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Volume 31 , Number 4, Dec. 1966 

MEETING OF THE ASSOCIATION FOR SYMBOLIC LOGIC 

A meeting of the Association for Symbolic Logic was held a t the Waldorf-Astoria 
Hotel, New York City, on Monday, April 4, 1966 in conjunction with the American 
Mathematical Society. On April 5, 6 and 7, there was a Symposium on Mathematical 
Aspects of Computer Science jointly sponsored by the Association for Computing 
Machinery, the Association for Symbolic Logic and the American Mathematical 
Society, and supported financially by the Air Force Office of Scientific Research, the 
Institute for Defense Analyses, and the U. S. Army Research Office-Durham. The 
Symposium was presented in four sessions as follows: 

Session I - Computation with symbolic and algebraic data. 
Session II - Numerical methods for computers. 
Session I I I - Software systems; mechanical linguistics, computer analysis of 

language. 
Session IV - Theory of automata; artificial intelligence. 
An invited address was presented by Professor Hilary Putnam entitled, Constructible 

sets and predicative hierarchies. In addition nine papers were delivered, and six were 
presented by title; the last six abstracts below were those presented by title. 

MARTIN DAVIS 

YIANNIS N. MOSCHOVAKIS. Hyperanalytic predicates. 
We use the notation and terminology of S. C. Kleene's RFI and RFII (Recursive 

junctionals and quantifiers of finite types I and II, Trans. Amer. Math. Soc, vol. 91 
(1959) pp. 1-52 and vol. 108 (1963) pp. 106-142 respectively). 

Let a be a list of objects of types 1, 2, 3, c a list of variables of types ^ 3, 3 E the 
type-3 object that represents function quantification (RFII 11.16). A predicate P(c) 
is hyperanalytic in a, if it is recursive in the list 3E, a; P(c) is r.e. in a, if for some e, 

-P(c) = [{«}(a, c) is defined]. 

(1) There exists a hyperanalytic number-theoretic predicate which is not recursive in any 
of the predicates H£(a) (a e O2) of RFII , 11.27. 
(2) Main theorem. For each list a we define a set N and to each z e N we assign a 
countable ordinal |^|c and a predicate Gz(u, a, v, /?) such that the following conditions 
hold. 

(a) N is r.e. in 3E, a. 
(b) Each Gz is hyperanalytic in a, uniformly for z e N. 
(c) If P(:) is hyperanalytic in a and c contains only variables of types ^ 1, then P(c) 

is recursive in some Gz. 
(d) If |*|0 < M o then Gz is recursive in Gw, but Gw is not recursive in Gz. 
(e) A countable ordinal r\ is equal to some \z\B (z e N) if and only if rj is the order-

type of some well-ordering of the natural numbers which is hyperanalytic in a. 
The construction is in two steps: 
(I) An elementary characterization (in the form of an inductive definition) of 

functions and functionals recursive in a list a of objects of types ^ 3. 
(II) An extension to functionals with arguments of types ^ 3 of several results 

that R. O. Gandy has proved for functionals with arguments of types ^ 2, the most 
important of which is the following: there is a partial recursive functional v(a3, c, e) 
such that 

{Ex) [{«}(c, x) is defined] -»• {e}(c, v(3E, c, «)) is defined. 

We list some of the more interesting side results and corollaries: 
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(3) A predicate P(c) is r.e. in 3 E if and only if'jhere is an analytic R(c, F) such that 

P(c) = (EF)P(c, F) 

= (EF)[F is hyperanalytic in c & R(c, F)]. 

(4) A predicate P(c) is r.e. in 3E only if there is an analytic Q(c, F, a) such that 

P(c) - («)(F)0(c. F, a) 
= (a)(F)[F is hyperanalytic in a, c -»• @(c, F, a)]. 

((1) and (2) strengthen Kleene's XXVIII of RFI, the Representation Theorem for 
{e}(c) ~ w with c a list of variables of types < 3.) 
(5) A predicate P(c) is hyperanalytic if and only if both P(c) and P(c) are r.e. in 3E. 
(6) If P(c, a, F) is r.e. in 3E, /Am 

(a) (EF) [F is hyperanalytic in a, c & P(c, a, F)] 
= (EF)[F is hyperanalytic in c & (a)P(c, a, A^F(A/(2<XW • 3^<'>)))]. 

(7) TAew is a predicate P(x, a), r.e. in 3E, swcA /Aa/ (Ea)P(#, a) is not r.e. in 3E. 
(Received February i, ig66.) 

