; 0) � 0. Let us write

Fk(x) = [x0, x1, . . . , xk, x]f (3.5)

for x ∈ [0, 1], x �= xi, i = 0, 1, . . . , k. Then, from the definition of the divided difference,

[x0, x1, . . . , xk]f = [xr, xr+1, . . . , xk]Fr−1 (3.6)

holds true for any k, r � k � n.
If B

(r)
n (f, q; 0) > 0, then it follows from Theorem 2.11 that Bn(f, q; x) is r-monotone

on [0, 1].
If B

(r)
n (f, q; 0) = 0, then (3.4) gives [x0, x1, . . . , xr]f = 0. By (3.5) and (3.6) we have

[x0, x1, . . . , xr+1]f = [xr, xr+1]Fr−1

=
[x0, x1, . . . , xr−1, xr+1]f

xr+1 − xr

� 0. (3.7)

In this case, if [x0, x1, . . . , xr+1]f > 0, then (3.4) gives B
(r+1)
n (f, q; 0) > 0, and there

exists δ > 0 such that B
(r+1)
n (f, q; x) > 0, x ∈ (0, δ), which implies that there exists

a point t ∈ (0, δ) such that B
(r)
n (f, q; t) > 0. Thus, it follows from Theorem 2.12 that

Bn(f, q; x) is r-monotone on [0, 1]. If [x0, x1, . . . , xr+1]f = 0, then B
(r+1)
n (f, q; 0) = 0,

and (3.5) and (3.6) give

[x0, x1, . . . , xr+2]f = [xr, xr+1, xr+2]Fr−1

=
[x0, x1, . . . , xr−1, xr+2]f

(xr+1 − xr)(xr+2 − xr+1)

� 0. (3.8)

Continuing the process, we have either B
(k)
n (f, q; 0) = 0, k = r, r + 1, . . . , m − 1, and

B
(m)
n (f, q; 0) > 0 for some n � m � r, or B

(k)
n (f, q; 0) = 0 for k = r, r + 1, . . . , n. In

the case when B
(k)
n (f, q; 0) = 0, k = r, r + 1, . . . , m − 1, and B

(m)
n (f, q; 0) > 0 for some

n � m � r, there exists δ > 0 such that B
(m)
n (f, q; x) > 0 for x ∈ (0, δ). Then Taylor’s

Formula yields

B(r)
n (f, q; x) =

m−r−1∑
k=0

B
(k+r)
n (f, q; 0)

k!
xk +

B
(m)
n (f, q; ξ)
(m − r)!

xm−r =
B

(m)
n (f, q; ξ)
(m − r)!

xm−r, (3.9)
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where x ∈ (0, δ), ξ ∈ (0, x), implies that there exists a point t ∈ (0, δ) such that
B

(r)
n (f, q; t) > 0, which shows that Bn(f, q; x) is r-monotone on [0, 1]. In the case when

B
(k)
n (f, q; 0) = 0, k = r, r + 1, . . . , n, it follows from (3.2) and (3.4) that

Bn(f, q; x) =
r−1∑
i=0

(
n

i

)
q

∆ifxi,

which implies that Bn(f, q; x) is a polynomial of degree less than or equal to r − 1, and
hence is r-monotone on [0, 1]. This completes the proof of Theorem 3.2. �
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