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ON THE NONWANDERING SETS OF
DIFFEOMORPHISMS OF SURFACES

TOKIHIKO KOIKE

§1. Introduction

Let M be a compact manifold without boundary. Let f: M — M be a
C' diffeomorphism. Then the nonwandering set 2(f) is defined to be the
closed invariant set consisting of x€ M such that for any neighborhood
U of x, there exists an integer n #+ 0 satisfying f(U) N U+ ¢. In par-
ticular, the set Per (f) of all periodic points is included in £2(f).

Generally, in the study of the orbit structure of diffeomorphisms their
nonwandering sets play an essential role. Several results relating to the
non-wandering sets established in these ten years or so have developed a new
aspect of dynamics—the study of the orbit structure of dynamical systems.
In his survey [8], Smale set up a concept called Axiom A, i.e. (a) Q) =
Per (f), (b) Tf has a hyperbolic structure over 2(f), i.e. there exists a Tf-
invariant continuous splitting E* @ E* of TM|8(f)—the restriction of the
tangent bundle TM to 2(f)—such that for some constants C > 0,0 << 1< 1,

ITf "I < C2* vl , vve E°, vn >0,
1Tf @l < C2*flv|, vveE*, ¥yn>0.

After that, many important results were obtained in this direction.

On the other hand, Pugh [7] proved a very important theorem about
the nonwandering sets., To state it, we shall explain the concept of ge-
nericity. Let Diff' (M) be the set of all C' diffeomorphisms endowed with
the C! topology. Then a property of diffeomorphisms is called generic if
the diffeomorphisms having it form a residual subset of Diff! (M).

Pugn’s DeEnsitY THEOREM. The property Q(f) = Per (f) is generic in
Diff* (M).
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In this paper we shall study the nonwandering sets of diffeomorphisms
of surfaces from the viewpoint of genericity. Our results are as follows:
Let M* be a compact connected surface without boundary.

TueoreEM 1. The property that int 2(f), = ¢, or f is an Anosov diffeo-
morphism is generic in Diff* (M?).

Remark. For a topological space X, the closure and the interior of
A C X are denoted by A and int A respectively.

A diffeomorphism f: M — M is called Anosov if Tf has a hyperbolic
structure over M. For surfaces except a torus, there is no Anosov diffeo-
morphisms ([9], p. 90). So, in this case Theorem 1 is written as follows:

TueoreM 1'. The property int 2(f) = ¢ is generic in Diff' (M?*) if M*®
is not a torus.

A diffeomorphism f is said to be topologically $-stable if 2(f) is
homeomorphic to £2(g) for all g C*' near f. We have the following from
Theorem 1.

Cororrary. If fe Diff' (M®) is topologically Q-stable, then int 2(f) = ¢
or f is an Anosov diffeomorphism.

The main stage in proving Theorem 1 is the following. First we shall
fix our notation.

DerFiNiTION. For an open subset U of M, we denote by s#(U) the
set of fe Diff' (M) whose periodic points in U are all hyperbolic, and by
2(U) the set of fe Diff' (M) whose periodic points are dense in U.

THEOREM 2. Let M* be a compact connected surface. Then for any
open subset U of M?,

2(0) N int #(U) C 2(M*) .

Theorem 1 is proved in Section 2 and Theorem 2 in Section 4. Sec-
tions 3 and 5 are devoted to two propositions necessary for the proof of
Theorem 2. In Appendix we shall prove a lemma about a non-transversal
homoclinic point, which is necessary in Section 5.

Throughout this paper except Appendix, ‘M’ will denote a compact
connected surface without boundary.

I would like to thank Professor M. Adachi for his guidance of this
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area. I owe Professors G. Ikegami, M. Kurata and especially K. Shiraiwa
many useful suggestions and criticisms.

§2. Proofs of Theorem 1 and Corollary

In this section we prove Theorem 1, assuming Theorem 2. We denote
by o/ the set of all Anosov diffeomorphisms of M.

Lemma 1. If feint 2(M), then fe /. Hence </ is open and dense in
int 9(M).

