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Abstract

Let (N, R, 6) be a centrally ergodic W* dynamical system. When N is not a factor, we show that for each
nonzero real number ¢, the crossed product induced by the time ¢ automorphism 6; is not a factor if and
only if there exist a rational number r and an eigenvalue s of the restriction of 6 to the center of N, such
that rst = 27. In the C* setting, minimality seems to be the notion corresponding to central ergodicity.
We show that if (A, R, «) is a minimal unital C* dynamical system and A is not simple, then, for each
nonzero real number ¢, the crossed product induced by the time ¢ automorphism «; is not simple if there
exist a rational number » and an eigenvalue s of the restriction of « to the center of A, such that rst = 27.
The converse is true if, in addition, A is commutative or prime.
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1. Introduction

We say that a flow (Y, T') is a pair consisting of a compact metric space Y and an action
T:Y x R— Y. The time ¢t map of the flow (Y, T) is the automorphism T?: Y — Y.
We say that a flow (Y, T) is minimal if there are no nontrivial closed invariant
subspaces of Y. If (¥, T) is a minimal flow then, for ¢ # 0, [3, Proposition 1.5] shows
that the time ¢t map 7" is not minimal if and only if there exists a rational number r
and an eigenvalue s of T such that rst =2m. (The 2w term appears in this equality
when we remove it from the definition of eigenvalue in [3, Definition 1.1].) In the
noncommutative setting, a flow is a C* dynamical system (A, R, «) consisting of a
(unital) C*-algebra A and a one-parameter group of automorphisms «: R — Aut(A).
The action « is said to be minimal (or, equivalently, we say that A is «-simple) if A has
no nontrivial invariant ideals. When A = C(Y) is a commutative (unital) C*-algebra,
a flow « on A is induced by a flow T on Y, that is, a; (f) = f o T! for all f in A and
for all # in R. Then « is minimal if and only if 7 is minimal in the classical sense.
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The aim in this paper is to extend some of the results in [3] to the noncommutative
case, in other words, given a minimal C* dynamical system (A, R, «), we try to relate
the values of ¢ for which the crossed product induced by the time ¢ automorphism «;
is not simple, with the eigenvalues of (a restriction of) «. We are unable to answer
this question in general. Our partial results are contained in Section 3. It is natural to
ask what is the corresponding problem for von Neumann algebras. Just as the notion
of a simple C*-algebra corresponds to the notion of factor in the W*-algebra setting,
it turns out that minimality in the C*-algebra setting corresponds to central ergodicity
in the W*-algebra setting (recall that a W* dynamical system (N, R, 0) is said to
be centrally ergodic if the restriction of 6 to the center of N is ergodic). In fact,
if (A, R, o) is a minimal C* dynamical system then the crossed product A x4 R is
simple if and only if the strong Connes spectrum of « is R (see [4]); whilst if (N, R, 6)
is a centrally ergodic W* dynamical system then the crossed product N xy R is a
factor if and only if the Connes spectrum of € is R (see [13, Corollary XI.2.8, p. 336]).
In Section 2 we discuss this W* version of the problem, which we are able to solve
satisfactorily. We conclude each of the sections with some open problems.

2. W#* dynamical systems

Let (N, R, 8) be a W* dynamical system. We say that a real number s is an
eigenvalue for 6 if there exists a nonzero a in N such that, for all ¢ in R, we have
6;(a) = €"’a. When 6 is ergodic (that is, the set of fixed points of @ is C, the set of
eigenvalues, which we denote by A (6), is a subgroup of R, see [10, Lemma 2.1].

Our first lemma is known for the case where the underlying measurable space of
the center of the von Neumann algebra in question is a probability space; see [1,
Lemma 12.1.1, p. 326]. The proof there, however, cannot be adapted to a more
general situation. Our proof here is essentially contained in the proof of [12,
Theorem 10.6]. We also remark that this lemma is known when the action on the
underlying space of the center of the von Neumann algebra in question is uniquely
ergodic [2, Exercise 4.24.2].

