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UNIFORMLY CLOSED ALGEBRAS GENERATED BY
BOOLEAN ALGEBRAS OF PROJECTIONS IN
LOCALLY CONVEX SPACES

WERNER RICKER

Introduction and the main result. The theory of operator algebras in
Banach spaces generated by Boolean algebras of projections is by now
well known. It is systematically exposed in the penetrating studies of
W. Bade, [1], [2] and [6, Chapter XVII]. Many of these results, a priori
independent on normability of the underlying space, have recently been
extended to the setting of locally convex spaces; see [3], [4], [S], [11] and
[15], for example.

However, one of Bade’s fundamental results, stating that the closed
algebra generated by a complete Boolean algebra in the uniform operator
topology is the same as the closed algebra that it generates in the weak
operator topology, has remained remarkably resistant in attempts to
extend it to locally convex spaces. Recently however, a class of Boolean
algebras in non-normable spaces, called boundedly o-complete
Boolean algebras, was exhibited in which the analogue of Bade’s result is
valid, [14; Theorem 5.3]. In this note another class of Boolean algebras
is presented, overlapping with but distinct from the boundedly o-
complete Boolean algebras, for which the weakly closed algebra generated
by any Boolean algebra in this class coincides with the closed algebra that
it generates with respect to the topology of uniform convergence on
bounded sets (cf. the theorem below).

The above mentioned result is based on a relatively successful technique
which is often used in the study of continuous linear operators on locally
convex spaces, namely to realize the given locally convex space as a
suitable projective limit of Banach spaces. It is then possible to use the
well developed theory for operators in Banach spaces.

Let X be a locally convex Hausdorff space with continuous dual space
X" and L(X) denote the space of all continuous linear operators from X
into itself. Then L (X) and L,(X) denote L(X) equipped with the topology
of pointwise convergence in X and the topology of uniform convergence
on bounded sets of X, respectively. It will always be assumed that X is
quasicomplete and L (X) is sequentially complete.

The concept of a Boolean algebra of projections is not a priori
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connected with normability of the topology of the vector space on which
the algebra acts; the definition usually given in Banach spaces can be
extended to locally convex spaces in a straight-forward way. If & C L(X)
is a Boolean algebra, then (&), and (2/), denote the closed algebra
generated by &7 in L (X) and L,(X), respectively. Since (<), is the closure
in L,(X) of the linear hull of ./ (which is a convex subset of L(X)) it
follows that (&), is also the closed algebra generated by .« with respect to
the weak operator topology in L (X). A Boolean algebra .« € L(X) is said
to be equicontinuous if it is an equicontinuous subset of L(X). The notions
of o-completeness and completeness of a Boolean algebra used by Bade in
[1] are topological and algebraic, and consequently extend themselves
immediately to the locally convex setting. Just as in the Banach space
situation, a o-complete or complete, equicontinuous Boolean algebra in
L(X) may be realized as the range of an L(X)-valued spectral measure (for
example, on the Baire or Borel sets respectively of its Stone space, [15;
Proposition 1.3]).

Let & C L(X) be a complete, equicontinuous Boolean algebra and
<7 denote the closure in L (X) of the set of all operators of the form
2_,a;A,, where n is a positive integer, each a;, 1 = i = n, is a complex
number satisfying Ia.l = 1 and

{A }t—l =
is a set of mutually disjoint projections. Then it turns out that .4 is an
equicontinuous subset of L(X); see Lemma 3. Accordingly, if (Vijers}
is any neighbourhood basis of zero in X consisting of closed, convex and
balanced sets, then for each index j € _Z the set

() W=n{4'(N; 4 € 4)

is also a closed, convex and balanced neighbourhood of zero in X. If ¢/
denotes the Minkowski gauge functional of W, for each j € £ then the
family of seminorms {g e F} determines the topology of X. It turns
out that the family of seminorms {q(/) J € £}, called o£compatible in

[15], has some rather special properties. Indeed, each subspace

Q) N&W)={xe X:iqg'x) =0}, jeL

is invariant for each operator T € (&) ; see Section 2. Accordingly, if
X, J € 7 denotes the quotient space of X modulo the closed subspace
N(«#) and equipped with the quotient norm, then each operator
T € (o), induces a family of operators

O XX jes

in the obvious way. The Boolean algebra ./ is said to be projectively
extendable if, for each T € (&), each of the induced operators specified
by (3) is continuous: this depends only on the Boolean algebra .« and not
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on the particular neighbourhood basis of zero, {V:J € 7}, that we begin
with.
The aim of this note is to establish the following

THEOREM. Let X be a quasicomplete locally convex Hausdorff space such
that L (X) is sequentially complete and o/ S L(X) be a complete, equi-
continuous Boolean algebra which is projectively extendable. Then (), and
(A, are equal as linear subspaces of L(X) and, in particular, (<Y, coincides
with the closed algebra generated by </ with respect to the weak operator
topology in L /(X).

The organization of this note is as follows. In Section 1 we introduce
those concepts from the theory of spectral measures which are needed in
the sequel. In particular, we show that the set .7 is equicontinuous and
weakly compact in L (X). A crucial role is played by the notion of a closed
measure, introduced by I. Kluvanek in [7]. In Section 2 we prove the main
theorem and give some applications. The final section is devoted to a
discussion of some relevant examples.