IRWIN MANN. Probabilistic recursive functions. 
The notions in the paper of de Leeuw, Moore, Shannon, and Shapiro, Computability 

by probabilistic machines (1956) are broadened, and extended to the class of all recursive 
probability distributions. Let © be the set of all finite sequences of O's and 1 's, and H 
be the set of all such infinite sequences. Define a partial order on 0 by 0i 5j 02 if 
62 = 0i * 0 (concatenation). Let f : © ->© be (1) recursive, and (2) monotone non-
decreasing, f can be extended in a natural way to a function from H to H u 0. Let 
Ho be the subset of H consisting of elements with initial segment 0. Let t/i be a pro­
bability measure on H. ^ is a recursive distribution if H0 is measurable for all 0 
and there is a recursive function g(0, n) such that \ifi{He} — g(0, n)| < 1/n. For 
any 0, and 0 < p < 1, letting a(0) be the number of O's and b(0) the number of l's 
in 0, a particular case of a distribution is i/fP{He} = paW(l — p)b(<». Lemma. t/>p is 
recursive iff p is recursive. A pair (i/r, f) will be called admissible if ^ is a probability 
measure on H and is recursive, f : H -> H w © is recursive and monotone, and 
iji{x | f(x) e H} = 1. We will say that i/r induces <f> if, for all measurable subsets Hi 
of H and (>/r, f) admissible, <£{Hi} = ^(f-^Hi)}. Theorem 1. If 0 is a recursive distri­
bution on H, and if iji induces <f>, then ^ is a recursive distribution. Theorem 2. If tj> 
is a recursive distribution on H, then for 0 < p < 1 </rp induces <f>. Definition: x 6 H 
is called an atom of a distribution >[i if ^{x} is positive. Theorem 3. Every atom of a 
recursive distribution is recursive. These theorems circumscribe the class of calculations 
which can be accomplished through the availability of probabilistic methods. (Received 
April i, ig66.) 

CAROL KARP. Applications of recursive set functions to infinitary logic. 
Consider ordinary set-theoretical formulas with additional one-place predicate 

letter A, individual constant c. Such a formula is S0(A; c) if all of its quantifiers are 
restricted and is Sn(A; c) (IIn(A; c)) if it consists of a So(A; c)-formula with a string 
of n alternating quantifiers beginning with 3(V). For a transitive class T, a given 
predicate A on T and set C E T , a k-place predicate R is S ^ ^ A ; c) iff there is a 
Sn(A; c)-formula <p such that (Vxi. . .xi£<-T)(R(xi, . . .,Xk) <-» \z <Tj(,T><p(A;c,xi, . . .,Xk)). 
Thus are obtained hierarchies of set-theoretical predicates analogous to Levy's hier­
archies of set-theoretical formulas in his AMS Memoir, #57, 1965. I t is implicit 
in the work of Takeuti that this hierarchy relative to L, the class of constructible sets, 
is isomorphic to the hierarchy of ordinal predicates arising from the theories of ordinal 
computability of Takeuti, Machover, Levy, Kripke. The S(L^ i-i n^L)-predicates can 
be characterized either by schemata or by an infinitary Herbrand-Godel computation 
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system and a method of R. Jensen can be used to show that they are effectively iso­
morphic to the finitarily recursive ordinal predicates of LeVy. Relative to Hm, the 
hereditarily finite sets, the hierarchy is isomorphic to the ordinary arithmetical 
hierarchy with the S^1"' r\ IT ̂ H "^-predicates corresponding to the recursive predicates 
of natural numbers. 

Consider predicates Taut(x), meaning x is a tautology (in the infinitary sense), 
and Vld(x), meaning x is a valid formula (in the infinitary sense). Thm. 1. (AC) Taut(x) 
is IIi and every Ili-predicate is Si(Taut). Taut is therefore not Ei(c) for any set c. 
Thm. 2. (AC) Vld(x) is S2 r\ II2 and is not a Boolean combination of Ei(c)-predicates. 

Let HK be the set of all sets hereditarily of power at most K, where K is an infinite 
cardinal, and write S J for S ^ K ) . Let K-Taut(x) and K-Vld(x) be Taut and Vld restricted 
to x t HK. Thm. 3. (AC) (a) K-Taut is IIJ. (b) If K exp co — K then every Iljf-predicate 
is Sj(x-Taut). Thus «-Taut is not SJ(c) for any c e HK. (c) (Cont. Hyp.) K-Taut is 
Sjf iff K = co. (d) (Gen. Cont. Hyp.) K-Taut is Sf(c) for some c e HK iff cf(K) = to. 

