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SATURATED IDEALS IN BOOLEAN EXTENSIONS
YUZURU KAKUDA

0. Introduction. Let xr be an uncountable cardinal, and let 2 be a
regular cardinal less than «. Let I be a i-saturated non-trivial ideal on
k. Prikry, in his thesis, showed that, in certain Boolean extensions, «
has a 2-saturated non-trivial ideal on x. More precisely,

THEOREM (Prikry [8]). Let «,2 and I be as above. Let # be a 2-
saturated complete Bollean algebra. Let J € V® such that, with probability
1, J is the ideal on ¥ generated by I. Then, it is B-valid that J is a i-
saturated non-trivial ideal on K.

The following questions naturally arise; 1) If I is x-saturated (x*-
saturated), does J remain k-saturated (x*-saturated)? 2) If sat(%) =,
what is the saturatedness of J?

For 1), we obtain the following theorem.

THEOREM 1. Let x and 2 be as above. Let y be a regular cardinal
such that 2 <y <«*, and let I be a y-saturated non-trivial ideal on «.
Let # be a A-saturated complete Boolean algebra. Then, it is B-valid
that J is y-saturated.

For 2), we get the following theorems.

THEOREM 2. Let ¢ be an uncountable cardinal, and I be a g-saturated
non-trivial ideal on k. Let # be a homogeneous complete Boolean algebra
such that sat (#) = k. Then, it is #-valid that J is not k-saturated.

THEOREM 3. Let k be a measurable cardinal, and I be a non-trivial
prime ideal on k. Let # be a homogeneous complete Boolean algebra such
tnat sat(#) = k. Then, it is #B-valid that J is not r*-saturated.

We will prove the above theorems as applications of a certain useful
lemma, which will be proved in §4.
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We assume that the reader is familiar with the Scott-Solovay Boolean—
valued models for set theory.

1. Saturated ideals.

1.1. Let 2 be a cardinal. Let # be a Boolean algebra. We say
that # is 2-saturated if, for any pairwise disjoint family {b,}... of 4,
there exists some « < 4 such that b, = 0. Clearly, if 2 <7y and % is 2-
saturated, then & is y-saturated. sat(#) denotes the least cardinal 1 such
that # is A-saturated.

The following lemma is well-known.

LEMMA. If sat(®) > W, then sat(#) is an wuncountable regular
cardinal.

1.2. Let £ be an uncountable cardinal. Let I be an ideal on «. I
is called non-trivial if;

1) I is non-principal, that is, {a} el for all « <«.

2) I is k-complete, that is, if whenever 5 <&, and {4,,a <7} is a
family such that A,e for each a <7, then \J,.,4,€l.

Let I be an non-trivial ideal on . We can form the quotient algebra
o = P(g)]I. If & is 2-saturated, we say that I is i-saturated.

Solovay proved the following theorem.

THEOREM (Solovay [5]). Suppose that k has k-saturated non-trivial
ideal on k. Then, £ is the x-th weakly inaccessible.

For more informations about saturated ideals, the reader may refer
to Kunen [1], Kunen-Paris [2] and Solovay [5].

2. The ultrapowers inside V9,

In this section, we restate the necessary results from Solovay [5].
From 2.1 to 2.8, we fix a transitive model M of ZFC, and an ordinal
o in M.

2.1. Let # be a subset of P(p) N M. We say that # is an M-
ultrafilter on p if:

(1) % contains no singletons,.

2 If Ae%, BeP(op N M, and AC B, then Be %.

@B) If AeP(p) N M, then either Ae% or p— Ac.
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4 Let p<p. Let (A, &<y be a sequence such that A,e# for
each § <7 and {A,:§<y>eM. Then, (N, A c%.

The concept of M-ultrafilter is due to Kunen [1]. The reader should
note that this definition somewhat differs from that of Kunen.

2.2. Let # be an M-ultrafilter on p. We define an equivalence
relation ~ on M N M¢ as follows; for f,ge M N M* let

f=g iff {@<p; fla)=g@}ecu.