LEMMA 2.1. Let (N, R, 0) be a centrally ergodic W* dynamical system and let t be
a strictly positive real number. If 6, is not centrally ergodic then there exists a nonzero
eigenvalue s of the restriction of 0 to the center Z(N) of N, such that ¢'! = 1.

PROOF. Suppose that 6; is not centrally ergodic. Then A = Z(N)% is a commutative
von Neumann algebra which is not reduced to the scalars. Furthermore, A is 6-
invariant and the action of 6 on A is ergodic and periodic. Hence the action of 6
on A is transitive. Thus there exists 7y > 0 such that the action of 6 on A is isomorphic
to the canonical action of R on L>°(R/#pZ). Since s = 27 /t( is an eigenvalue for this
action (with eigenfunction defined by f (¢t 4 tZ) = ¢!, for all ¢ in R), then we have
that s is an eigenvalue of the action of 6 on A, and so s is an eigenvalue of the action
of 6 on Z(N). Since the action of 8 on A is periodic with period 7y, there exists k in Z
such that t = k#g. Hence s = 27 /t9 = 2mk/t is a nonzero eigenvalue for the restriction
of @ to Z(N) and e™! = 27k = 1 as desired. O

The next result can be regarded as the W* version of [3, Proposition 1.5].
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PROPOSITION 2.2. Let (N, R, 0) be a centrally ergodic W* dynamical system and let
6 denote the restriction of 0 to the center Z(N) of N. Consider the map with domain
1/2mQ® A(é) and codomain R defined by (r/27) ® s +— (rs/2m). This map is a
Q-linear monomorphism with range equal to

{0} U {r € R\ {0} | 01/, is not centrally ergodic}.

Hence the set above is a Q-linear subspace of R isomorphic to (1/27)Q ® AD).

PROOF. It is clear that the map (r/27) ® s +— (rs/2m) is a Q-linear monomorphism.
We only need to show that the range is as proposed. Let r = p/g be a nonzero rational
number and let s be a nonzero eigenvalue for 6. Putr=rs /2w = ps/2mwq. We show
that (N, Z, 01,,) is not centrally ergodic. Since A(0) is a group, we get that ps is also
an eigenvalue. Therefore, there exists a € Z(N), a # 0, such that 6;(a) = eirsty, for
all € R. Notice that a is not a scalar since a # 0 and ps # 0. Hence

01/1(a) = barg/ps(a) = €™ a =a.

Thus (N, Z, 01/;) is not centrally ergodic. Conversely, assume that (N, Z, 61,,) is
not centrally ergodic for some ¢ % 0. By Lemma 2.1, there exists 0 % s € A(0) such
that e/*(1/) = 1. Therefore s(1/t) =2mk for some k € Z and so t = (1/27k)s, as
desired. O

Let 6 be a flow on a von Neumann algebra N. If N is a factor, then 0 and 6, are
automatically centrally ergodic for every real number 7. To determine whether the
crossed product induced by the time ¢ automorphism is a factor, one must examine the
Connes spectrum of 6;. If N is not a factor and 6 is centrally ergodic, we will show that
the crossed product by the time ¢ automorphism is a factor if and only if 6; is centrally
ergodic. We first give the following easy lemma.

LEMMA 2.3. An inner automorphism on a von Neumann algebra N is centrally
ergodic if and only if N is a factor.

PROOF. Straightforward. O
We are ready to prove the main result of this section.

THEOREM 2.4. Let (N, R, 0) be a centrally ergodic W* dynamical system where N
is not a factor. Let t be a nonzero real number. Denote by 0 the restriction of 0 to the
center of N. The following statements are equivalent.

(1) The W* dynamical system (N, Z, 6;) is not centrally ergodic.
(2)  The von Neumann algebra N g, Z is not a factor.
(3) There exists (r, s) in Q x A(O) such that rst = 27.