Proof and computation predicates have always been S i r\ II i and that situation 
will probably continue because a ZF-definable predicate that is functional and stable 
relative to transitive classes is always Si r> IIi. We conclude from Thm. 3 that K-
propositional logic is not effectively axiomatizable (even allowing parameters) within 
HK if K exp co = K. I t is a theorem of D. Scott that K-Vld is not HK-definable. Therefore 
though valid K-formulas can be proved from tautologies, there is in general no proof 
in HK. Thm. 2 gives further information about systems of infinitary predicate logic. 

RAYMOND M. SMULLYAN. Analytic cut. 

We consider a Gentzen-type system S whose only logical inference rule is a cut rule, 
but weakened so that all proofs still obey the subformula principle. We first consider 
the postulates for propositional logic. Axioms: X ->- X; X A Y - > X ; X A Y -»- Y; 
X - * X v Y ; Y - > X v Y ; X v Y ^ X , Y; Y ^ X => Y; X, X = > Y - ^ Y ; 
-> X, X => Y. Rules (1) [Weakening] From 0 -> T to infer 0* -» T* if all terms of 
0 are in 0* and all terms of T are in T*; (2) [Analytic Cut] From 0, X ->• r and 
0 -> X, r to infer 0 -> T, providing that X is a subformula of some term of 0 or of T. 

The above system So is complete for propositional logic. If we add Gentzen's rules 
for the quantifiers we obtain a complete system for quantification theory. But we 
prefer to replace these rules by axioms as follows. Our formal objects shall be ordered 
pairs <cr, 0 -> T> — which we write 0 ->-,, V — where a is a finite set of (individual) 
parameters (also called "constants"). [We informally read 0 ->„ Y as "for at least 
one value of ai, . . ., an, 0 -> T holds"]. We add to So the axioms: 
(1) Vxyx ->• cpa; cpa. -*• 3xyx; (2) fa->aVxipx; 3xyx ->-a cpa, providing a does not 
occur in cpx. We replace the structural and cut rules by: (1) From 0 ->„ T to infer 
0* ->„ T* (where 0*, T* are as before); (2) From 0, X -^„ T and 0 ->„2 X, V to 
infer 0 ->•<» T, where one of CTI, 02 is empty, and a consists of those parameters of 
the other which actually occur in 0 -* T, (and again, X must be a subformula of 
0 -»• T). This system S is complete for first order logic (indeed, Gentzen's quantifi-
cational rules are easily derivable). (Received April 1, 1966.) 

HIDEMITSU SAYEKI. Some consequences of normality of the space of models. 
By H^) we mean the first order predicate calculus with identity of a type p. S(/J.) 

mean the class of all sentences in L(/i). We denote by M(/i) the class of all inter­
pretations of L(,u) and by M(/«) the family of all quotient classes of M(,u) with respect 
to elementary equivalence in L(/i). Natural mapping will be denoted by a. We intro­
duce a topology into M(/t) taking {oX* ; X e S(fi)} as open basis. Then M(/i) is a 
compact Hausdorff space, whence is a normal space. Let K c M(fi). K e EC (ECA) 
iff K = o_1(F) for some clopen (closed) subset F of M(/x). Suppose /*' 2 /x. A mapping 
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nn defined on M(fi') is called ^-reduction of M(/*') iff it assigns to every element <J2R 
of M(,u') the element of M(/j,) whose representative is the ,u-reduct of 2Jt. 

Theorem. JIW is a continuous mapping of M(/n') onto M(/M) under which the image 
of each closed set is closed. 

From the theorem follows that : K e PC A iff aK is closed in M(/<). Hence 
K e PCA r> ACL =>• K e ECA. 

Let n' 2 /J,. X e S(fi') is called definable in L(,u) iff J I ~ 1 ^ ( O X * ) = oX*. Assume 
that a, ji are disjoint sequences of predicates and that L(/*') is obtained from L(/j,) 
by adjoining predicates of a, /J (in symbol: jx' = fi + a + fi). £ ' , S" £ S(fi') are said 
to be prime modulo /J, iff each sentence in £' , 2" is definable in L(,u + a), L(/i + /?) 
respectively. 

Theorem. Let /*' 2 /t. Assume that Z', 2 " £ S(ft') are prime modulo /*. If 
2 ' w 2" is inconsistent in L(/*'), then there is an X e S(fi) such that X « Cn(S') and 
S" w {X} is inconsistent in L(/i'). 

