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Abstract. The similarities between linearized gravity and electromagnetism are known since the
early days of General Relativity. Using an exact approach based on tidal tensors, we show that
such analogy holds only on very special conditions and depends crucially on the reference frame.
This places restrictions on the validity of the “gravito-electromagnetic” equations commonly
found in literature.
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1. Gravito-electromagnetic analogy based on tidal tensors
The topic of the gravito-electromagnetic analogies has a long story, with different

analogies being unveiled throughout the years. Some are purely formal analogies, like the
splitting of the Weyl tensor in electric and magnetic parts, e.g. Maartens-Basset 1998;
but others (e.g Damour et al. 1991, Costa-Herdeiro 2008, Jantzen et al. 1992, Natário
2007, Ruggiero-Tartaglia 2002) stem from certain physical similarities between the grav-
itational and electromagnetic interactions. The linearized Einstein equations (see e.g.
Damour et al. 1991, Ruggiero-Tartaglia 2002, Ciufolini-Wheeler 1995), in the harmonic
gauge h̄ ,β

αβ = 0, take the form �h̄αβ = −16πTαβ , similar to Maxwell equations in the
Lorentz gauge: �Aβ = −4πjβ . That suggests an analogy between the trace reversed time
components of the metric tensor h̄0α and the electromagnetic 4-potential Aα . Defining
the 3-vectors usually dubbed gravito-electromagnetic fields, the time components of these
equations may be cast in a Maxwell-like form, e.g. eqs (16)–(22) of Ruggiero-Tartaglia
2002. Furthermore (on certain special conditions, see section 2) geodesics, precession
and forces on gyroscopes are described in terms of these fields in a form similar to their
electromagnetic counterparts, e.g. Ruggiero-Tartaglia 2002, Ciufolini-Wheeler 1995. Such
analogy may actually be cast in an exact form using the 3+1 splitting of spacetime (see
Jantzen et al. 1992, Natário 2007).

These are analogies comparing physical quantities (electromagnetic forces) from one
theory with inertial gravitational forces (i.e. fictitious forces, that can be gauged away by
moving to a freely falling frame, due to the equivalence principle); it is clear that (non-
spinning) test particles in a gravitational field move with zero acceleration DUα/dτ = 0;
and that the spin 4-vector of a gyroscope undergoes Fermi-Walker transport DSα/dτ =
SσUαDUσ/dτ , with no real torques applied on it. In this sense the gravito-electromag-
netic fields are pure coordinate artifacts, attached to the observer’s frame.

However, these approaches describe also (not through the “gravito-electromagnetic”
fields themselves, but through their derivatives; and, again, under very special conditions)
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tidal effects, like the force applied on a gyroscope. And these are covariant effects, im-
plying physical gravitational forces.

Herein we will discuss under which precise conditions a similarity between gravity and
electromagnetism occurs (that is, under which conditions the physical analogy h̄0μ ↔ Aμ

holds, and Eqs. like (16)–(22) of Ruggiero-Tartaglia 2002 have a physical content). For
that we will make use of the tidal tensor formalism introduced in Costa-Herdeiro 2008.
The advantage of this formalism is that, by contrast with the approaches mentioned
above, it is based on quantities which can be covariantly defined in both theories — tidal
forces (the only physical forces present in gravity) — which allows for a more transparent
comparison between the electromagnetic (EM) and gravitational (GR) interactions.

Table 1. The gravito-electromagnetic analogy based on tidal tensors.

Electromagnetism Gravity

Worldline deviation: Geodesic deviation:
D2δxα

dτ 2 =
q

m
Eα

β δxβ , Eα
β ≡ F α

μ ;β Uμ (1a)
D2δxα

dτ 2 = −E
α
β δxβ , E

α
β ≡ Rα

μβ ν Uμ Uν (1b)

Force on magnetic dipole: Force on gyroscope:

F β
E M =

q

2m
B β

α Sα , Bα
β ≡ 	F α

μ ;β Uμ (2a) F β
G = −H

β
α Sα , H

α
β ≡ 	Rα

μβ ν Uμ Uν (2b)

Maxwell Equations: Eqs. Grav. Tidal Tensors:

Eα
α = 4πρc (3a) E

α
α = 4π (2ρm + T α

α ) (3b)

E[αβ ] = 1
2 Fαβ ;γ Uγ (4a) E[αβ ] = 0 (4b)

Bα
α = 0 (5a) H

α
α = 0 (5b)

B[αβ ] = 1
2 	 Fαβ ;γ Uγ − 2πεαβ σ γ jσ Uγ (6a) H[αβ ] = −4πεαβ σ γ Jσ Uγ (6b)

ρc = −jα Uα and jα are, respectively, the charge density and current 4-vector; ρm = Tα β U α U β and
J α = −T α

β U β are the mass/energy density and current (quantities measured by the observer of 4-velocity
U α ); Tα β ≡ energy-momentum tensor; Sα ≡ spin 4-vector; 	 ≡ Hodge dual. We use ẽ0 1 2 3 = −1.

The tidal tensor formalism unveils a new gravito-electromagnetic analogy, summarized
in Table 1, based on exact and covariant equations. These equations make clear key
differences, and under which conditions a similarity between the two interactions may
occur.

Eqs. (1) are the worldline deviation equations yielding the relative acceleration of two
neighboring particles (connected by the infinitesimal vector δxα ) with the same 4-velocity
Uα (and the same q/m ratio, in the electromagnetic case). These equations manifest the
physical analogy between electric tidal tensors: Eαβ ↔ Eαβ .

Eq. (2a) yields the electromagnetic force exerted on a magnetic dipole moving with
4-velocity Uα , and is the covariant generalization of the usual 3-D expression FEM =
∇(S.B)q/2m (valid only in the dipole’s proper frame); Eq. (2b) is exactly the Papapetrou-
Pirani equation for the gravitational force exerted on a spinning test particle. In both (2a)
and (2b), Pirani’s supplementary condition Sμν Uν = 0 is assumed (c.f. Costa-Herdeiro
2009). These equations manifest the physical analogy between magnetic tidal tensors:
Bαβ ↔ Hαβ .

Taking the traces and antisymmetric parts of the EM tidal tensors, one obtains Eqs.
(3a)-(6a), which are explicitly covariant forms for each of Maxwell equations. Eqs. (3a)
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and (6a) are, respectively, the time and space projections of Maxwell equations Fαβ
;β =

4πjα ; i.e., they are, respectively, covariant forms of ∇·E = 4πρc and ∇×B = ∂E/∂t+4πj;
Eqs. (4a) and (5a) are the space and time projections of the electromagnetic Bianchi
identity 	Fαβ

;β = 0; i.e., they are covariant forms for ∇× E = −∂B/∂t and ∇ · B = 0.
These equations involve only tidal tensors and sources, which can be seen substituting
the following decomposition (or its Hodge dual) in (4a) and (6a):

Fαβ ;γ = 2U[αEβ ]γ + εαβμσBμ
γ Uσ . (1.1)

It is then straightforward to obtain the physical gravitational analogues of Maxwell equa-
tions: one just has to apply the same procedure to the gravitational tidal tensors, i.e.,
write the equations for their traces and antisymmetric parts (that is more easily done
decomposing the Riemann tensor in terms of the Weyl tensor and source terms, see
Costa-Herdeiro 2007 sec. 2), which leads to Eqs. (3b) - (6b). Underlining the analogy
with the situation in electromagnetism, Eqs. (3b) and (6b) turn out to be the time-time
and and time-space projections of Einstein equations Rμν = 8π(Tμν − 1

2 gμν Tα
α ), and

Eqs. (4b) and (5b) the time-space and time-time projections of the algebraic Bianchi
identities 	Rγα

γβ = 0.

1.1. Gravity vs Electromagnetism
Charges — the gravitational analogue of ρc is 2ρm + Tα

α (ρm + 3p for a perfect fluid) ⇒
in gravity, pressure and all material stresses contribute as sources.

Ampere law — in stationary (in the observer’s rest frame) setups, 	Fαβ ;γ Uγ vanishes
and equations (6a) and (6b) match up to a factor of 2 ⇒ currents of mass/energy source
gravitomagnetism like currents of charge source magnetism.