Proof. Let feint 2(M). First, we suppose f & int #(M). Some diffeo-
morphism g near f has a non-hyperbolic periodic point p. Since the
dimension of M is 2, it is possible to make p a sink or a source of a small
C! perturbation g, of g, i.e., if n is the period of p, then the eigenvalues
of T,gr have absolute values <1 (or >1). Obviously, g€ 2(M). This
contradicts the hypothesis, because g, can be chosen sufficiently near f.
Thus feint #(M). We can choose f, eint # (M) N Z(M) near f. We here
apply a theorem of Mafié [3], i.e. int #(M) N 2(M) = « if the dimension
of M is 2. Hence we have f, € &/. Therefore, fe . g.ed.

For each point x € M, we define

U, = {f € Diff' (M); x ¢ int Per (f)} .

Then we have
Lemma 2. If fe%,, then fe 2(M) or feint %,.

Proof. Let fe%,. By definition, xcint Per (f). Let U be a small
neighborhood of x in Per (f). When feint s#(U), by Theorem 2, we have
fea(M). So it is sufficient to show that feint #,, when feint #(U).
Then some f, near f has a non-hyperbolic periodic point p in U. Similarly,
it is possible to make p a sink or a source of some C' perturbation f, of
fi. Since U is a small neighborhood of x, we can choose A e Diff' (M)
with A(x) = p in a small C' neighborhood of the identity of M. Put g =
h'-f;-h. Clearly g is C' near f. Naturally x = ~A~'(p) is a sink or source
of g. Hence, for any g, € Diff'(M) near g we have x ¢ int Per (g), or g, €
%, This implies geint #,. Since g is near f, it follows that feint %,.

q.e.d.

LEMMA 3. int %, U int 2(M) is dense in Diff* (M).

Proof. Suppose f&int %,. It suffices to show fe 2(M). Whenfe %,,
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by Lemma 2, we have fe 2(M). When fe %, hence fe %, — int %, there
is a sequence f, 2 %, U int %, converging to f. By Lemma 2, f, € 2(M).
Hence fe 2(M) follows. q.e.d.

Now Theorem 1 is proved as follows: By Lemmas 1 and 3, #, U &/
is generic in Diff' (M). Really it contains an open dense subset of
Diff* (M). By the Pugh’s density theorem, the set

% = {f e Diff (M); Q(f) = Per(f)}
is generic. Let K be a dense countable subset of M. Then

A=W, UL)NE
ZEK

- ((n2.)ne)uw

zEK

is generic in Diff’ (M). Now we need only check that if fe (N,ex %.) N €
then int 2(f) = ¢. From fe& (Nicx ., we have int Per (f) N K = ¢. But,
since K is dense in M, int Per (f) = ¢. On the other hand, fe % means
Per (f) = 2(f). Hence int 2(f) = ¢ follows. q.e.d.

Proof of Corollary. Let fe Diff' (M) be topologically {2-stable. First
suppose f& /. By Theorem 1, there is ge Diff' (M) near f such that
int 2(g) = ¢. By stability, it follows from the theorem of domain invari-
ance that int 2(f) = ¢.

Next suppose fe.sZ. There is f, € & near f. Since 2(f) = M ([9], p.
89), by stability, we have 2(f) = M. Hence by stability, 2(g) = M for all
g near f. By Maié [3], it follows that f is Anosov. g.e.d.

§3. Laminations

In this section we prepare a proposition for the proof of Theorem 2.
Let us begin with definitions.

DerFINITION. Let fe Diff* (M). For a hyperbolic periodic point p of £,
we denote by Wi(p;f) (resp. W*(p;f)) the stable (resp. unstable) manifold
of f at p. We define E‘(p;f) to be the tangent space of W'(p;f) at p.
Likewise E*(p;f) is defined.

In what follows, we shall drop ‘f’ in these symbols when it does not
give rise to confusion.

DerFINITION. A hyperbolic periodic point is called a saddle if it is
not a sink nor source. We denote by Sd (f) the set of all saddles of f.
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DEeFINITION. A C' lamination of M is a continuous foliation whose
leaves are C' immersed submanifolds such that their tangent spaces, as
a whole, form a continuous subbundle of TM.

Refer to [1, § 7] for general definitions.
We shall prove the following.