In intuitionistic logic this generalization of Craig's Interpolation Theorem fails, 
since in a certain topology above theorem implies T4-Axiom, nevertheless the space 
of intuitionistic interpretations is Ti-space, but not Hausdorff. (Received April 4, ig66.) 

RICHMOND H. THOMASON. A system of logic with free variables ranging over quantifiers. 
The morphology of the system Q resembles that of the classical predicate calculus 

with identity, except that Q is equipped with denumerably many quantificational 
variables Q, such that if A is a wff then so is (Qx)A, for each individual variable x 
and quantificational variable Q. Quantificational variables are interpreted as ranging 
over quantifiers, in the sense of Mostowski XXII I 217; this yields a natural generali­
zation of classical satisfiability to (^-satisfiability. 

Surprisingly, the ordinary Lowenheim-Skolem property fails for Q-satisfiability. 
E.g., let ©! = {~Xi = xj I i # j , i, j e m}, 0 2 = {.F(*2i) /ieco), and 0 3 = {~F(x2i+i) / 
i e co}. Let r = ©i VJ 02 ^ ©3 «-> {(Qx)F(x) A ~{Qx)~F(x)}. V is readily Q-satisfied 
in a domain of cardinality Si, but is not Q-satisfiable in any domain of cardinality 
So- (Under any Q-interpretation which satisfies 0 i w 0 j u 0 3 in a domain D, the 
extension E of F must be infinite, as well as D — E. Then if D = So, there must be 
a permutation of D taking E onto D — E; hence the truth-values of (Qx)F(x) and 
(Qx)~F(x) must be the same). This example is easily generalized to obtain a set A 
not Q-satisfiable in any domain of cardinality less than S». 

Let the system Q have, in addition to standard axioms and rules for the classical 
predicate calculus with identity, all axioms having the form 

Per(A(x,y),B(x),C(x)) 3 [(Qx)B(x) = (Qy)C(y)], 

where Per(^4(^, y), B(x), C(x)) is 

(x)(3\y)A(x, y) A (y)(3\x)A(x, y) A (X)[B(X) = (3y)[A(x, y) A C(y)]] 

and there are no free occurrences of y in C(x). 
Conjecture: Q is semantically complete under the interpretation given above. 

We also suspect that proof of this conjecture would yield a Lowenheim-Skolem 

theorem for Q-satisfiability at the cardinal 3m- (3o = So; 3>>+i = 2 ' ; 3 m = U 3i.) 
Km 

I.e., we conjecture that if a set T of wffs is Q-satisfiable, then T is Q-satisfiable in a 
domain of cardinality 3m. Thus, assuming the generalized continuum hypothesis, 
this would be the best possible result. (Received April 4, ig66.) 

DONALD J. COLLINS. A group with 18 defining relations and an unsolvable word 
problem. 

Let T be an arbitrary Thue system and V a fixed word of T. Then there exists a 
group G(T, V), depending on T and V such that 
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(1) if it is recursively unsqlvable to determine for an arbitrary word W of T whether 
or not W equals V in T, then the word problem for G(T, V) is unsolvable 

(2) if T has m generators and n defining relations, then G(T, V) has 3m -f- n + 5 
defining relations. 

If we specify T as 

Z : si, s2, . . . , sm 

U : P, = Qj, j = 1,2 n 

then we present G(T, V) as 

S : Si, S2, . . ., sm, k, t, q, a, b 

D : asr = sra bsr = srbP+1abP+1 r = 1, 2, . . . , m 
s~Jq = brabrqs rb

rabr r = 1, 2, . . ., m 
Pjq = bm+Jabm+JqQ1bm+Jabm+J j = 1, 2, . . . , n 
at = ta bt = tb 
ak = ka bk = kb 
kV-iq-i tqV = V~iq-itqVk 

where p = m + n and Pj is the word obtained from Pj by replacing each sr in Pj 
by s " 1 (e.g. if Pj = S1S2S3, then Pj = sj"1s^"1sg'1). 

G. S. CSjtin (Trudy Mat. Inst. Steklov, 52 (1958), 172-189) has specified a Thue 
system with 5 generators and 7 defining relations with the property that there is 
a word V of the system such that it is recursively unsolvable to determine for an 
arbitrary word W of the system whether or not W equals V in the system. (See also 
D. Scott (J. Symb. Logic, 21 (1956), 111-112)). Using the technique of M. Hall, Jr., 
(J. Symb. Logic, 14 (1949), 115-118) — since the Thue system under consideration 
possesses no relation of the form "non-empty word equals empty word", the simpler 
correspondence of "ith generator -»- ab'a" may also be employed — one can obtain 
a Thue system with 2 generators and 7 defining relations which has the same property. 
Consequently there exists a group with 18 defining relations whose word problem 
is unsolvable. 