Symmetries of Tidal Tensors — The GR and EM tidal tensors do not generically
exhibit the same symmetries, signaling fundamental differences between the two interac-
tions. In the general case of fields that are time dependent in the observer’s rest frame
(that is the case of an intrinsically non-stationary field, or an observer moving in a sta-
tionary field), the electric tidal tensor Eαβ possesses an antisymmetric part, which is the
covariant derivative of the Maxwell tensor along the observer’s worldline; there is also an
antisymmetric contribution 	Fαβ ;γ Uγ to Bαβ . These terms consist of time projections
of EM tidal tensors (cf. decomposition 1.1), and contain the laws of electromagnetic in-
duction. The gravitational tidal tensors, by contrast, are symmetric (in vacuum, in the
magnetic case) and spatial, manifesting the absence of analogous effects in gravity.

Gyroscope vs. magnetic dipole — According to Eqs. (2), both in the case of the mag-
netic dipole and in the case of the gyroscope, it is the magnetic tidal tensor, as seen by the
test particle (Uα in Eqs. (2) is the gyroscope/dipole 4-velocity), that determines the force
exerted upon it. Hence, from Eqs. (6), we see that the forces can be similar only if the
fields are stationary (besides weak) in the gyroscope/dipole frame, i.e., when it is at “rest”
in a stationary field. Eqs. (2) also tell us that in gravity the angular momentum S plays
the role of the magnetic moment μ = S(q/2m); the relative minus sign manifests that
masses/charges of the same sign attract/repel one another in gravity/electromagnetism,
as do charge/mass currents with parallel velocity.

2. Linearized Gravity
If the fields are stationary in the observer’s rest frame, the GR and EM tidal tensors

have the same symmetries, which by itself does not mean a close similarity between the
two interactions (note that despite the analogy in Table 1, EM tidal tensors are linear,
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whereas the GR ones are not). But in two special cases a matching between tidal tensors
occurs: ultrastationary spacetimes (where the gravito-magnetic tidal tensor is linear, see
Costa-Herdeiro 2008 Sec. IV) and linearized gravitational perturbations, which is the
case of interest for astronomical applications.

Consider an arbitrary electromagnetic field Aα = (φ,A) and arbitrary perturbations
around Minkowski spacetime in the form†

ds2 = −c2
(

1 − 2
Φ
c2

)
dt2 − 4

c
Aj dtdxj +

[
δij + 2

Θij

c2

]
dxidxj . (2.1)

Tidal effects. — The GR and EM tidal tensors from these setups will be in general
very different, as is clear from equations (3-6), and as one may check from the explicit
expressions in Costa-Herdeiro 2008.

But if one considers time independent fields, and a static observer of 4-velocity Uμ =
cδμ

0 , then the linearized gravitational tidal tensors match their electromagnetic counter-
parts identifying (φ,Ai) ↔ (Φ,Ai) (in expressions below colon represents partial deriva-
tives; εijk ≡ Levi Civita symbol):

Eij � −Φ,ij
Φ↔φ
= Eij , Hij � ε lk

i Ak,lj
A↔A= Bij . (2.2)

This suggests the physical analogy (φ,Ai) ↔ (Φ,Ai), and defining the “gravito-electro-
magnetic fields” EG = −∇Φ and BG = ∇×A, in analogy with the electromagnetic fields
E = −∇φ, B = ∇×A. In terms of these fields we have Eij � (EG )i,j and Hij � (BG )i,j ,
in analogy with the electromagnetic tidal tensors Eij = Ei,j and Bij = Bi,j .

The matching (2.2) means that a gyroscope at rest (relative to the static observer) will
feel a force Fα

G similar to the electromagnetic force Fα
EM on a magnetic dipole, which in

this case take the very simple forms (time components are zero):

FEM =
q

2mc
∇(B.S); Fj

G = −1
c
H

ij Si ≈ −1
c
(BG )i,j Si ⇔ FG = −1

c
∇(BG .S). (2.3)

Had we considered gyroscopes/dipoles with different 4-velocities, not only the expres-
sions for the forces would be more complicated, but also the gravitational force would
significantly differ from the electromagnetic one, as one may check comparing Eqs. (12)
with (17)-(20) of Costa-Herdeiro 2008. This will be exemplified in section 2.1.