ProrositioN 1. Let f€ Diff' (M). Let U be an open subset of M such
that:

(1) U is invariant under f.

(2) The periodic points in U are all saddles and are dense in U.

(8) There is a continuous splitting E°® E* of TM| U whose splitting
at vpeSd(f) N U is E'(p; ) ® E“(p; ).

Then there is an f-invariant C' lamination W* on U such that (a) all
laminae are tangent to E°, (b) stable manifolds W(p;f), vpeSd () N U,
are its laminae. Likewise there is an f-invariant lamination W* on U with
the corresponding properties.

Proof. We want to construct a lamination on a neighborhood of vx,
e U. First, we take a coordinate neighborhood (@, ¢) of x, with the fol-
lowing properties.

(4) @C U

(5) @@ =I[—1,11 X [~1,1].

(6) ¢(x) = (0,0).

(7) Identify @ with [—1,1] X [—1,1] and E* with Teo(E®). There is
a C° map w: @ — R such that |w(x)| < 1/4, and the vector (1, w(x)) spans
E'(x),vxe Q. E‘(x) is the fiber of E*® at x.

We, first of all, notice that stable manifolds Wi(p), ypeSd(f) N U
are tangent to E°. Because, if at a point x € W*(p), E°(x) is not tangent
to Wi(p), then E*(f*"(x)) = Tf*"(E*(x)) (« is the period of p) tends to E“(p)
as n— oo by hyperbolicity of T,f*, contradicting continuity of E°. Like-
wise unstable manifolds W*(p), vpe Sd (f) N U, are tangent to E*.

Let #,: @ —» [—1, 1] be the projection on the first factor. Write @, =
[—1,1] x [-1/2,1/2] € Q. For vpeSd(f) N @, let K, be the connected
component of W'(p) N @ containing p. Let h,: K, —[—1, 1] be the map-
ping defined by

h(x) = n(x) , vxe K, .
We want to show that h, is a homeomorphism if peSd(f) N Q.
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First, h, is one to one, because K, is an integral curve of the vector
field x — (1, w(x)), Vx € @, which spans E® over . So we show A, is onto.
We notice that K, cannot meet the top nor the bottom of @, because the
slope of K, is less than 1/4. So h, not being onto implies K, — K, # ¢.
Let ge K, — K,. See the figure.

1
Q
3
Q
0 T !
s N
-3
*q
—

Thus K, includes one of the components of W#(p) — {p}, say C. Since
f*(C) = C, clearly we have f*(q) = g, namely g <€ Per (f). Hence, by (2),
qeSd(f). For vxe C, f**"(x) tends to ¢ as n— oo. This implies C C
W*(q). Thus C is tangent to E* and E* at once, which contradicts (8).
Hence A, must be onto.

We denote by II the set of all peSd(f) N @ such that h, is onto.
By the above Sd(f) N @, C II. Let =,: @ - [—1, 1] be the projection on
the second factor. When we put V, = {m,h;'(0); p € II} C [—1, 1], it is easy
to see that V, is dense in [—1/2,1/2]. For vpell, we write k, = =, -h;’,
where v = x,-h;(0). Hence graph (k,) = K,. We define a function v =
k(t, uw), te[—1,1], ue[—1/2,1/2] by the following:

k(t, w) = lim k,(?) , uveV,.

The aim of the following is to prove that curves t~ (¢, k(t, uw)), ue
[—1/2, 1/2], are C' differentiable and tangent to E°, and they form, as a
whole, a C' lamination on a neighborhood of x,.

1. k(t, u) is well-defined: Let (¢, u) be fixed. Take u,, u,e V, with
u<u<u, If peSd(f) N Q is in the domain between graph (k,,) and
graph (k,,), then p belongs to II. This is proved by the method proving
in the above that A, is onto, and by the fact that subarcs K,, K, of dif-
ferent two stable manifolds never meet each other. Remark that this fact
also plays an important role in the following.
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So it is obvious that {K,; pel} meet the vertical segment {t} X
[2.(®), ()] € @ densely. That is, the set {k.(¢); ' € V;} is dense in
[k, (D), k., (D)]. Therefore, given ¢ > 0, there is a finite sequence of numbers
ul, uy -+, u, €V, such that

(8) =u<u < - <up=u,

(9) K00 — k) <e ViI<i<n.