1. Preliminaries. Let X be a locally convex Hausdorff space. The
correspondence

2 x®x e (LX)

defined by
@) UT) = 2 (Tx, x)), T € LX),

is an (algebraic) isomorphism of the tensor product X ® X’ onto the dual
of L.(X).
An L (X)-valued operator measure in a o-additive map
P> — L (X),

whose domain X is a o-algebra of subsets of a set Q. It follows from the
identification (4) and the Orlicz-Pettis lemma that P is o-additive if and
only if the complex-valued set function

(Px, x'y:E+> (P(E)x, x"y, E &€ %,

is o-additive for each x € X and x’ € X’. The measure P is said to be
equicontinuous if its range,

A(P) = {P(E); E € 3},

is an equicontinuous subset of L(X). If P is multiplicative and P(Q) = I,
the identity operator in X, then P is called a spectral measure. Of
course, the multiplicativity of P means that
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P(EN F)= PEYP(F), forevery E € 2 and F € 2.

Let P:E£ — L _(X) be an operator measure. A net {E,} of elements in 2
is said to be P-convergent to an element E of X (respectively, to be
P-Cauchy) if, for every neighbourhood V of zero in L (X), there is an
index « such that P(F) € V, for every set F € EAE, (respectively,
F ¢ EAEp), F € X, whenever a;, = a (respectively, @), = a and
a, = f), where GAH denotes the symmetric difference of any two sets G
and H. The measure P is said to be closed if = is P-complete, that is, if
every P-Cauchy net in X is P-convergent to a member of 2. This is a
special case of the definition for arbitrary vector measures introduced in
[7]. An equicontinuous spectral measure is a closed measure if and only if
its range is a closed subset of L (X), [11; Proposition 3].

Let P:2 — L(X) be an operator measure. A complex-valued,
S-measurable function fis said to be P-integrable if it is integrable with
respect to every measure {(Px, x’), x € X and x’ € X’, and if, for every
E € = there exists an element

Umm:ﬁﬁP
of L(X) such that

(UPNEW. ) = [ faipx, ),
for each x € X and ¥ € X. This agrees with the definition of
integrability with respect to arbitrary vector measures, [9]. The element
(fP)(Q) is denoted simply by P(f). Under the assumption of sequential
completeness of L (X) it follows that every bounded, Z=-measurable
function 1s P-integrable, [9; II Lemma 3.1]. If P is a spectral measure, then
the multiplicativity of P implies that

(5)  (fPXE) = P(E)P(f) = P(/)P(E), E € Z,

[4; Section 1]. In this case a P-integrable function fis P-null or equal to
zero P-a.e. (cf. [9; Chapter II, Section 2] for the definition) if and only
if P(f) = 0. If, in addition, P is equicontinuous, then the space of
(equivalence classes, modulo P-a.e., of) P-integrable functions, denoted by
L'(P), can be equipped with a locally convex Hausdorff topology which
turns LI(P) into a unital, commutative locally convex algebra with respect
to pointwise multiplication (of equivalence classes), [4; Proposition 1.4].
Furthermore, P is a closed measure if and only if LI(P) is complete as a
locally convex space, in which case the integration mapping

m)fHHﬁ=£ﬁRfewm

is a bicontinuous isomorphism of the (complete) locally convex algebra
LI(P) onto the operator algebra (Z%(P)),, [4; Proposition 1.5]. In
particular, ((P) >, is a complete subspace of L (X).
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LEMMA 1. Let X be a locally convex Hausdorff space such that L (X) is
sequentially complete and P:3 — L (X) be an operator measure which is a
closed measure. Then the set

(7 PLYIE)) = {_/s;fdP; [ is Z-measurable, |f] = 1, P-a.e.}

is a weakly compact subset of L (X). In particular, it is a closed subset of
L .(X).

Proof. By Corollary 13 of [8] there is a localizable measure
A2 — [0, oo]

such that P is absolutely continuous with respect to A, that is, P(E) = 0
whenever £ € X and A(E) = 0. If

B = {'LgdP; g € L7E N, llglle, = 1},

then it can be shown, using the absolute continuity of P with respect to A,
that B coincides with the set (7) and so it suffices to show that B is weakly
compact. But, the localizability of A guarantees that the Radon-Nikodym
theorem is available and that L°(Z, M) is the dual space to L'(\), from
which it follows that the integration mapping

g A;gdP; g € L2Z, N,

is continuous from the weak-star topology on L™(Z, A) into L (X)
equipped with its weak topology, that is, the weak operator topology.
Since the closed unit ball of L>(Z, A) is weak-star compact (by Alaoglu’s
theorem) it follows that B, and hence (7), is weakly compact.

LEMMA 2. Let X be a locally convex Hausdorff space such that L (X) is
sequentially complete. If P:= — L (X) and Q: A — L{(X) are any two closed
spectral measures whose ranges R(P) and R(Q) coincide as subsets of L(X),
then also P(L{(Z) ) and Q(L{°(A)), as defined by (7), are equal as subsets
of L(X).