The matching (2.2) also means, by similar arguments, that the relative acceleration
between two neighboring masses D2δxi/dτ 2 = −E

ij δxj is similar to the relative accel-
eration between two charges (with the same q/m): D2δxi/dτ 2 = Eij δxj (q/m), at the
instant when the test particles have 4-velocity Uα = cδα

0 (i.e., are at rest relative to the
static observer O).

Gyroscope precession. — The evolution of the spin vector of the gyroscope is given
by the Fermi-Walker transport law, which, for a gyroscope at rest reads DSi/dτ = 0;
hence, we have, in the coordinate basis, Eq. (2.4a). The last term of Eq. (2.4a) vanishes
if we express S in the local orthonormal tetrad eα̂ : Si = Sîei

î
, where to linear order

ei
î
= δi

î
−Θi

î
/c2 ; in this fashion we obtain Eq. (2.4b), which is similar to the precession

of a magnetic dipole in a magnetic field dS/dt = qS × B/2mc:

dSi

dt
= −cΓi

0jS
j = −1

c

[
(S × BG )i +

1
c

∂Θij

∂t
Sj

]
(a);

dSî

dt
= −1

c
(S×BG )î (b). (2.4)

† In the previous sections we were putting c = 1. In this section we re-introduce the speed of
light in order to facilitate comparison with relevant literature.
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Thus, in the special case of gyroscope precession, the linear gravito-electromagnetic anal-
ogy holds even if the fields vary with time.

Geodesics. — The space part of the equation of geodesics Uα,β Uβ = −Γα
βγ Uβ Uγ is

given, to first order in the perturbations and in test particle’s velocity by (ai ≡ d2xi/dt2):

a=∇Φ +
2
c

∂A
∂t

− 2
c
v × (∇× A) − 1

c2

[
∂Φ
∂t

v + 2
∂Θi

j

∂t
vjei

]
. (2.5)

Comparing with the electromagnetic Lorentz force:

a =
q

m

[
−∇φ − 1

c

∂A
∂t

+
v
c
× (∇× A)

]
=

q

m

[
E +

v
c
× B

]
, (2.6)

these equations do not manifest, in general, a close analogy. Note that the last term
of (2.5), which has no electromagnetic analogue, is, for the problem at hand (see next
section), of the same order of magnitude as the second and third terms. But when one
considers stationary fields, then (2.5) takes the form a = −EG − 2v × BG/c analogous
to (2.6).

Note the difference between this analogy and the one from the tidal effects considered
above: in the case of the latter, the similarity occurs only when the test particle sees
time independent fields (fields ≡ derivatives of potentials/of metric perturbations); for
geodesics, it is when the observer (not the test particle!) sees a time independent potential
(φ)/metric perturbations(Φ,Θij ).

2.1. Translational vs. Rotational Mass Currents
The existence of a similarity between gravity and electromagnetism thus relies on the
time dependence of the mass currents: if the currents are (nearly) stationary, for example
from a rotating celestial body, the gravitational field generated is analogous to a magnetic
field; such is the field detected on LAGEOS data by Ciufolini et al.. But when the currents
seen by the observer vary with time — e.g. the ones resulting from translation of the
celestial body, considered in Soffel et al. 2008 — then the dynamics differ significantly.

Rotational Currents. — We will start by the well known analogy between the
electromagnetic field of a spinning charge (charge Q, magnetic moment μ) and the grav-
itational field (in the far region r → ∞) of a rotating celestial body (mass m, angular
momentum J), see Fig. 1.