Let j be the suffix with ), <u<uj,.. By (9), for v',u" e V; N
[u,j7 u;‘n]a

[Rut) — Ry ®)] < Ry, (B) — FRuy(t) <.
Hence {k,(t); @' — u, v’ € V;} is a Cauchy sequence. q.e.d.

2. The convergence k,(t) — k(t, u) is C® uniform: Given ¢ > 0, choose
a finite sequence of numbers ¢, ¢, - - -, t, € [—1, 1] such that

10) —1=H <t < - <t =1,

1) ¢, —t, <ef2, Vi<i<n.
We can take u,, u, € V, such that

12) yu<u<u,

(13)  Ry,(t) — k() <e V1< i< n.

By the way, if |t — ¢| <e, by (7) we have

hu®) — Rt = j [ ditk,“(t) dt’

- [f wit, kul(t))dtl
<lt—tla<e/a.

Likewise |k,,(t) — k,,(t)] <e4d. Let ' eV, u, < v/ < u,. Forvie[—1,1],
choose t;, with |t, — t| <e. Then

L kuy(®) — Rus(@)] + [Rus(t) — k(2]
+|ku1(t) - kul(ti)l < 5/4 + 5/2 -+ 5/4 = €.

Thus we have |k(-,u) — k()| <e if W' eV, |t — u|<d, where §=
min {Ju, — ul, |u, — ul}. g.e.d.

3. {(d/dtk.,; v — u, ' € V} is uniformly convergent: Because

ditku,(t) = w(t, kuAt)),
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and k,(t) is uniformly convergent. q.e.d.

Therefore, v = k(t, u), (¢, w)e[—1,1] X [—1/2,1/2], is C' differentiable
in ¢ and satisfies the differential equation dv/dt = w(t, v).

It is easy to see that the mapping H: [—1, 1] X [—1/2, 1/2] — @ defined
by H(t, u) = (i, k(t, u)) is a homeomorphism (into). So we can define a C*
lamination on a neighborhood of x, by letting its laminae be curves ¢+
H(t, u), ue[—1/2,1/2]. To guarantee the existence of a global lamination
W: on U, we need only check that two local laminations thus defined
are always consistent with each other. But, otherwise, there must be a
pair of stable manifolds having an intersection by the construction of
laminae.

Clearly the lamination W°* satisfies the desired conditions. q.e.d.

§4. Theorem 2

For simplicity we denote by U, the f orbit of U C M. The following
proposition plays a basic role in proving Theorem 2.

ProrosiTioN 2. Let U be an open subset of M. If feint #(U), then
there is a continuous splitting E* ® E* of TM|Sd (f) N U, whose splitting at
vpeSd(f) N U, is E'(p; ) ® E*(p; f).

The proof will be given in the next section. Now we prove Theorem 2.
THEOREM 2. For any open subset U of M, we have
2(U) N int #(U) C 2(M) .

Proof. Let fe2(U) N int #(U). Clearly Per (f) N U, C Sd (f). So,
Sd (f) is dense in U,. Applying Proposition 2, we have a splitting E*®
E*of TM|U, whose splitting at Vp € SA(f) N U, is E*(p; ) D E*(p; f). Hence,
by Proposition 1, there are f-invariant laminations W* and W* such that
Wi(p;f) and W*(p;f), YpeSd(f) N U,, are respectively their laminae.

It is sufficient to show U, = M, because Per (f) is dense in U,. For
this, we need only prove that for vx,e U,, there is a neighborhood of x,
included in U,. Let us write ¥ = Sd(f) N U,. We claim

(1) Let pel. Let ¢o:R— Wi(p), ¢(0) = p, be a parametrization of
Wi(p). Then ¢(c0) = lim,.... p(f) never exists.