We denote by [f] the Scott equivalence class of f with respect to ~.
Next, we put N = {[f]; feM N Mr}. We define a binary relation £
on N as follows; Let f,geM N M-.

[f1ETg] iff {a<p;fl@eg@}ew.

It is clear that the definition of E does not depend on the choice of
f and g. The relational structure (N, E) is denoted by Ult(M, %).

2.3. LEMMA 1 (Los). Let ¢(vy, -+ +,v,_)) be a set-theoretical formula,
and let fy,, -+, fn_, be elements of M N Me. Then,

N = ¢([fo]y Tty [fn_1]) /Lff {(X < 05 M = ¢(fo(0()’ c ‘7fn—1(a))} EU .

Let © be in M. We define c,c M N M? by c,(@) =z for all a <p,
and define ¢: M — N by c(x) = [c,].

LEMMA 2. c¢ is an elementary embedding.

In the remainder of this section, « will be uncountable cardinal, and
I a g*-saturated non-trivial ideal on «.

2.4. We form the quotient algebra & = P(x)/I. Let AeP(k). We
denote by [A] the element of o represented by A.

LEMMA 3.Y & is complete.

Let V¢ Dbe the Scott-Solovay «/-valued model. We assume that V&
is separated.

2.5. We define an element # of V¢ as follows;

|Aew| =I[A] for each Ac P(x) .

1) See Sikorski, Boolean algebras, Springer-Verlag, Berlin, 1960 p.65, 21.3.
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LEMMA 4. With probability 1. % is a V-ultrafilter on k.
By Lemma 4, we can form Ult (V,%) inside V.

LEMMA 5. Let fo, -+, fa_i€ V5. Let (v, - -+, v,_,) be a set-theoretical
formula. Then,

IOl (V, %) = ¢(LFo), - -+, LfuiDll = Ha < #5 ¢(fo(@), + -+, faa(@)] .

The lemma is easily proved by using Lemma 1 and the following
sublemma.

SUBLEMMA. Letxy,---,%,,€V. Let (v, ---,v,_,) be a set-theoreti-
cal formula. Then,

“V l: ¢(av70, ] avf'n-1)“ =1 'Lﬁ ¢(CI70, R} xn_l) .

LEMMA 6. Let xe V. Suppose that | Ut (V,%)| =1. Then,
for some feVs, |z =L[fl]=1.

LEMMA 7. With probability 1, Ult(V, %) is well-founded.

2.6. By Lemma 7, there exists a transitive class of V¢, N, and an
isomorphism +: Ult (V,%) — N inside V. Let feV®. Let v(f) be
the element of V¢ such that ||[v(f) = v([fD]| =1. We put a* = ¥(c,).

LEMMA 8. (1) With probability 1, N is o transitive class contain-
ing all ordinals.

@ Let fo, -y fni€Vs. Let vy --+,v,_,) be a set-theoretical
formula. Then,

IN E ¢ (f0)s - s ¥ (faD |l = Ha < &5 ¢(fol@), « -+, fra(@)] .
(8) Let |xeN| =1 Then, x = (f) for some fec V=

@ If a<k, of =d.
& |le*>E| =1

LEMMA 9. With probability 1, N contains all k-sequences of N in V¢,

Proof. Let se V* Dbe such that ||s;¥— N||=1. For each a <k,
we can choose f,e V* such that ||s(@) = (fJ)||=1. Let ¥(9) =« We
define fe V* by fla) = {fe(a): B < g(@)).

Clearly, |N E ¥(f) is a £-sequence| = 1. We claim that ||y(f) = s|| =
1. Now, choose h,c V* so that ||(Y ()@ = (k)| =1 for each a <r«.
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Then, ||N & 4(h,) is the value of & by ¥(f)||=1. By Lemma 8, for
almost all g8 <k, k(P is the value of « by f(B). Then, |y(h,) = V(fI| =
1. We have just proven that ||(v « < (v (MN)(a) = s(a))| = 1. Since ¥(f)
and s are £-sequences, ||[v(f) = s|| = 1.