Proof. If T € P(L°(X)), then T = P(f) for some =-measurable
function f such that |f| = 1, P-a.e. By redefining f on a P-null set, if
necessary, we may assume that |f| = 1 everywhere. Then there exists a
sequence {f;} of Z-simple functions converging pointwise to f (even
uniformly) such that |f;| = 1, for each k = 1. 2,.... By the Dominated
Convergence Theorem for vector measures, [9; 11 Theorem 4.2], it follows
that

— lim P(f,) in Ly(X).
k—oc0

Accordingly, since P(L{°(Z)) is a closed subset of L (X) by Lemma 1, to
verify the inclusion
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P(LY(2)) € Q(LT(A))
it suffices to show that P(h) € Q(L{°(A)) whenever h is a Z-simple
function satisfying |h| = 1.
So, suppose that

n

h = 2 CX L)

(=1

where the o, 1 = i = n, are distinct complex numbers satisfying |a,| = 1
and the sets E(i), | = i = n, are elements of = which are pairwise disjoint.
Since Z(P) = A(Q), there are sets F(i) € A, 1 = i = n, such that

Q(F(i)) = P(E(i)), foreachi =1,2,...,n

Furthermore, F(i) N F(j) is a Q-null set whenever i # j since, by
multiplicativity

Q(F@) N F()))

QF())Q(F())
= P(E(()))P(E(j)) = P(EG) N E(j)) = 0.

Hence,

n

;; = 2 alXF(i)

i=1
is a A-simple function satisfying |#| = 1, Q-a.e. and so
Q(h) € QLT(A)).
Since P(h) = Q(h), it follows that P(h) € Q(L{°(A)). This shows that
P(LY(Z)) © Q(LT(A)).

By interchanging the roles of P and Q, a similar argument gives the reverse
inclusion.

LEMMA 3. Let X be a locally convex Hausdorff space such that L (X) is
sequentially complete and o/ < L(X) be an equicontinuous, complete
Boolean algebra. Then the set 2, (cf. Introduction) is equal to P(LT(2)) for
any spectral measure P:= — L (X)) such that &/ = R(P). In particular, 54, is
an equicontinuous subset of L(X).

Proof. We remark that any such spectral measure P is necessarily
equicontinuous and closed; see [4; Proposition 4.2] and [11; Proposition
3], for example.

If

H

T =2 aA,

i=1
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where the a;, | = i = n, are complex numbers satisfying |¢;] = 1 and
{A,}_, € is a set of pairwise disjoint projections, then 4, = P(E(i))
for some sets E(i), | = i = n, belonging to £ and the identities

P(EG@) 0 E(j)) = P(EG))P(E())) = A4, =0, 1 # ],
show that E(i) N E(j) is P-null whenever i # j. Accordingly,

n
h = 2 aIXE(I)
is a Z-simple function satisfying |h| = 1, P-a.e. and so T = P(h) belongs
to P(L{°(Z)). Since P(L7°(2) ) is closed in L (X) by Lemma 1, it follows
from the definition of 2 that

2 S P(LY(Z)).

Conversely, if T = P(f) for some S-measurable function f satisfying
|f] = 1, then there exist =-simple functions { f, } converging pointwise to
Jfsuch that |f] = 1, foreachk = 1,2,....Since each f;, k = 1,2,...,
can be expressed in the form 27| a;xy;) with || = 1,0 = 1,2,...,n,
and the elements E(i), 1 =i = n, of Z, being pairwise disjoint, it is clear
that each operator P(f,), k = 1,2, ..., belongs to . Since .2 is closed
in L(X) and P(f,) — P(f), in L(X), as k — oo (by the Dominated
Convergence Theorem) it follows that T € 7. This shows that

A = PLYS)).

The equicontinuity of 7 is then immediate from [15; Proposition
2.1].

2. Proof of the theorem and some applications. Let &/ C L(X) be an
equicontinuous, complete Boolean algebra and P:2 — L (X) be any
spectral measure realizing &/ as its range, that is, & = Z%(P). As noted
before, P is then necessarily closed and equicontinuous and Lemma 3
implies that

) = P(LY(Z)).

If {V;/ € 7} is any neighbourhood basis of zero in X as given in the
introduction (and assumed fixed from now on), then it follows from
the equality »4 = P(L{°(Z)) and Proposition 2.3 of [15] that the sets
W.j € £ defined by (1), form a neighbourhood basis of zero in X, which
depends only on the Boolean algebra .7 and not on the particular spectral
measure P realizing &7 as its range (cf. Lemmas 2 and 3). The reason for
and advantage of introducing a spectral measure P is that it transforms the
proof of the theorem into a consideration of spectral algebras (via
the isomorphism (6)), where there is available a powerful functional
calculus based on the theory of integration. It is then possible to reduce
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the problem to a consideration of spectral algebras in Banach spaces by
forming a suitable projective limit (cf. [15], for example).

Let 4'/) denote the Minkowski gauge functional of W, € % Then for
eachj € ¢:

(1) if fis S-measurable and |f| = 1, then

8a) ¢V(P(f)x) = ¢ (x), x € X,

(ii) if fand g are bounded, =-measurable functions with 0 = f = g,
then

8b)  ¢AP(f)x) = ¢V(P(g)x), x € X,

[15; p. 304). Furthermore, if f is a bounded, =-measurable function,
then

©  dPHX) = 1S lled(x), x € X,

for each j € _Z [15; Proposition 2.4].

Let X, j € £ denote the quotient spaces as defined in the introduction.
The i lmage of an element x € X, under the natural inclusion of X onto X,
is denoted by [x];, j € £ Then X; is a normed space with respect to the
norm

Ix1ll, = ¢, [x];, € X,

for each/ € # The completion of X; with respect to this norm is denoted
by X, j € Z If, for some i, j ejthere is8>0 such that q’) = B4",
then' the natural linear transformation which maps X into X is con-
tinuous, [15; Proposition 2.4], and hence X (in the case when it s
complete) can be identified with the projective limit of the Banach spaces
{X Jj € £}, [15; Theorem 2.7].