PROOF. (1) implies (2). This is well known; see [13, Corollary XI.2.8, p. 336] or [9,
Theorem 8.11.15, p. 362].

https://doi.org/10.1017/51446788708000463 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788708000463

172 B. A. Itza-Ortiz [4]

(2) implies (3). If N g, Z is not a factor then either (N, Z, 6;) is not centrally
ergodic or I'(6;) # T; see [9, Theorem 8.11.15, p. 362]. If (N, Z, 6;) is not centrally
ergodic, we use Proposition 2.2 to conclude that (1/¢) = (r/2m)s for some (r, s) in
Q x A(é). Hence rst =2m, and we are done. If not, assume that (N, Z, 0;) is
centrally ergodic and I'(6;) # T. Then I'(6,)* # {0}. As T is compact, we may use
[13, Theorem XI.2.9(ii), p. 336] to conclude that 8;' = 6,; is inner for some nonzero
integer n in I'(6,)t CZ. Since N is not a factor, 6,, is not centrally ergodic (see
Lemma 2.3). Another application of Proposition 2.2 completes the proof.

(3) implies (1). Suppose that there exists (r, s) in Q x A(0) such that rst = 27.
Then (1/¢) = (r/2m)s and so, by Proposition 2.2, the W* dynamical system (N, Z, 6;)
is not centrally ergodic. O

Recall that a von Neumann algebra M of type IIl induces a (unique, up to
conjugacy) flow on a von Neumann algebra of type Il,,, which is called the
noncommutative flow of weights of M or the associated covariant system of M; see
[13, Definition XII.1.3, p. 368]. As an example, we specialize Theorem 2.4 to the type
III,, case, 0 < A < 1, to obtain the following result.

COROLLARY 2.5. Let M be a factor of type 111, 0 < A < 1, with associated covariant
system (N, R, 0). Lett be a nonzero real number. The following statements are
equivalent.

(1) The W* dynamical system (N, Z, 6;) is not centrally ergodic.
(2) The von Neumann algebra N X, Z is not a factor.
(3) There exists a rational number r such that t = r log A.

PROOF. Let 6 denote the restriction of 6 to the center of N. In this case (27 /log M)Z =
T(M) = A(é); see [13, Theorem XII.1.6, p. 369] or [11, 28.11, p. 425]. Therefore,
using Proposition 2.2, if ¢ is a nonzero real number then (N, Z, 6;) is not centrally
ergodic if and only if there exist ¥’ in Q and n in Z such that 1/t = (' /27) (27 n/log A)
if and only if ¢ = r log A, where r = 1/r'n is rational. O

Let (N, R, 0) be a centrally ergodic W* dynamical system. It could be the case
that, for all nonzero ¢, the crossed product induced by the time ¢ map 6; is a factor:
for example, if (N, R, ) is the associated covariant system of a factor of type Il
(because A(F) = {0}; see [13, Theorem XII.1.6, p. 369] or [11, 28.11, p. 425]). On
the other hand, it could be the case that, for every real number ¢, the crossed product
induced by the time ¢ map 6; is not a factor: for example, if N xg R is semifinite,
where N is a properly infinite semifinite von Neumann algebra which admits a faithful
semifinite normal trace t such that T o §; = e ', for all 7 in R (because A(6) = R;
see [12, Theorem 8.6]).

Theorem 2.4 is no longer valid when N is a factor. The author is grateful to
Professor A. Kishimoto for communicating to him the following example (see [5,
before Corollary 1.3]). We adapt it here to the W* setting. Let N be the von
Neumann algebra generated by two unitary operators u and v satisfying uv = e**Svu,
where s is an irrational number. It follows that N is a factor. Let 6 be the flow
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on N defined by 6; (1) = e>™'y and 6; (v) = e*™*"v, for all ¢ in R. Then @ is centrally
ergodic and A(B) = {0}. However, the crossed product N X, Z induced by the time 1
automorphism is not a factor (because 6y is inner). It is worth mentioning that, in
fact, the von Neumann algebra N X R is a factor. Therefore, this example satisfies a
stronger condition than that required in Theorem 2.4.