The group presented is a modification of that of W. W. Boone (Ann. of Math., 
70 (1959), 209); the method of the proof is essentially that of J. L. Britton (Ann. 
of Math., 77 (1963), 16-32). 

In Boone's presentation, the following typographical corrections should be made. 
The relation qgi = giq should read qgi = ^M+icM+i^M+i^M+ig-1?iM+icM+iagM+ifoM+i. 
The first assertion should read " . . . if and only if tiqWkW"1q-1tt^1 equals 
tzqWkW-tq-1^1 in 2V'.) (Received February 14, ig66.) 

FREDERIC B. FITCH. A consistent modal set theory. 
The proposed system of set theory is an extension of an underlying modal system 

with quantifiers and identity. The Barcan formula is assumed, and also unrestricted 
substitution for identity so that [x = y] ^ • [ # = y]. Set membership, e, and un­
restricted abstracts are added as primitive notions. The following principles are 
assumed: 

[x e y~\ => D [•* e y] 
\xB-$4y] = a<t>x 

The Russell paradox fails to arise because we get merely [R e R] s 0~[ReR], 
and therefore ~[R e R] and Q[R e R]. The system, indeed, can be shown to be con­
sistent even if axioms of infinity and choice are added. The method of the consistency 
proof is similar to that for the system CA of combinatory logic. (Received March 11, 
1966.) 
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TRENCHARD MORE, J R . A strengthened Aussonderung schema. 

The Aussonderung schema h 3SVx.x e S •». x e A & D _ s in ZF set theory is equi­
valent to F JxD -o- SSVx.x € S o D~s, where JxD is an abbreviation for 3SVx.D_ s => 
x e S and is read "D is legal for x." D _ s is any formula that has no free S. If 3!xD 
for 3x.D & Vy.D-y^ => x = y, then f- JxD o 3!SVx.x e S o D~s is an alternate 
Aussonderung schema. D _ y * is got from D ~ y by substituting y for all free x where 
y is free for x in D _ y . If we permit UI and EG for terms of the form {x : D}, then 
h 3 ! S S = {x : D - s } . All terms exist and all individual variables are subject to 
quantification. With terms incorporated in the language, the Aussonderung schema 
may take the form h JxD * . X £ { x : D } « D . 

If we assume the additional axiom schema h x € {x : D} =s- JxD, which is equi­
valent to h - iJxD =s> {x : D} = 0 then the paradoxical sets are empty; h {x : x 4 x} = 
{x : x = x} = {x : D~x} = 0 . The Aussonderung schema and the additional axiom 
schema are equivalent to a strengthened Aussonderung schema, (- x e {x : D} o. 
D & JxD, which simplifies the presentation of general set theory. The additional 
axiom schema has a partial converse h {x : D} = 0 =>. D => - | JxD. Although the 
more inclusive formula must be legal for the subset relation to hold, h J x B =>. 
Vx[A => B] =>. {x : A} £ {x : B}, there is no such restriction for equality 
h Vx[A -o- B] =*- {x : A} = {x : B}. {Received February 14, 1966.) 

STORRS MCCALL. HOW to make Boolean algebra Post-complete. 

The classical system of Boolean algebra (BA) is incomplete in the sense that additions 
can be made to it without inconsistency. For example, the thesis | - n = 0 v a = I can 
be added, resulting in a 'two-valued' algebra. This notwithstanding, BA can be made 
complete in such a way that it remains a genuine calculus of classes without becoming 
two-valued. 

Consider the fragment (BI) of BA based on class-inclusion and the notions of the 
empty and the universal class alone. With the addition of a single non-classical rule 
of inference, this fragment can be shown to be Post-complete. The basis of BI is: 

(i) Primitive symbols. 
Class variables: a, b, c, . . . 
Class constants: 0, 1 
Connectives: •, ~, a 

(ii) Rules of formation and definitions (usual), 
(iii) Axioms. 

1. Any set of axiom-schemata for two-valued propositional logic. 
2. (a <= b • b <= c) => a c c 

3. a c a 
4. 0 <= a 

5. « c l 
6. 1 4= 0. 