If E € Z, then it follows from (8a) and (8b) that each subspace N, (),
J € # is invariant for P(E) and hence, there is induced a family of hnear
operators F(E):X; — X.J € S given by

(10)  P(EY[x]; = [P(E)x], [x]; € X,.

It is clear from (9) that each operator F(E), j € /% is continuous with
norm not exceeding one. Hence, each of the induced operators (10) has a
unique continuous extension to X denoted by P(E) j € £ It is easily
verified that the set function P b R L, (X) given by

PE—B(E)., E €3,

is a spectral measure, for each j € _Z with norms uniformly bounded by
one. Since X, when complete, is the projective limit of {X/, Jj € 7} the
measure P can be interpreted as the projective limit of the measures
{F;J € #}, [15; Theorem 2.7]. We remark that each induced mea-
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sure IA; J € Z is necessarily a closed measure (cf. proof of Theorem 2
in [12] ) It is not difficult to show that a set £ € X is P-null if and only
if it is P-null, for every j € £

Let / be a bounded, =-measurable function. It follows from (9) that
each of the closed subspaces N).j € F(cf. (2)), is invariant for P(f).
If fis an arbitrary P- mtegrable function, not necessarily bounded, then
the bounded functions fxE(n), n=1,2,..., where

E(n) = {w; |f(w)| = n} foreachn =1,2,...,
converge pointwise to f and so the Dominated Convergence Theorem
implies that

P(fXE(n)) - P(f)’

in L (X), as n — co. It follows that each of the closed subspaces N(),
JjE j is invariant for P(f). Accordingly, each element f of L (P) mduces
a family of linear operators

P(f)X, > X, jEL
defined by
(D PUx] = [P, [x), € X,

It is clear from (9) that if fis bounded, then each operator P(f) NE=PA
is continuous in X, with norm Anot exceeding ||f|l., and hence, has a
unique continuous extensmn to X, denoted by P(f )_ satisfying

PO = 11/ 1loon

where III-IH, denotes the operator norm of elements in L(/\A’j),j e £1f fis
unbounded, then in the case of an arbitrary Boolean algebra . it need not
follow that the induced operators (11) are continuous (cf. Example 2 in
Section 3). However, in the case when .« is projectively extendable, which
is what is being assumed, it follows from the definition (cf. (3) ) that any
operator T = P(f), f € L'(P), necessarily an element of (=), by (6),
induces contmuous operators via the formulae (11). The continuous
extension to X of the operator P(f) given by (11), for eachj € £ is again
denoted by P(f)

LEMMA 4. Let f € L'(P). Then for each index j € 4 the family of opera-
tors {P(fxg):; E € =} is uniformly bounded in L(X;) by IllP(f)_;IH/.

Proof. Fix j € #and E € 2. 1f [x]; € X, then it follows from the
definition of the norm in X; and (5) that '

(12) IP(fxp),IxLll, = ¢V (P(EYP(f)x) = q”’( L xEdPy),
where y = P(f)x. Since 0 = x; = xq it follows from (8b) that
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q""([2 x,;dPy) = ¢

and hence (12) implies that
IPxe) X1l = ¢(P()x)
= [P IxI I = MPULTTxD -
This shows that [I]P(f) HI is a uniform bound for the operator norms of
the family {P(fx, )/, E e 2}
A 3-measurable function fon € is said to be P-essentially bounded if
|flp = inf{ [ fxplle: E € =, P(E) = [} < oo.

It follows from the o-additivity of P that there exists a set £ € X with
P(E) = I, in which case Q\ E is P-null, such that

f1p = /Xl

Since Q\E is then A-null, for each j € £ it follows that B(E) = I.j € £
and hence, that ' '

15 = W fxileo = f1pe € £
So, we have established the following

LEMMA 5. For each index j € g the natural inclusion of the
P-essentially bounded Sfunctions equipped with the norm |"|p into the space
of P essentially bounded functions equipped with the norm ||p ? is norm-
de(reasmg

It follows from Lemma 5 that if fis a P-essentially bounded function,
then f is also P -essentially bounded, for every j € _Z and hence is
necessarily P mtegrable for every j € _Z The natural question then is:
what is the relatlonshlp, if any, between the operator

B(f) = _L Jdr,
and the operator P(f);- as defined by the continuous extension of (11), for
each j € #? '

LEMMA 6. Let f be a P-essentially bounded function. Then

P(f); = /ﬂfdé, jES

Proof. Fix an index j € _Z Since both operators P(f);- and [A;(f) are
continuous, it suffices to show that they agree on the dense subspace of X;
of X.

Let {/,} be a sequence of =- 51mple functions converging to f, P-a.e.
Then {f,} also converges to f, P -a.e. It is easily verified, using the fact
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that f, is 2-simple, that

j f,dB(x]; = / f,dPx

for each [x], € X, and hence the Dommated Convergence Theorem
applied to the vector measure P( )[x]; in X implies that

(13) (f de)[x] = lim ff,,dPx]j, [x], € X,

n—00

; n=12,...,

But, the right-hand limit in (13) equals P(f) [x]; since, by definition of

the norm in X it follows that
A — _ ) _
(14) ‘P(f)j[x]j ﬁ;f”dPx Al = q" (,/s; fdPx '/s;f”dPx),

for each [x]j € XJ andn = 1, 2, ..., and the right-hand-side of (14) has
limit zero as n — co by the Dominated Convergence Theorem applied to
the X-valued measure P(-)x.