3. Boolean algebras in Boolean extensions.

Let Z be a complete Boolean algebra. Let 2¢ V@ gsuch that |2 is
a Boolean algebral =1. We put 2, ={reV@:||lze2| =1}. We can
make 9., into a Boolean algebra, by defining Boolean operations as
follows ;

Let x,y € 95, Then, there exist uniquely z, and z, such that the
followings are %-valid respectively.

1) ze2 and z + ,y =2,

2) 2,¢2 and — ,x =z,
Put 2, = + a5y and 2z, = —a,.

The following lemma is due to Solovay-Tennenbaum [7]

LEMMA 1. 2, is complete iff it is F-valid that D is complete.

The proof of the following lemma is similar to Lemma 5.2.6 of
Solovay-Tennenbaum [7]. So we omit the proof.

LEMMA 2. Let 2 bea regular cardinal. Then the following are
equivalent :

1) % is 2-saturated, and it is B-valid that 2D is A-saturated

2) D4 s 2-saturated.

LEMMA 3. If there is a surjection @ form # to D4 such that
10b) =1, = b and ||@D) = 0,|| = —b forall be B, then D =2 in V.

4. The basic lemma and proof of Theorem 1.

4.1, Let £, I and & be as in §2. Let # be a complete Boolean
algebra. Let Je V® guch that J is the ideal on ¥ generated by I'in
V@, Clearly ||[AelJ| = Xiger|A < B

LEMMA 1. If # is k-saturated, then it is #-valid that J is non-
trivial.

1) ¢f. Solovay-Tennenbaum [7], p.214.
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Proof. Trivially, J is non-principal. The fact that J is x-complete
is easily proved by using the following sublemma.

SUBLEMMA. If # is k-saurated, then |AelJ| =||A C B]| for some
Bel.

4.2. Let 2e V™ such that |2 = P(®)/J||® = 1.
BASIC LEMMA. If # is k-saturated, then D4, is isomorphic to #E,

Proof. Let x € Z;,;. Then, there exists A ¢ V@ such that ||z = [A]|*
=1land ||ACK|® =1. Wedefine f,;x— Z by fu(a) = |&e A||®. Then,
¥ (f) € B*||“" = 1. Put &(x) = ¥(f,). We must show that the definition
of @(x) does not depent on the choice of A. So let, A,Bec P¥(x) such
that ||[[A]l =I[B]|® =1. Then, ||A4BeJ|® =1. (A4B denotes the
symmetric difference of A and B.) By the sublemma of Lemma 1, for
some Nel, |[AABC N||® = 1. It follows that if e N, then |&ec A|@
= |[&e B|“. Since N el, for almost all « <&k, fu(a) = fz(e). By Lemma
8 of §2, we have ||[v(f,) = ¥(fa)||Y = 1. Since V@ is sepatate ([, ) =
V().

O is surjective: Let yec #f,,. By Lemma 8 of §2, for some fe V¥,
¥(f) = y. We may suppose that f;x— %Z. We define A e V® by |dec A||¥
= f(a) for « <. Clearly, |ACk|® =1. Let ||z =[A]|® = 1. Then,
2 € Dgy- By the definition of @, d(x) = y.

@ is injective: Let @,y € 94 such that &(x) = O(y). Let 4,Be V¥
be such that ||z = [A]||® = |y = [B]||® = 1. Then, ¥(f,) = &(x) = D(y)
= Y(f5). Thus, f@) = fz(e) for almost all a <x, thatis, {a <k;|de Al
=||&eB|}el. By the definition of J, we have [[AdBeJ|® =1. It
follows that ||z = y|® = 1.

@ is an isomorphism: Let x,y¢€ P, be such that x <y. Let A,
B e P (g) such that ||z = [A]|| = || = [B]|®” = 1. Since x <y, we have
|A —Beld||® =1. By the sublemma of Lemma 1, for some Nel,
|A —BC N|® =1. Thus, if a¢ N, then ||¢cA||® < |&eB|®. That is,
for almost all a <&k, f4la) £ falw). It follows that ¥ (f4) < ¥(fs). So,
O(x) < D(¥).