Proof of (1). Suppose there exists ¢(c). Let a« be the period of p.
First, ¢(co) ¢ U,, because by Proposition 1 W*(p) is a lamina of W*. Itis
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also clear that f*(¢(e0)) = ¢(c0). Since the laminations W*, W* are trans-
versal, we have geZX with ¢{(0, o)} N W%(q) = ¢. Let ye{(0, o0)} N
W=*(q). Denote by f the period of q. Since ye W*(q), f**(y) —q as
n— oo, Since y € ¢{(0, )}, f**(y) — ¢(0) as n— co. Hence g = ¢().
This is a contradiction, because ¢() & U,. q.e.d.

By continuity of E*@® E* we may choose a coordinate neighborhood
(Q, V) of x, satisfying the following (2) ~ (4).

(2) w@=I[-1,1]x[-11]

(3) ¥(x) = (0,0)

(4) Identify @ with its image by  and E®, E* with Ty(E*), T(E*)
respectively. Then we have C° functions w,, w,: @ N U, — [—1/4,1/4] such
that (1, w,(x)), (w,(x), 1) € T,Q span respectively E*(x), E*(x) for vxe @ N U,.

Let pe¥ N Q. We denote by K; (resp. K¥) the connected component
of Wi(p) N @ (resp. W*p) N @) containing p. We express the coordinate
system in @ as (¢, v). Noting that K; is an integral curve of the vector
field x— (1, wy(x)) (x€ @ N U,), we have a function v = k,(¢) with graph (%,)
= K;. Let II be the set of all pe2 N @ such that the domain of %, is

[=1L,1. Put @ =[-1,1] X [-1/2,1/2] € Q. As in the previous section,
we can prove XY N @, C II by virtue of (1).

Let us fix a point p, e [—1/4, 1/4] X [—1/4,1/4] N 2. Similarly as above,
we have a function ¢ = h(v), ve [—1, 1] with graph (k) = K. For vpell,
K; N K% consists of just a point. Let 7,(¢, v) = v be the projection. Define
Vo= {m(K: N K¥); pell}. Since 3 N @, C I, V, is dense in [—1/2, 1/2].
For vu' e V,, we put k(z, v') = k,(t), where =,(K; N K%)= u'. See the figure.

Ka
.
2
t
Po 1

Now we define a function v = k(¢, uw), (¢, w) e[—1, 1] X [—1/2, 1/2] by
k@, u) = lim k(t, v') , weV,.

w'tu
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First, this is well-defined, because k(t, ') is monotonuous in ' € V,.
As in the previous section, we have similarly that this convergence is C'
uniform in te[—1, 1].

Likewise we define another function v = k(t,u), (t, w)e[—1,1] X
[—1/2,1/2] by

k(t, u) = lim k(¢, ') , ueV,.
u'lu

We want to show & = k. Suppose that for some ¢, u, k(t,, u,) # k(t, u,).
Let D be the region in @ between the graphs of &(-, u,) and k(-, u,). First
we have D N U, = ¢. If not, we can take two points p, p.€ 2 N D. By
(1), they belong to II. So the region in @ between Kj, and Kj, is included
in D. But this is impossible, because k(t,, u,) = k(t,, u,) where (¢, u,) € K.
Thus D N U; = 4.

We also have D N U, # ¢. This is shown as follows. Put x, =
(¢, k(t,, u,)). We notice that the graphs of k(-,u), v’ e V,, are included
in U,. So, x, = lim (¢, k(t,, v")) (&' 1 uy, v’ € V,) is contained in U,. Hence
we can choose a point p €3 near x,. Then K} meets the graph of &(-, u,)
at a point near x,. So it meets D, too. Since K! C U,, we have D N

U, # ¢.
Thus we have a contradiction. Therefore, & = k. Hereafter we write
k=k=EF

It is easily shown that the mapping H: [—1,1] X [—1/2, 1/2] — @ defined
by H(t, u) = (t, k(t, u)) is a homeomorphism (into). Moreover, its image is
in U,. So it is sufficient to show that Im (H) D [—1/2, 1/2] X [—1/4, 1/4].