Figure 1. Spinning charge vs. spinning mass

The electromagnetic field of the spinning charge is described by the 4-potential Aα =
(φ,A), given by (2.7a). The spacetime around the spinning mass is asymptotically de-
scribed by the linearized Kerr solution, obtained by putting in (2.1) the perturbations
(2.7a):

φ =
Q

r
, A =

1
c

μ × r
r3 (a); Φ =

M

r
, A =

1
c

J × r
r3 , Θij = Φδij (b). (2.7)
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For the observer at rest O the gravitational tidal tensors asymptotically match the elec-
tromagnetic ones, identifying the appropriate parameters:

Eij � M

r3 δij −
3Mrirj

r5
M ↔Q

= Eij ; Hij � 3
c

[
(r.J)
r5 δij + 2

r(i Jj )

r5 − 5
(r.J)ri rj

r7

]
J ↔μ
= Bij

(all the time components are zero for this observer). This means that O will find a
similarity between physical (i.e., tidal) gravitational forces and their electromagnetic
counterparts: the gravitational force F i

G = −H
j iSj /c exerted on a gyroscope carried by

O is similar to the force F i
EM = qBjiSj /2mc on a magnetic dipole; and the worldline de-

viation D2δxi/dτ 2 = −E
ij δxi of two masses dropped from rest is similar to the deviation

between two charged particles with the same q/m.
Moreover, observer O will see test particles moving on geodesics described by equations

analogous to the electromagnetic Lorentz force (see Fig. 1).
Translational Currents. — For the observer Ō moving with velocity w relative to

the mass/charge of Fig. 1, however, the electromagnetic and gravitational interactions
will look significantly different. For simplicity we will specialize here to the case where
J = μ = 0, so that the mass/charge currents seen by Ō arise solely from translation.
To obtain the electromagnetic 4-potential Aᾱ in the frame Ō, we apply the boost Aᾱ =
Λᾱ

αAα = (φ̄, Ā), where Λᾱ
α ≡ ∂x̄ᾱ/∂xα , using the expansion of Lorentz transformation

(as done in e.g. Will-Nordtvedt 1972):

t = t̄

(
1 +

w2

2c2 +
3w4

8c4

)
+

(
1 +

w2

2c2

)
x̄.w
c2 ; x = x̄+

1
2c2 (x̄.w)w+

(
1 +

w2

2c2

)
wt̄, (2.8)

yielding, to order c−2 , Aᾱ = (φ̄, Ā), with φ̄ = Q(1 + w2/2c2)/r and Ā = −Qw/rc. To
obtain Aᾱ in the coordinates (x̄i , t̄) of Ō, we must also express r (which denotes the
distance between the source and the point of observation, in the frame O) in terms of
R ≡ |̄r + wt̄|, i.e., the distance between the source and the point of observation in the
frame Ō. Using transformation (2.8), we obtain: r−1 = R−1 [1 − (w.R)2/(2R2c2)], and
finally the electromagnetic potentials seen by Ō:

φ̄ =
Q

R

(
1 +

w2

2c2 − (w.R)2

4R2c2

)
; Ā = −1

c

Q

R
w. (2.9)

The metric of the spacetime around a point mass, in the coordinates of Ō, is also obtained
using transformation (2.8), which is accurate to Post Newtonian order, by an analogous
procedure. First we apply the Lorentz boost gᾱβ̄ = Λα

ᾱΛβ

β̄
gαβ to the metric (2.7) (with

A = 0); then, expressing r in terms of R, we finally obtain (note that, although we are
not putting the bars therein, indices α = 0, i in the following expressions refer to the
coordinates of Ō):

g00 =−1 + 2
M

Rc2 +
4Mw2

Rc4 − M(w.R)2

c4R3 ≡ −1 +
2Φ̄
c2 ;

g0i =
4Mwi

Rc3 ≡ −2Āi

c2 ; gij =
[
1 + 2

M

Rc2

]
δij ≡

[
1 + 2

Θ̄
c2

]
δij , (2.10)

where we retained terms up to c−4 in g00 , up to c−3 in gi0 and c−2 in gij , as usual in Post-
Newtonian approximation. This matches, to linear order in M , Eqs. (5) of Soffel et al.
2008 for the case of one single source; or e.g. Eqs. (11) of Nordtvedt 1988 (in the case
of the latter, an additional gauge choice, Eq. (19) of Will-Nordtvedt 1972, was made).
The metric (2.10), like the electromagnetic potential (2.9), is now time dependent, since
R(t̄) = r̄ + wt̄.
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The gravitational tidal tensors seen by Ō are (Eα 0 = E0α = Hα 0 = H0α = 0):