The main ingredient in the proof of the theorem is the following

LEMMA 7. Let f € LI(P). Then f is integrable with respect to each closed
spectral measure
BEoLX) jes

Proof. If fis P-null, then there is nothing to prove. So, assume that f
is not P-null, in which case P(f) # 0. Fix an index j € £ Again we may
suppose that P(f )}; # 0, in which case

= PO,

is positive. Define sets

E(n) = {w; |[f(w)| = n}

and bounded, Z-measurable functions

/fn = fXE(n)’
for each n = 1,2,....Then {f,} converges pointwise to fon Q. Since
L (X ) is sequentlally cornplete to show that fis P integrable it suffices to
show that

([ na8)”,

is Cauchy in LS(X,) uniformly with respect to E in 2, [10; Theorem 2.4

2]
Let n € X and € > 0. Choose {£ = [x]; € X; such that

(15) Iln — &, < e/(4B).
If £ € 2, then it follows from Lemma 6 that
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| = UL e = (f ar)e]

- [ fxaars]
for each m and n, where

y = P(f;1 - ~fm)x'

Since 0 = x,; = xg, it follows from the definition of the norm ||~||/» and (8b)
that ’

), rs ~ [ g,abe

Lx:;dPy],H, =47

and hence

ﬁf;,déé - fL bt = q<f>( L f.dPx — ﬁz fmdPx),

for every E € = and each m and n. But, fis P(-)x-integrable and hence,
there exists a positive integer N, depending on f, €, j, x and £, but not on
E, such that

q(j)(‘/;2 f,dPx — /s;f'"dpx) < €/2, m,n = N.

Accordingly, for every m = N and n = N, it follows that

(16) sup{ /; f;,dl_%g* ﬁf,,,dle-f

Then the inequalities
[ pin— [ natul| = || ot~ roab— 0],
ﬁ f;idplg - ,/I; fmd /g ‘/’

valid for every £ € = and m, n = N, together with (15) and (16) imply

that
Lf,]dl_’,-u - /Efmdf}u ’j

= (/4B) fL f,dB — L J,dP

But, an application of the triangle inequality and Lemmas 4 and 6 shows

that

for every £ € X and all positive integers m and n, and hence it follows
from (17) that

/;E e 2} < €/2.

S ‘

J

+

(17 1

; + €/2.

https://doi.org/10.4153/CJM-1987-057-5 Published online by Cambridge University Press


file:///LfndPfi-
file:///LfA-
https://doi.org/10.4153/CJM-1987-057-5

UNIFORMLY CLOSED ALGEBRAS 1135

(18) sup{ . - / f,,,dﬁ-u ‘ E € E} <€

for every m 2 N and n = N. Since a typical neighbourhood of zero in
L, (X) is of the form

{T € L(X/.), Tl <8, 1=k=1)}
for some finite set of elements
l A
{mdi=r € X
and some & > 0, it follows from (18) that

([,

is Cauchy in LX()A(/-) uniformly with respect to £ in 2.

Proof of the main theorem. Since the topology of L,(X) is stronger than
that of L (X) it is clear that (&/), S (&),.

Conversely, if T € (&), then (6) implies that T = P(f) for some
P-integrable function f. Given a neighbourhood U of zero in L, (X) it is to
be shown that there is an operator R of the form

H

> oP(E),

i=1

where the a;, 1 = i = n, are complex numbers and the E,, | =i = n, are
elements of =, such that (T — R) is an element of U. Typically, U is of the
form

= (W € L(X); sup{q"(Wx); x € B} < ¢},

where € is a positive number, j is some index in £ and B € X is a bounded
set. Since the quotient map of X onto X; is continuous it follows that

B(j) = {I[xl; x € B}
1s a bounded set in X/ that is,
8 = sup{ lIéll; € € B(j)} = sup{¢q"(x); x € B} < co.
Accordingly, if S(]j) denotes the closed unit ball of )A(, then
B(j) < &S\

Lemma 7 implies that fis é—integrable and hence

/ fdb

is an element of <@(P)) by (6) applied to the closed, equicontinuous
measure P By the classwal Bade theorem applied in the Banach space X
there exnsts an element H in L(X) of the form
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n
Z ahiE,

with the a;, | =/ = n, complex numbers and the £, 1 =i = n, elements
of 2, such that

n— |, jab

; < €/6.

Let

n

R = X oP(E).

i=1
Then R belongs to L(X) and
A ! A
R = 2 ah(E)

i=1

is precisely the operator H. Furthermore,

sup ¢/ (Rx — Tx) = sup 13/5 — ,/s;
XEB §£€B()) ’
= 4§ sup lR,u—'/S;deI’;,u’.
MES([/) - ./
ol fat]] <«

which shows that (T — R) & U. This completes the proof of the
theorem.