4.3. Now, we prove Theorem 1. Let 2 be a regular cardinal less
than ¢, and 7y be a regular cardinal A<y <«x*. Suppose that I is y-saturated
and & is 2-saturated. Since % is 1-saturated and 2 <, we have |N £ &*
is y-saturated|*’ = 1. Since & is r-saturated, ||} is a cardinal||*’ = 1.
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By Lemma 9 of §2 and the fact that 1 <y, we have || #* is y-saturated ||
=1. By Lemma 2 of §3, we have %%, is f-saturated. By the basic
lemma, 2., is r-saturated.

Again, by Lemma 2 of §3, |2 is f-saturated||® = 1. That is, ||J is
7-saturated||® = 1.

Remark. In the case when r is measurable and I is a non-trivial
prime ideal on &, & = P(k)/I = 2. So we may consider N as a transitive
class in the real world.

The following theorem can be proved by using the basic lemma.

THEOREM (Lévy-Solovay [3]). Let x be a measurable cardinal and I
be a non-trivial prime ideal on k. Let & be a complete Boolean algebra
such that card (%) < k. Then, it is #-valid that J is a non-trivial prime
ideal on .

Proof. By the basic lemma, 9;,; is isomorphic to Z*. Let @ be an
isomorphism from Z;,; to #*. Define ¥ ; # — #* by ¥(b) = b*. Trivially
¥ is injective. Let ¥(f)e #*. We may suppose that f;x— #. Since
card (%) < &, there is the unique b ¢ # such that f(a) = b for almost all
a <k Thus, ¥(f) = ¥(b). It follows that ¥ is bijective. Let i = @16 .
Let be#. By easy computations, we have |[(@'o¥)(D) =1,||=b and
(@ e¥)D) =0,)| = —b. By Lemma 3 of §3, we have |2 =2| = 1.
That is, ||/ is prime|® = 1.

5. Proofs of Theorem 2 and 3.

5.1. Let # a complete Boolean algebra, and = be an automorphism
of #. Then, = induces the automorphism z, of V@&,

LEMMA 1. Let ¢(vy, -+-,v,_1) be a set-theoretical formula, and let
Loy +++y Ly De elements of V. Then,,

H¢(7T-'*(xo)y R n*(xn_1)n = 77-'(H¢(930, ety xn_l)”) .

Proof. The lemma is easily proved by induction on the length of 4.

An element z of V ig called z-invariant if x = =, (x). = is called
invariant if « is z-invariant for all automorphisms = of Z. For example,
% is invariant for each ze V.

By using Lemma 1, the following lemma is trivial.
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LEMMA 2. Let ¢y, --+,v,_) be a set-theoretical formula, and let
gy ooy Xn_y be invariant elements of V@®. Then, |¢(xy, -2, )| =

7l g(@os - + -5 Zu_) -

5.2. Let # be a Boolean algebra. We consider the following con-
dition (x).

(%) 0 and 1 are the only invariant elements of %.

We say that a Boolean algebra 4 is homogeneous if : for every 0 < b,
¢ <1, there exists an automorphism = such that =(b) = ¢. Clearly, if
4% is homogeneous, then # satisfies the condition (*).

LEMMA 3. Let ¢(vy, - -+, v,_,) be a set-theoretical formula, and # be
o complete Boolean algebra satisfying the condition (*). Let x, ---,%,_,
be invariant elements of V@®. Then, ||¢(x, -+ %,_D|| =0 or 1.

Proof. Suppose not. Put |z, ---,2,_)]|=b. Then, 0<b<1.
Since # satisfies the condition (*), there exists an automorphism z such
that n(b) = b. Then,

71'(“¢(x0’ S A S ”¢(xo’ cey xn—l)” .