Eij =−Φ̄, ij −
2
c

∂

∂t̄
Ā(i ,j ) −

1
c2

∂2

∂t̄2 Θ̄δij

=
Mδij

R3

[
1 +

3w2

c2 − 9
2

(R.w)2

c2R2

]
− 3MRiRj

R5

[
1 +

2w2

c2 − 5(R.w)2

2c2R2

]

−3Mwiwj

c2R3 +
6Mw(iRj ) (R.w)

c2R5 ; (2.11)

Hij = ε lk
i Āk ,lj −

1
c
ε l
ij

∂Θ̄, l

∂t̄
=

M

cR3

[
3ε k

ij wk − 3
R2 (R.w)ε k

ij Rk − 6
R2 (R × w)iRj

]
, (2.12)

which significantly differ from the electromagnetic ones (E0α = B0α = 0):

Eij =−φ̄,ij −
1
c

∂

∂t̄
Āi ;j = Ei,j

=
Qδij

R3

[
1 +

w2

2c2 − 3
4

(R.w)2

c2R2

]
− 3QRiRj

R5

[
1 +

w2

2c2 − 5(R.w)2

4c2R2

]

−Qwiwj

2c2R3 +
3Qw[iRj ] (R.w)

c2R5 ; (2.13)

Ei0 =−1
c

∂

∂t̄
φ̄;i −

1
c2

∂2 Āi

∂t̄2 ≡ 1
c

∂Ei

∂t̄
=

Q

cR3

[
wi −

3(R.w)Ri

R2

]
; (2.14)

Bij = ε lm
i Ām ;lj ≡ Bi,j =

Q

cR3

[
ε k
ij wk − 3

R2 (R × w)iRj

]
; (2.15)

Bi0 =
1
c

∂Bi

∂t̄
= − 3Q

c2R5 (R.w)(R × w)i . (2.16)

Note in particular that, unlike their gravitational counterparts, Eαβ and Bαβ are not
symmetric, and have non-zero time components. The antisymmetric parts E[ij ] = E[i,j ]
and B[ij ] = B[i,j ] above are (vacuum) Maxwell equations ∇ × E = −(1/c)∂B/∂t and
∇ × B = (1/c)∂E/∂t, implying that a time varying electric/magnetic field endows the
magnetic/electric tidal tensor with an antisymmetric part. For instance, a time varying
electric field will always induce a force on a magnetic dipole. The fact that Eαβ and Hαβ

are symmetric reflects the absence of analogous gravitational effects. The time component
Bi0 means that the force on a magnetic dipole (magnetic moment μ = q/2m) will have
a time component (FEM )0 = (1/c)μ.∂B/∂t, which (see Costa-Herdeiro 2009 sec. 1.2) is
minus the power transferred to the dipole by Faraday’s law of induction (and is reflected
in the variation of the dipole’s proper mass m = −PαUα/c2). Again, this is an effect
which has no gravitational counterpart: Hα0 = H0α = 0, thus (FG )0 = 0, and the proper
mass of the gyroscope is a constant of the motion.

The space part of the geodesic equation for a test particle of velocity v is:

a=∇Φ̄ +
2
c

∂Ā
∂t̄

− 2v × (∇× Ā) − 3
c2

∂

∂t̄

(
M

R

)
v (2.17)

=−M

R3

[
1 +

2w2

c2 − 3(R.w)2

2c2R2

]
R +

3M (R.w)
c2R3 w − 4M

c2R3 v × (R × w) +
3
c2

M

R3 (R.w)v,

which matches equation (10) of Soffel et al. 2008, or (7) of Nordtvedt 1973, again, in the
special case of only one source, and keeping therein only linear terms in the perturbations
and test particle’s velocity v.

Comparing with its electromagnetic counterpart(
m

q

)
a = E +

v
c
× B =

Q

R3

[
1 +

w2

2c2 − 3(R.w)2

4c2R2

]
R − 1

2
Q(R.w)

c2R3 w +
Q

c2R3 v × (R × w)

we find them similar to a certain degree (up to some factors), except for the last term of
(2.17). That term signals a difference between the two interactions, because it means that
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there is a velocity dependent acceleration which is parallel to the velocity; that is in con-
trast with the situation in electromagnetism, where the velocity dependent accelerations
arise from magnetic forces, and are thus always perpendicular to v.