As a simple application of the main theorem we have the following

CoRroLLARY 1. Let X be a quasicomplete locally convex Hausdorff space
such that L (X) is sequentially complete and &/ S L(X) be a complete,
equicontinuous Boolean algebra which is projectively extendable. Then (<,
is a full subalgebra of L,(X), that is, if an element of (), is invertible in
L(X), then its inverse again belongs to (),

Proof. Realize o as the range of a closed, equicontinuous spectral
measure, say P. Suppose that T € (&), is invertible in L(X). Since
&y, = (), by the main theorem, it follows from (6) that T = P(f) for
some P-integrable function f. Accordingly, 1/f is P-integrable and
T-' = PQU/f), [13; Lemma 3]. Then (6) again implies that
T ! e (), and hence T~ ' € (&), by the main theorem.
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If o C L(X) is a complete, equicontinuous Boolean algebra, then it
certainly satisfies the hypotheses for the Bade reflexivity theorem in the
setting of locally convex spaces, [4; Theorem 3.1]. Combining this
observation with the main theorem gives the following

COROLLARY 2. Let X be a quasicomplete locally convex Hausdorff space
such that L(X) is sequentially complete and «¢ S L(X) be a complete,
equicontinuous Boolean algebra which is projectively extendable. Then an
operator T € L(X) belongs to (Y, if and only if T leaves invariant every
closed subspace of X left invariant by every element of .

A Boolean algebra &/ C L(X) is said to be cyclic if there exists an
element x in X such that the linear span of {4x; 4 € &/} is dense in X.
The following result is a sharpened version of Corollary 2.

COROLLARY 3. Let X be a quasicomplete locally convex Hausdorff space
such that LX) is sequentially complete and &/ S L(X) be a complete,
equicontinuous Boolean algebra which is cyclic and projectively extendable.
Then an element of L(X) belongs to (), if and only if it commutes with
every element of <.

Proof. Since T € (&), if and only if 7 commutes with every element of
&7, [14; Theorem 5.4], the result follows immediately from the equality of
(Y, and () as subspaces of L(X).

Corollaries 1-3 are natural analogues, for a certain class of Boolean
algebras in locally convex spaces, of well known results in the Banach
space setting; see Lemma 2.1, Theorem 3.16 and Lemma 3.14 in Chapter
XVII of [6], respectively.

3. Examples. In [14], a Boolean algebra &/ C L(X) is called boundedly
o-complete if A, — 0 in L, (X) whenever {4,} & & is a sequence
decreasing to zero in the partial ordering of .27 This is equivalent to the
o-additivity in L,(X) of any spectral measure whose range coincides with
&Z. Such Boolean algebras, for which it is known to be the case that
(A, = (&),, [14; Theorem 5.3], are of interest mainly in non-normable
spaces X since the only spectral measures in Banach spaces which are
o-additive for the uniform operator topology are trivial ones. An
examination of Example 3.1 in [14] shows that if 2/ is the range of the
spectral measure given there, then &/ is a complete, equicontinuous
Boolean algebra which is both boundedly o-complete and projectively
extendable. However, the following example shows that there are
projectively extendable Boolean algebras which are not boundedly
o-complete. Hence, although these two classes of Boolean algebras do
overlap they are, nevertheless, distinct.

Example 1. Let X = Llloc( [0, c0) ) be the space of (equivalence classes
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of) locally integrable functions on [0, co). Then X is a separable Fréchet
space when equipped with the topology specified by the seminorms

&R f [ 1ol fe x

where K is any compact subset of [0, co). If £ denotes the Borel subsets of
Q = [0, oo), then the set function P:3 — L(X) defined by

PE)f = fxg, f € X, foreach E € 2,

is an equicontinuous spectral measure. Furthermore, since Lebesgue
measure, A, on § is localizable and the measure (Px, x") is absolutely
continuous with respect to A, for each x € X and x’ € X', it follows that P
is a closed measure, [9; IV Theorem 7.3]. Accordingly, if 27 denotes the
range #Z(P), of P, then & is a complete, equicontinuous Boolean algebra in
L(X).

To see that .« is not boundedly o-complete, let B denote the closed unit
ball of L'( [0, c0); A), in which case it is clearly a bounded subset of X, and
let £, = (0, k_l), for each k = 1, 2,... . Then {E,} decreases to the
empty set. Since

1
p(T) = sup ¢"(Tf) = sup f Tfld\, T & L(X),
f<B fep 0

is a continuous seminorm in L,(X) such that
p(P(E)) =1, foreveryk =1,2,...,

it is clear that {P(E,) } cannot converge to zero in L,(X). This shows that
P is not o-additive in L,(X), that is, &/ is not boundedly o-complete.

However, we claim that o/ is projectively extendable. Noting that
Jo ¥dP is the operator

'[2¢dP:f+—>f¢, fex

for each bounded, X-measurable function ¢ on £, it is easily established
that the family of seminorms

Q= {q(K); K < Q, K compact}
is »Zcompatible, that is, satisfies (8a), (8b) and (9).

LEMMA 8. Let { be a measurable function on [0, co). Then  is
P-integrable if and only if  is N-essentially bounded on compact subsets of
[0, c0).

Proof. If ¢ is A-essentially bounded on compact subsets of [0, co), then it
is clear that i is P-integrable and

S wariro o £ x.
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for each £ € 3.