One may ask whether a result similar to Proposition 2.2 is true if we substitute the
centrally ergodic condition by ergodicity, that is, suppose that € is an ergodic flow on
a von Neumann algebra. It is true that the map (r/27) ® s > (rs/2m) is a Q-linear
monomorphism from (1/27)Q ® A(0) into the subset of R consisting of {0} together
with the set of all nonzero real numbers ¢ such that 6;,, is not ergodic. By results
of Stgrmer [10], if the kernel of 0 is different from {0} (or, equivalently, Sp 6 # R;
see [10, Theorem 3.2]), then N must be abelian [10, Theorem 3.5]. Therefore, if Sp 6
is not R, this map is also onto, by Proposition 2.2. We do not know if this map is onto
when Sp 6 = R. We conclude this section with some open questions.

PROBLEM 1. Suppose that (N, R, ) is a centrally ergodic flow. If N is a factor,
characterize the values of ¢ for which the crossed product associated to the time ¢
automorphism 6; is a factor.

PROBLEM 2. If (N, R, 0) is an ergodic flow, characterize the values of ¢ for which
the time ¢ automorphism 6; is ergodic.

3. C* dynamical systems

Let (A, R, o) be a unital C* dynamical system. We say that a real number s is an
eigenvalue for « if there exists a nonzero a in A such that, for all ¢ in R, it follows
that o, (a) = ¢*’a. We denote by A(a) the set of eigenvalues of «. If A=C(Y) is
commutative and « is induced by a flow T on Y, one may check that the eigenvalues
for o are the same as the eigenvalues of 7' in the classical sense. (We remark that,
in [3, Definition 1.1] and elsewhere in the literature, a 27t term appears in the classical
definition of eigenvalue. We compensate for such a constant in the results below.)

Using results by Olesen and Pedersen, we obtain the following proposition.

PROPOSITION 3.1. Let (A, R, ) be a C* dynamical system. Assume that for each s
in R and for each nonzero ideal I of A we have I Nag(I) # {0}. If a is minimal then,
for all nonzero real numbers t, the automorphism oy is minimal.

PROOF. Assume that « is minimal and let ¢ be a nonzero real number. If o; is not
minimal then there exists a nontrivial «;-invariant ideal J of A. Hence J is invariant
under Go = tZ. Since R/G is compact, we may use [7, Proposition 2.2] to conclude
that J contains a nonzero «-invariant ideal 7, and so the ideal I is nontrivial because
it is contained in the nontrivial ideal J. This contradicts the minimality of « and
completes the proof. O
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Observe that if A is prime then the hypothesis of the proposition is satisfied.
Furthermore, this hypothesis is equivalent to saying that the dual action & has full
Connes spectrum; see [6, Lemma 3.2].

The following lemma is well known. We include a proof for completeness. For the
case where A is commutative, this is [14, Theorem 5.3].

LEMMA 3.2. Suppose that a: A — A is a minimal automorphism of a unital
C*-algebra A. Then « is centrally ergodic.

PROOF. If « is not centrally ergodic, there is an element a in the center of A which is
not a multiple of the identity, such that «(a) = a. Let A be an element in Sp (a) and
let I be the ideal in A generated by a — A. We have that / is nonzero, as a is not a
scalar. Since a — A is a noninvertible element in Z(A), then no element of the form
(a — M)b, with b € A, is invertible. Thus |[(a —A)b — 1|| > 1. Hence [ is a proper
ideal. Furthermore, I is a-invariant. We conclude that « is not minimal, as desired. O

We can now state the following result similar to Proposition 2.2.