(iv) Rules of inference. 

R l . Substitution for class variables. 
R2. Detachment. 
R3. If\-xva<^pvyc:d, then either h ^ v a c ^ o r \- % v y c d (where 

a, /S, . . . range over class variables and constants, and x is a zero- or 
many-termed disjunction of expressions of the form e c J or e <£ J.) 

Note that R3 is non-classical. If BA contained it, then the addition of (1) 
h e O v l C o (making BA two-valued) would have the further result of either 
a c 0 or 1 c a being a thesis, which yields inconsistency. In the absence of (1), 
however, R3 may be consistently added. The proof is somewhat similar to Luka-
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siewicz's completeness-proof for assertoric syllogistic in Aristotle's Syllogistic, and 
yields both a decision procedure for BI and a proof of Post-completeness. (The role 
played by R3 is analogous to that of Shipecki's rule of rejection.) 

BI is easily extended by the successive addition of primitive signs for class-comple­
mentation and intersection (resulting in the successive definability of 1 and 0). The 
addition of these yields an extension (BA+) of BA which is shown to be Post-complete 
by arguments similar to those for BI. I t is noteworthy that BA+ adds only new rules 
to BA, not new theses. (Received February n, ig66.) 

ALBERT A. MULLIN. Remarks on Hubert's eighth class of problems. 
This note gives some minor, but quite relevant, results bearing on a problem which 

for many analysts occupies a position similar to Fermat's Last "Theorem" for many 
algebraists. The crucial functions involved in the study are all effectively calculable. 
The crucial functions used are the "modified Liouville's function" and the "modified 
Mobius' function" as defined in Notices Amer. Math. Soc. 11 (1964), pg. 680 
(64T-450). Lemma 1. Let natural number n be the cardinality of the following arbi­
trary finite index-sets of summations. Then n = E|/i(m)| + E|/t*(m) — ft(m)\ + 
E|A*(m) — fi*(m)\, where ft and A are the standard Mobius function and Liouville 
function, respectively. Lemma 2. E|A*(m) — /u(m)| = E|A(m) — [i(ra)\ — E|,u*(m) — 
/i(m)| + E|A*(m) — /i*(m)|. Based upon numerous analogies concerning properties 
of A and A*, and ft and ft* together with partial numerical evidence the author Con­
jectures: (1) S m S x / i* (m) = o(x) entails the prime number theorem, and (2) 
Em5;x/i*(m) = O(xi) entails the ordinary Riemann hypothesis for the ordinary 
zeta-function (see, e.g., S. Chowla, The Riemann hypothesis and Hubert's tenth 
problem, Gordon and Breach, New York, 1965). Similarly, for the modified Liouville's 
function. (Received February iy, ig66.) 

RICHMOND H. THOMASON. On the semantical completeness of two systems of infinitary 
propositional calculus. 

In a previous abstract appearing in this JOURNAL, the author presented systems 
L J ^ and LS4,,,, of denumerably infinitary propositional calculus, corresponding 
respectively to intuitionistic logic and the modal logic S4. These systems have now 
been shown to be complete according to the criteria of validity formulated by Kripke 
for intuitionistic and modal logic. 

The extension of Kripke's definition of validity to the infinitary case will be obvious 
to those familiar with Kripke's work. In our proof (which follows Henkin's proof of 
completeness for the classical predicate calculus) we use the notion of a J ^ - [ S ^ - ] 
saturated set. A (perhaps nondenumerable) set X of wffs is J M - [ S ^ - ] satuarted if 
every denumerable subset of X is J^,- [ S ^ - ] consistent and if for all disjunctions 
V 0 in X, there is a wff A in 0 such that A is in X. Using a (nonconstructive) argument 
of a familiar sort, we show that every J,,,,- [ S ^ - ] consistent set {A} has a J^,- [ S ^ - ] 
saturated extension. Then, using an argument adapted from Henkin's work, we show 
that every J^,- [£84^-] saturated set X is satisfied under some interpretation (the 
interpretation being built out of the notation of X itself). Weak completeness theorems 
for the systems follow immediately from these results. 

Algebraic analogues of these theorems can also be obtained, in the form of repre­
sentation theorems for co-complete Brouwerian and closure algebras. (Received Fe­
bruary 14, ig66.) 