Conversely, suppose that ¢ € L'(P). Let K be a compact subset of
[0, co). If Y denotes the Banach space LY(K; Ag), where Ay denotes the
restriction of A to K, then the set function

P:S — L(Yy)
defined by
PAE):h > hxpng h € Yy,

for each £ € Z, is a spectral measure. The claim is that ¢ is FK-integrable,
for which it suffices to show that

{./; x‘bﬂdﬁk}:o:l

is Cauchy in L(Yy) uniformly with respect to E in 2, where
¥, = ¥Xpu, and E(n) = {w; Ww)| = n},

foreachn = 1, 2,...,[10; Theorem 2.4 (2) ].
For each bounded, =-measurable function g on € the operator

/l; gdP,, E € 3,
is given by

./;gdﬁk:h — hgy, h € Y,

where g denotes the restriction of g to K. If & € Y, then the function h*
on £, defined to be 4 on K and zero on Q\ K, belongs to X. Now, for each
E € X, we have

/E%dﬁkh - /E%dﬁxh ‘ = /K W — Yalxalhld),

for every integer m = 1 and n = 1, where ||| is the norm in Y;. But,
interpreting the integrand in the right-hand-side of (19) as being defined
on all of [0, o) it follows, for each £ € 2, that

'/;‘ \I/HdPKh - _L‘ \PmdPKh = q(K)( '/;‘ ‘PndPh* - '/; \l/mdPh*)’
for every m = 1 and n = 1. Since ¢ is assumed to be P-integrable in L(X)
it is certainly P(-)h*-integrable in X, and hence, if ¢ > 0 is given, then
there exists a positive integer N (depending on v, A, K and ¢) such that

(19)

(20)

(21) sup q(K)(/I; Y, dPh* — /éxlx,ﬁPh*) < e,
EFeZ

for every m = N and n = N, [10; Theorem 2.4]. Since h € Y was
arbitrary, it follows from (20) and (21) that
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Lvan ],

is Cauchy in L(Yy) uniformly with respect to £ in X, that is, ¢ is
P-integrable. As Yy is a Banach space, it follows that y is P-essentially
bounded, [6; Chapter XVIII, Theorem 2.11 (c)]. But, I~’K and Ay are
mutually absolutely continuous with respect to each other and so ¢ is
A-essentially bounded on K.

Now, the family of .2~compatible seminorms Q is indexed by the set ¢
of all compact subsets of [0, co0). Fix an index K € _Z If f and g are
elements of X, then it follows that [f]x = [g]k if and only if

ﬁl/*glcﬂ\=0

and the norm |||l; in the quotient space Xy (cf. Section 2) is given by

1l = 490 = [ 17, Uy < X,
Hence, )A(K can be identified with the Banach space
Yo = L\(K; Ag)

introduced in the proof of Lemma 8 and the induced spectral measure
P (cf. (10) ) is just Py. Accordingly, if ¢ is any P-integrable function, then
Lemma 8 implies that ¢ is A-essentially bounded on K and hence, the
restriction, g, of ¢ to K is IA’K—essentially bounded. Since the induced
operator P()g, in X, given by (11) is easily shown to be multiplication
by Yy, it follows that P({y)y is continuous (cf. (9) and Lemma 6). Since
K € _# was arbitrary, this shows that ./ is projectively extendable.

Remark The normed spaces Xy, K € £ are already complete, that is,
Xy = Xy for each K € _Z Also, the Boolean algebra &/ is cyclic. For
example, the constant function 1 on [0, co) is a cyclic vector for o/

In the setting of locally convex spaces, the classes of boundedly
o-complete Boolean algebras and projectively extendable Boolean alge-
bras have the property that for any of their members <7 the algebra (&),
coincides with the weakly closed algebra generated by «Z We conclude
with an example which shows that these two classes do not exhaust the
class of all Boolean algebras ./ for which (&), = (2/),: this remains an
open problem.

Example 2. For each n = 1, 2, ..., let X") denote the space
{Xj—nm: [ € L'R))

equipped with the norm, [|-]|;, induced from L'(R). Then X" < xt*h
and the topology of X" is that induced by X" ™) foreachn = 1,2, .. ..
Let
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[ee)
X= u x"
n=1
and equip X with the (strict) inductive limit topology induced by the
family {X"); n = 1, 2,...}. Then X is a complete, separable and
barrelled locally convex Hausdorff space. In addition, each X,
n =1, 2,..., is a closed subspace of X and X induces on each
X% p = 1,2, ..., itsinitial (norm) topology. A subset B of X is bounded
if and only if there exists a positive integer n such that B € X") and B is
bounded in X, If

u: X" - x
denotes the natural inclusion map, for each n = 1, 2, ..., then a basis of
neighbourhoods of zero in X consists of the balanced, convex hulls of sets
of the form
U u, (V")
n=
where, foreachn =1, 2,..., {V(")} runs through a basis of neighbour-

hoods of zero in X, say all positive multiples of the closed unit ball
S, in X, for example. The dual space X’ can be identified with the
measurable functions £ on R which are essentially bounded on compact
sets with respect to Lebesgue measure A, on R: the duality is given by

o - Jorean sex

If 2 denotes the Borel subsets of R, then the set function P:3 — L(X)
defined by

PE)f =[x [fE€ X

for each £ € X, is a spectral measure, necessarily equicontinuous as X is
barrelled. Since A is a localizable measure on = and the measure {(Pf, &)
is absolutely continuous with respect to A, for each f € X and £ € X/,
it follows that P is a closed measure, [9; IV Theorem 7.3]. Accordingly,
& = J(P) is a complete, equicontinuous Boolean algebra in L(X). It is
clear that &/ is not cyclic. The claim is that (&), = (&), as linear
subspaces of L(X) but, that &/ is neither boundedly o-complete or
projectively extendable.