PROPOSITION 3.3. Let (A, R, a) be a unital and minimal C* dynamical system and
let & denote the restriction of a to the center of A. Consider the map with domain
(1/2m)Q ® A (@) and codomain R given by (r/27) @ s — (rs/2m). This map is a
Q-linear monomorphism into

{0} U {r e R\ {0} | a1y is not minimal}.

Furthermore, the map is onto if A is either commutative or prime. Hence, in this case,
the above set is a Q-linear subspace of R isomorphic to (1/27)Q ® A(@).

PROOF. Let s be a nonzero eigenvalue of & and let r be a nonzero rational number.
We show that /s is not minimal.

Suppose that r = p/q. Since ps is also an eigenvalue of @, there exists a nonzero
a in Z(A) such that o, (a) = e'P*'a for all ¢ in R. Therefore, a is a fixed point for
the time 2w g/ ps automorphism. Since both a and ps are not zero, we obtain that
Q27 q/ps = @27 /rs 18 not centrally ergodic and hence it is not minimal, by Lemma 3.2.

If A is commutative, this is [3, Proposition 1.5]. For the case where A is prime,
Z(A) =C! and so A(@) = {0}. This, together with Proposition 3.1, complete the
proof. O

We now prove a statement analogous to Lemma 2.3.

LEMMA 3.4. An inner automorphism on a C*-algebra A is minimal if and only if A
is simple.

PROOF. Let o be an inner automorphism on a C*-algebra A. If A is simple then it is
clear that o is minimal. To prove the converse, suppose that « is minimal. Let I be
an ideal of A. Then / is o-invariant because « is inner. Thus [ is trivial because « is
minimal. Hence A is simple. O
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The following is the main result of this section.

THEOREM 3.5. Let (A, R, «) be a unital and minimal C* dynamical system where A
is not simple. Assume, in addition, that A is either commutative or prime. Let t be a
nonzero real number. Denote by d the restriction of « to the center of A. The following
statements are equivalent.

(1) The C* dynamical system (A, Z, a;) is not minimal.
(2) The C*-algebra A x4, Z is not simple.
(3) There exists (r, s) in Q x A(a) such that rst = 2.

PROOF. (1) implies (2). This is well known; see [6, Theorem 6.5] or [4, Theorem 3.5
and Proposition 3.8].

(2) implies (3). If A x4, Z is not simple then either o; is not minimal or I'(or;) # T;
see [6, Theorem 6.5]. If o; is not minimal then, using Proposition 3.3, we can
find a rational number r and an eigenvalue s in A (@) such that (1/¢) = (r/27)s.
Hence rst = 2, as desired. Else, assume that o, is minimal and I'(ct;) £ T. Then
NG # {0}. As T is compact, we may use [8, Theorem 4.5] to find a nonzero » in
I'(a;)* C Z such that o} = ay; is inner. Since A is not simple, o, is not minimal; see
Lemma 3.4. Another application of Proposition 3.3 completes the proof.

(3) implies (1). Suppose that there exists (r, s) in Q x A (&) such that rsr = 27.
Then (1/¢) = (r/27m)s and so, by Proposition 3.3, «; is not minimal. O

As an example, we specialize to the case where A is prime but not simple to obtain
the following corollary.

COROLLARY 3.6. Let (A, R, @) be a unital C* dynamical system. Assume that A is
prime but not simple. If o is minimal then A X, 7 is simple for all 0 #t € R.

PROOF. This follows from Theorem 3.5 since Z(A) = C! and so A (@) = {0}. O

Theorem 3.5 (and Corollary 3.6) fails for simple C*-algebras, as one can see from
the (C*-version of) the example described after Corollary 2.5. We conclude this
section with some open problems.

PROBLEM 3. Is the map of Proposition 3.3 onto if we remove the condition on A
being either commutative or prime?

PROBLEM 4. Suppose that (A, R, «) is a minimal C* dynamical system and assume
that A is simple. Characterize the values of ¢ for which the crossed product associated
to the time ¢ automorphism ¢, is a simple C*-algebra.
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