By (4), K} meets the segments [—1/2,1/2] X {1/2}, and [—1/2, 1/2] X
{—1/2} C Q. Let these intersections be y,, y, respectively. By definition,
graph (k(-, 1/2)) goes through y,, and graph (k(-, 1/2)) through y.. Hence
it follows from |[(9/0t)k(t, u)| = |w,(¢t, k(t, uw)| <1/4 that for vie[—1/2, 1/2],
k(t,1/2) > 1/4 and k(t, —1/2) < —1/4. Hence, as u goes from —1/2 to 1/2
with te[—1/2, 1/2] fixed, k(, u) varies from k(t, —1/2) < —1/4 to k(z, 1/2)
> 1/4. By continuity of k, it follows that for vie [—1/2, 1/2], {#} X [—1/4,
1/4] € Im (H). That is, [—1/2,1/2] X [—1/4,1/4] C Im (H). Hence x, =
0,0)cint U,.

Thus we have proved Theorem 2. g.e.d.

§5. Proposition 2

In the proof of Theorem 2, Proposition 2 still remains to be proved.
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ProrosiTiON 2. Let U be an open subset of M. If feint #(U), then
there is a continuous splitting E°® E* of TM|Sd (f) N U, whose splitting
at vpeSd(f) N U, is EXp; ) ® E*(p; ).

Proof. We state two assertions, which will be proved later, and using
them, we obtain the proof of Proposition 2.

Let GM be the bundle over M whose fiber at x consists of all 1-
dimensional subspaces of T, M. Let d be the metric on GM induced from
a Riemann metric on M.

AssgrTION 1. There is a C' neighborhood % of f such that
inf {d(E'(p; &), E*(p; 8)); 8%, peSd(g) N U} > 0.
ASSERTION 2. There is a positive integer v such that
1T | BN T E*PI < 1/2,  vpeSd(f) N U, .

Now Proposition 2 is proved as follows: Let xeSd(f) N U, Let
P . €84 ()N U, n=1,2,--- be two sequences converging to x such
that E*(p.), E“(p.); E‘(q.), E*(¢,) have a limit. Denote their limits by F",
F*; G°, G* respectively. It is sufficient to prove F*= G° and F* = G“.
Suppose F* # G°, for example. It follows from Assertion 1 that F*® = F*,
G* #+ G*. Our argument is divided into three cases.

1. The case F* # G* It follows from Assertion 2 that
(T Fe N Tof* | F ) < 127, VE>0.

Since G* # F*® and G* = F*, we have by this that given ¢ > 0, there is
k > 0 such that

d(T.f"™(G), Tof*(F*) <e,
d(TIfku(Gu)’ Tszu(Fu)) <e.

Hence we have
d(T.f™(G), T-f*(G")) < 2¢ .
This clearly contradicts Assertion 1.

2. The case F* #+ G°. This is the same with the case 1, if F and G
are interchanged.

3. The case F* = G* and F* = G°. By Assertion 2, we have
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I Tf | F N Tf ) F) < 12,
ITA1GIN TG < 1/2.

The above inequalities contradict each other, because F* = G* and F* = G°.

Thus we have derived a contradiction from the assumption F* # G°.

Hence we have Proposition 2. q.e.d.
To prove Assertions 1, 2 we prepare the following.

AsserTiON 3. For some small C' neighborhood %, of f, there is a con-
stant 0 < 2 < 1 such that for vge %, YpeSd(g) N U,

| Tg=?|E(p; 9 < 2,
|Tg="|E«p; &) < 2,

where a(p) means the g period of p.

Proof of Assertion 3. Suppose otherwise. We may assume without
loss of generality that for any ¢ > 0, there exists g in the ¢ — C" neighbor-
hood of f with ||Tg*”|E‘(p; g)|| > 1 — ¢ for some peSd(g) N U. Let ¢
=1—|Tg*?|E(p; g)ll. Clearly 0 < ¢ <e.

By Lemma B, in Appendix, we have a Ce — C' perturbation A of the
identity of M (C is a constant as in that lemma) such that

(1) A(p)=p.

(2) T,h= @ —¢&)'I, where I,: T,M <—is the identity.

(8) h(x) = x for x outside a small neighborhood of p.

We define g, = h-ge Diff' (M). By (1), (8), & = g on the orbit of p.
Clearly E*(p; g) is invariant under T,g°(p). But we have

| T, 8P | E(p; 8)|| = || Toh- T, 8% | E*(p; &)l
=1 —-e&)' | T,g"?|E(p; 9| =1.