To see that P is not c-additive in L,(X), let B = S{", in which
case B is certainly a bounded subset of X. If ¥ = §{") for each
n=12..., then -

> )
U= = u, (V™)

is already convex and balanced and hence, is a neighbourhood of zero in

https://doi.org/10.4153/CJM-1987-057-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-057-5

1142 WERNER RICKER

X. Accordingly,
0 = {T € L(X): T(B) € U}
is a neighbourhood of zero in L,(X). Let
E(k) = (0, k™", foreachk = 1,2,. ...

Then {E(k) } decreases to the empty set and hence, if P were o-additive in
L,(X), then it would follow that

P(E(k)) — 0 in L,(X) as k — co.

In particular, there would exist a positive integer K such that
P(E(k)) € Q, for every k = K. But, this is not possible. Indeed, if

Ji = kxpuy foreachk =1,2,...,
then
P(E(k))f, = f, foreveryk =1,2,..., and

f"_n Ifildh =1 foreveryk = landn = 1,
from which it follows (after noting that {f,} S B) that
P(EKk)YB) €U foreveryk =1,2,...,

that is,
P(E(k)) &€ U foreveryk =1,2,....

So, P is not o-additive in L,(X) and hence & is not boundedly

o-complete.
Ity = S(l"), foreachn = 1, 2, ..., then the set

oo
W= 9, w7,
which is convex and balanced, is a neighbourhood of zero in X. If 4"
denotes the Minkowski gauge functional of W, then it is not difficult to see
that q( ") is just the restriction of the norm ||-||, to X. Observing that for
each bounded, measurable function ¢ on R, the integrals

Jovar £ e,

are simply the operators in X of multiplication by ix,, it is easily
established that ") is an .«Zcompatible seminorm. Hence, to show that .=/
1s not projectively extendable it suffices to exhibit a P-integrable function
¢ such that the induced operator

(/S; xl/dP)W:XW — Xy
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given by (11), is not continuous. So, let Y(w) = w, for each w € R. Then ¢
is P-integrable and

(22) fEx[/dP:f»—> xefv, fe X,
for every E € 2. If fand g are elements of X, then

¢"M(f = g) = 'Llf— gld

and hence X, can be identified with the subspace of L'(R) consisting
of those elements vanishing outside of some compact subset of R.

A

Accordingly, X, is just L'(R). Since

(v},

is the operator in X, of multiplication by  (cf. (22) ), it is clear that

[ hver),

is not continuous, as required.
To show that (&), = (&), we require the following

LEMMA 9. A measurable function ¥ on R is P-integrable if and only if ¢
is A-essentially bounded on each set [—n, n], n = 1,2,....

Proof. If 3 is A-essentially bounded on each set [—n, n],n = 1,2,...,
then it is clear that i is P-integrable; its integrals are given by the formula
(22), for each E € =.

Suppose then thaty € L'(P) and fix a positive integer n. Since X" is a
closed subspace of X which is invariant for each operator P(E), E € X, it
follows that the set function

P:S — L(X™),

where P")(E) is the restriction of P(E) to X", for each E € 3, is a
spectral measure. It follows that ¢ is P"-integrable in L(X") and, for
each £ € 3, the operator

(1)
./;D YdP

is just the restriction of (22) to X, that is, multiplication in X" by .
Since X is a Banach space (as X induces on X" its initial topology) it
follows that ¢ is P(”)-essentially bounded, [6; Chapter XVIII, Theorem
2.11 (¢) ]. But, P is supported in = by [ —n, n] from which it follows that
¥ is P"-essentially bounded in [—n, n]. Since P") and A are mutually
absolutely continuous with respect to each other the desired conclusion
follows.
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The inclusion (&), C (&), is always satisfied. So, let T € (&7),. Then
it follows from (6) and Lemma 9 that

v o

for some measurable function iy which is A-essentially bounded on each
set[—n,n],n=12.... A typical neighbourhood of T'in L, (X) is of the
form

# = {S € L(X); (T — SYB) € U)

where B € X is a bounded set and U is a neighbourhood of zero in X.
Then there exists a positive integer n such that B € X" and B is bounded
in X" that is,

y = sup{ [lfll;; f € B} < .

As U n X" is a neighbourhood of zero in X and X induces the
L'-topology on X there is a > 0 such that

asS{ c U N x".
Let ") denote the restriction of { to [—n, n] and
2, =2N[—n n]

Since ") is A-essentially bounded in [—n, n] it follows that ! is
Q-integrable in L(X") where

Q:=, — L(X")

is the closed spectral measure (by the same argument as for P) of
multiplication by characteristic functions of elements of X, . Hence, (6)
implies that the operator

T, X - x

of multiplication in X' by "), being equal to

(n)
‘/[An,n] 4/ dQ’

is an element of (Z(Q) ), in L(X"). Since X" is a Banach space and
R(Q) is a complete Boolean algebra in L(X "), the classical Bade theorem
guarantees that

(R(Q) Yy = (R(Q) Y, in L(X™)

and hence, there is an operator

k
R = X BO(E)

i=1
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with the {E;} € 2, pairwise disjoint, such that
IR — %Hn < aly,

where |||, denotes the operator norm in L(X )y Then the operator

k
> BP(E)

i=1
belongs to the linear span of .7 in L(X) and the restriction of R to X"
is precisely R. Also, the restriction of T to X" is the operator T So, if
/€ B € X" in which case ||f]|, = vy, then (R — T)fbelongs to X"

and

(R = D)fll; = IR = THfilly = IR — TS < e
which shows that

(R—T)YB)C aS cUN x" c v,

that is, R € 5 Accordingly, every neighbourhood of T in L (X) contains
an element from the linear span of o7 in L(X) which shows that T € (&),
and hence, that (&), = ().
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