As expected from Eqs. (2.4) (and by contrast with the other effects), the precession
of a gyroscope carried by Ō, Eq. (2.18b) takes a form analogous to the precession of
a magnetic dipole, Eq. (2.18a), if we express S in the local orthonormal tetrad eî , non
rotating relative to the inertial observer at infinity, such that Si = (1 − M/R)Sî :

dS
dt̄

=
q

2m

Q

c2R3 [S × (R × w)] (a);
dSî

dt̄
=

2M

c2R3 [(R × w) × S]î (b). (2.18)

If instead of the gyroscope comoving with observer Ō (with constant velocity w), we
had considered a gyroscope moving in a circular orbit, then an additional term would
arise in analogy with Thomas precession for the magnetic dipole; for a circular geodesic
that term amounts to −1/4 of expression (2.18b), and we would obtain the well known
equation for geodetic precession (e.g. Ciufolini-Wheeler 1995).

3. Conclusion
We conclude our paper by discussing some of the implications of our conclusions in

the approaches usually found in literature. In the framework of linearized theory, e.g.
Ruggiero-Tartaglia 2002, Ciufolini-Wheeler 1995, Einstein equations are often written in
a Maxwell-like form; likewise, geodesics, precession and gravitational force on a spinning
test particle are cast (in terms of 3-vectors defined in analogy with the electromagnetic
fields E and B) in a form similar to, respectively, the Lorentz force on a charged particle,
the precession and the force on a magnetic dipole.

We have concluded that the actual physical similarities between gravity and electro-
magnetism (on which the physical content of such approaches relies) occur only on very
special conditions. For tidal effects, like the forces on a gyroscopes/dipoles, the analogy
manifest in Eqs. (2.3) holds only when the test particle sees time independent fields. In
the example of analogous systems considered in section 2.1, this means that the center of
mass of the gyroscope/dipole must not move relative to the central body. In the case of the
analogy between the equation of geodesics and the Lorentz force law (see Fig. 1), as man-
ifest in equation (2.5), it is in the potentials/metric perturbations, as seen by the observer
(not the test particle!), that the time independence is required. The latter condition is
not as restrictive as the one of the tidal effects: consider for instance observers moving in
circular orbits around a static mass/charge; such observers see an unchanging spacetime,
and unchanging electromagnetic potentials, so, for them, the equation of geodesics and
Lorentz force take similar forms (such analogy may actually be cast in an exact form, see
Natário 2007, Jantzen et al. 1992). However, those observers see a time-varying electric
field E (constant in magnitude, but varying in direction), which, by means of equations
(4) and (6), implies that the tidal tensors are not similar to the gravitational ones†.

† The electromagnetic field F αβ is not constant along the worldline of an observer moving in a
circular orbit (radius R, angular velocity Ω, velocity w = Ω×R) around a point charge. Its vari-
ation endows the magnetic tidal tensor with an antisymmetric part, and the electric tidal tensor
with a time component: dF 0 i /dτ = Qwi/cR3 = −2E [i0] = −εij k B[j k ] . This means that they sig-
nificantly differ from the GR tidal tensors seen by an observer in circular motion around a point
mass. Note that both the GR and the EM tidal tensors for these analogous problems can be
obtained from, respectively, Eqs. (2.11)-(2.12) and (2.13)-(2.16), making therein R.w = 0 (corre-
sponding to circular motion), despite the fact that these expressions were originally derived for an
observer with constant velocity. This is because, as can be seen from their definitions in Table 1,
it is the 4-velocity Uα (regardless of the way it varies), at the given point, that determines the
tidal tensors.
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Finally, as a consequence of this analysis, a distinction, from the point of view of the
analogy with electrodynamics, between effects related to (stationary) rotational mass
currents, and those arising from translational mass currents, becomes clear: albeit in the
literature both are dubbed “gravitomagnetism”, one must note that, while the former
are clearly analogous to magnetism, in the case of the latter the analogy is not so close.
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