JAMES C. OWINGS, JR . Some applications of metarecursion theory to IL\-sets. 
G. E. Sacks, in Metarecursive sets (this JOURNAL, Sept. 1965) has proved that there 

exists a maximal nj-set and that every IlJ-set which is not S j is the union of two 
IlJ-sets which are not S}. These facts prompted Hartley Rogers, Jr. to ask "Is the 
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ordering of IlJ-sets under inclusion modulo finite differences isomorphic to the 
ordering of r.e. sets under inclusion modulo finite differences?" We can show that 
the answer is "no"; in fact, we show that the two orderings above and the ordering 
of the meta r.e. sets under inclusion modulo finite differences are all distinct. More 
precisely, we say A is of type 1 if whenever B is maximal in A there is a maximal 
set C such that B = A n C; otherwise, we say A is of type 2. I t follows from a theorem 
of Lachlan that all maximal r.e. sets are of type 1. We show that, whereas there 
exist maximal meta-r.e. sets of both types, all maximal IlJ-sets are of type 2. The 
proof requires an extension of Lachlan's theorem and makes heavy use of the existence 
of two kinds of maximal meta-r.e. sets: those whose complements are bounded by 
some recursive ordinal and those whose complements are not. 

In his doctoral thesis G. Driscoll proves that weak relative metarecursiveness 
(written gw) is not a transitive relation on the meta-r.e. sets (see Metarecursive sets 
for definitions). Kreisel then asked if g«, was transitive if restricted to IlJ-sets. The 
answer is no: we can construct nj-sets A, B, C such that A and B are in the same 
metadegree and B :JW C but A $w C. 

We also lift Friedberg's 1-1 enumeration of the r.e. sets to metarecursion theory; 
i.e., there is a simultaneous 1-1 metarecursive enumeration of all meta-r.e. sets. We 
show that the corresponding result for n}-sets is false; i.e., there is no II} predicate 
P(e, n) such that for each II|-set A there is one and only one e such that n e A <-• 
P(e, n). In fact, it is impossible in metarecursion theory to give any simultaneous 
1-1 enumeration of the IlJ-sets, even if all the recursive ordinals are used as indices. 
(Received February 25, J966.) 

RAYMOND M. SMULLYAN. Uniform Gentzen systems. 
In our paper [1] (A unifying principle in quantification theory, Proceedings of 

the National Academy of Sciences, June 1963) we hinted that our unifying 
a, /?, y, d notation should be useful in treating Gentzen-type systems. We now wish 
to show just how. For our present purposes, it is best to look at a Gentzen sequent 
© -»• r as an ordered pair <©, F> where 0, V are finite sets rather than sequences of 
formulas. We now consider some systems which are uniform in the sense that the 
logical connectives and quantifiers never appear explicitly in any of the postulates, 
but only as hidden within the a, /?, y, d notation. What we called sentences in [1] we 
shall now call signed sentences (these are expressions X, X', where X is a closed formula 
of quantification theory). For the present, we make a strict syntactical distinction 
between X ' and ~X. For any signed formula A, by its conjugate A we mean the result 
of unpriming A if A is primed, or priming A if A is unprimed. Now, application (E) 
of [1] immediately yields a uniform system if we take I(M) — henceforth written {M} — 
to be the Gentzen sequent Mi -*• M2, where Mi is the set of those (unsigned) sentences 
X such that X e M, and M2 is the set of those (unsigned) sentences Y such that Y' e M. 
[The reader can see concretely just what this system is by listing separately the 5 
a-cases, the 3 /S-cases, the 2 y-cases and the 2 (5-cases. The resulting system is almost 
standard]. 

The system of the above abstract is uniform, for the axioms can be subsummed 
under the following uniform schemata: Propositional Axioms: {X, X'}, {a, ai}, 
{a, S2}, {ai, a-2, s.}. Quantificational Axioms: {y, y(a)}, <{a}, {d, (5(a)}>, providing a does 
not occur in 6. 

The use of uniform notation is extremely handy and labor saving in treating the 
metatheory (e.g. in a constructing a finitary proof of Gentzen's Hauptsatz, 12 cases 
can be collapsed into 4). (Received April I, ig66.) 