This contradicts to Lemma 2.
Let 2 be a partially ordered set. We make & into a topological
space by taking sets of the form

U,={qe?;q<p}

as a basis for the open sets. Let #, be the complete Boolean algebra
of regular open sets of #. Let = be an automorphism of #. Then, =
induces the automorphism z of %, by z(U) = {z(p); p € U}.

LEMMA 4. Let & be a partially ordered set satisfying the condition
(%x).

(xx) Let p and q be elements of . Then, there is an automorphism
z of & such that =(p) and q are compatidble.

Then, #, satisfies the condition (x).

Proof. Suppose not. Then, there exists an element 0 < U <1 of
such that n(U) = U for all automorphisms = of #,. Let p and q be
elements of # such that pe U and q cinterior (—U). Since & satisfies
the condition (x#) there exists an automorphism = of & such that z(p)
and ¢ are compatible. Then, there exists an element r» of & such that
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r<a) and r<q. Since z(U) = U, z(p)e U. By the fact that U is
open, re U. Since qcinterior (—U), re —U. This is a contradiction.

5.8. Let x be an uncountable cardinal, and let I be a non-trivial
ideal on . Let Je V® be the ideal generated by I inside V@,

LEMMA 5. J is tnvariant.

Proof. Let = be an automorphism of 4. By Lemma 1, ||z.(J) is
the ideal on =,(¥) generated by =,(I)|| = 1. Since ¥ and I are invariant,
|74(J) is the ideal on ¥ generated by I| =1. Hence, |7,(J) =J| = 1.
Since V@ is separate, 7, (J) = J.

5.4. Let £ and I be as in 5.3. Suppose that I is x-saturated.

LEMMA 6. Let # be a complete Boolean algebra satisfying the con-
dition (x). Suppose that sat (#) = k. Then, it is B-valid that J is not
k-saturated.

Proof. Suppose not. Since # satisfies the condition (%), ||J is k-
saturated| =1 by Lemma 3 and Lemma 5. Let 2¢V® such that
|12 =Pk)|J|“® =1. By Lemma 2 of §3, 9, is k-saturated. By the
basic lemma, £, is x-saturated. Then, ||#* is k-saturated|“’ = 1.
Clearly, ||N = #* is k-saturated|“ = 1. Choose f e V* so that y(f) = &.
We may suppose that f:x—x. The, for almost all « <&k, Z is fl@)-
saturated. Thus, sat(#) <. This contradicts to the assumption of %.

Now Theorem 2 is a corollary of Lemma 6.

5.5. Let x be a measurable cardinal, and I be a non-trivial prime
ideal on &.

LEMMA 7. 2¢ < g*.

Proof. Since P(k) = P(k) N N, 2* < 2*™_  On the other hand x* is
measurable in N, so ¢* is strongly inaccessible in N. Hence, 2™ < g*,
Thus, 2¢ < g*.

Theorem 38 is a corollary of the following lemma.

LEMMA 8. Let # be a complete Boolean algebra satisfying the con-
dition (x). Assume that sat(#) =x. Let Je VP be the ideal on K
generated by I inside V®. Then, it is B-valid that J is not k*-saturated.

Proof. By using Lemma 7, the proof can be carried out analogously
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to the proof of Lemma 6. (Note that x* < r* by Lemma 7.).

5.6. We give an application of Lemma 8. Let «r and I be as in 5.5.
We consider the following partially ordered set #;pe & if

1) p is a function

2) the domain of p is a finite subset of £ X o

3) the range of p C &

4) p(a,n)) < a whenever {a,n) € domain (p).

The ordering of # is . Clearly, & satisfies the condition (x*).

LEMMA 9.° Sat(%,) =r |r= N[ =1

By the theorem of § 2 and Lemma 9, ||¥ has no ¥-saturated non-trivial
ideal on k|| = 1. On the other hand, by Lemma 8 we have ||J is not an
Wi#o-saturated ideal on ¥ = WR{#”|| = 1, where J is the ideal on r gener-
ated by I inside V@».
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