MARTIN ZUCKERMAN. Some theorems on the axiom of choice for finite sets. 
Let I = {integers S 2}, I» = I u { l ) , &> = {primes}, and C = I - ^ » . If S £ I 
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and n € I, S( n ) will denote {x : x e S & x ^ n}. (For terminology, see <1 > Fund. Math. 
33 (1945), 137-168). Theorem. If p(k) > p for N g k < 2N, then /*(n) > p for all 
n ;> N. If n is odd and composite, then 3 S / i ( n ) sj n/3; if, in addition, (1) n is not 
thrice a prime, then 3 < fi(n) < n/3, or (2) n is thrice a prime, then /j,(n) = n/3. 
ji(n) > ^t\Zn/2, n € I. Theorem. If [Z] -v [n] and if m = max Z, then n < | ^ | m2; 
if Z consists solely of composites or if max(Z n ^ ) < & m, then n < |- m2. Theorem. 
[Z] -»• [n] implies that Z contains a multiple of n iff n is prime. Theorem. For n e I 
and pe0>, (1) [C(n)] -> [p] iff p g n/2, (2) (M) is a NASC for the implication 

[ (̂P)] - W. 
Definition. Let mi(Z) be the i t h smallest integer satisfying [mj ->• [Z], i e I*. 

Theorem. For n e I, mi({n}) is prime iff n is prime or 4; mi({n}) is composite for i € I. 
A sufficient condition that mi(Z) = lcm(Z) is that each element of Z is square-free. 
For such sets, mi(Z) = i • lcm(Z) for all i e I*. All the mi({n}), i e I*, are determined 
for 2 ^ n g 19. Conjecture: mi({n}) = n, n 2̂ 10. Definition. An element m e I and 
a finite subset Z c I satisfy (M') iff for each n e Z, {m} and n satisfy (M). Theorem. 
(M') is necessary for the implication [m] -»• [Z]. (M') is a NASC for this implication 
in each of the following cases: (1) m < 40, (2) m is a prime power, (3) Z = I( n ) , n <= I, 
and (4) Z = ^ / n ) , n e I. Theorem. Let m, n e I. Let p(n) be the largest prime :£ n. 
Then m is a multiple of every prime g| p(n) iff [m] -»• [^(n)] iff [m] -> [I/n\]. Definition. 
For m e I, F(m) = {n : n e I & [m] ->- [n]}. Theorem. Each F(m) is finite. F(m) can 
be determined (1) for m a prime power p k ; if, in addition m ^ 2 or 4, F(m) = 
{p1 : 1 ^ 1 ^ k}, (2) for composite m < 40, (3) for certain composite m > 40. [m] 
iff [n] is false if m and n are distinct and at least one is a prime power other than 
2 or 4. 

Definition. Two finite disjoint subsets Zi and Z2 = {ni, x\%, . . . , n,} of I satisfy 
1 l 

(K)z Za iff for every subgroup II Gni of II Sn i such that no Gnk has fixed-points, 
1 = 1 1 = 1 

l 
1 ^ k g; 1, there is a subgroup H of (IT Gni)

m and a finite number r of (not necessarily 
1=1 

r 
different) proper subgroups Ki, K2, . . . , Kr of H such that S Ind(H/Ki) e Zi. Ob-

i = l 
viously, (K) Z l > Z l -v (K) Z l { n i } & (K)Z i { n 2 > & . . . & (K)Z i { n i } . Theorem. If (K)Zl>Zi is 
false, then there is a model for set theory (with urelements) in which [Zi] is satisfied, but 
for each ni e Z2, [ni] is unsatisfied. This extends <1 >, Theorem 3. (Received April 1, ig66). 

HERBERT A. SIMON. A note on almost-everywhere definability. 
This paper develops a notion of almost-everywhere definability, first published in [1], 

that appears more suitable, for certain purposes of axiomatizing scientific theories, 
than the stronger notion of definability formalized by Tarski [2, Chapter X]. 

Let there exist a set of sentences X', and a subset X, X cr X'. Let M be a set 
of models of X, and n a measure defined on sets in M. Let M' be the corresponding 
set of models of X'. Then M' c M. Suppose that the measure, fi, is such that 
fi(M) > 0, and fi(M — M') = 0. Let 'a' be an extra-logical constant that is definable, 
in the sense of Tarski, on the basis of X', is not definable on the basis of X, and does 
not occur in X' — X. Then we shall say that 'a' is definable almost-everywhere in M 
on the basis of X and with respect to fi. 

The method of Padoa for showing that a constant is not definable in a theory cannot 
be used to show it is not almost-everywhere definable. In particular, in several 
axiomatizations of classical particle mechanics [3 and 4], the concept of mass, while 
undefinable in the sense of Tarski, is definable almost-everywhere. 

[1] Simon, Herbert A., Definable terms and primitives in axiom systems, in Henkin, 
Suppes and Tarski (eds.), Symposium on the axiomatic method; Amsterdam, 
North-Holland Publishing Company, 1959 (pp. 443-453). 
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