Since the dimension of E*(p;g) is one, it follows that p is not hyperbolic
for g,. By construction, g; is near f in Diff' (M), so feint #(U). This
is a contradiction. q.e.d.

Proof of Assertion 1. Suppose it is not true. Then, for any ¢ > 0 we
have ge %, with

tan d(E°(p; g), E"(p; 8)) < 27'«(1 — 2)

for some peSd(g) N U,, where %, and 2 are the ones given in Assertion
3. Let « be the period of p. Take a small neighborhood @ of p with
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(1) Q2g"p), Vi< n<La— 1.
We denote by Wi(p; g)(W*(p; g)) the local stable (unstable) manifold of
size r > 0. We choose orthogonal coordinates (¢, v) in @ with origin at
p such that the t-axis is W)(p; g).

The function v = (f) representing W¥(p; g) has the form:

(2) v(@)=c-t+ R@), te(—r,1).

(3) le| < 27%1 — 2).

(4) R(0)= R'(0)=0.
By (4), taking r small, we may assume:

(5) |R(®)| < 2% — ), vie(—r,T).
So we have

(6) |R@| < 2%l — Dr, vie(—r,1).

Noting p = g%(p) = (0,0), we define C' mappings A, h,;:(—r,r) —
(—r, r) respectively by

(7) hy(t) = mg°(¢, 0),

(8) hy(t) = mg (¢, ¥(t), where =, is the projection on the first factor.
Since |Aj(0)] < 2, |hy(0)| < 2, by taking r small enough we have

(9) [h@®Z A0t |hD)] < 28], YEE (=T, T).

Put b=r/2 and § = (1 — 2)b. For vite(—r,r) we have

(10) [y <lelr + |R@®| < er(l — 2) = 20,

A [WOI<le|+ RO < el — ) <e.
Let x, = (b, 0), x, = (b, ¥(b)). Then

|7 g*(x) — b| = |h(b) — b >b—2b =37,
|7,g%(x) — b = |hy(b) — b >b—2b=56.

Hence we have

(12) llg*(x) — %l > 9,

(13) [lg7*(x2) — x|l > .

We define a C' mapping k: @ — @ as follows: Let ¢:R— R be a C!
function with ¢(— o0, 1/2] = 1, ¢[1, o0) = 0.

(14) k(¢ v) = (¢, v — ¢({C — b) + V'H")- ¥ (?)).
Then the following holds:

15) k(t, ¥(D) = (¢, 0), if |t — b| is sufficiently small.

(16) k(x) = x, if ||x — x,|| > 4.

(A7) k is near the identity of @ in the C' sense when ¢ is small.

The last is shown as follows. By (10), (17) is true in the C° sense.
By (10), (11) and the fact that ¢({(¢ — b)* + v?}/d*) = 0 if [t — b| > J, we have
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0

||~—{k(t, v) — (&, v)}|| = [¢'({E — b)° + v}/5)-257*( — b)- ¥ (?)

+ ¢({(t — by + v}/6")- ' ()}
< |¢|-207%0-2e6 + || e
= (4]¢'| + |gDe— 0.

ot

We also have the same result about d/o0v. Thus (17) follows.

We extend % to a mapping of M — M by letting k(x) = x for x outside
®. By (17) we make % a diffeomorphism of M. Then we define g, = k-g
e Diff* (M). By (1), (16), we have

(18) gi(p) = g"(p), Vne Z.
In particular, p is a periodic point of g,.

By (1) and (16) we have

& (x) = (877 (x) = g7"(x2) .
So it follows from (13), (9) that

& (g (%) =8 "(g" (%)), Vn>1.
Hence we have

(19) gr™(x) = g "(x), Yn > 1.
This implies that x, € W*(p; g,), because g;™(x;) approaches p as n— oo.
By (15), we can prove similarly that any point of the form (¢, 0) with
|t — b] small enough is contained in W*(p; g).

By (12) and (16), we have

gr(x) = (k-8)(x) = k-g"(x1) = g°(x,) .

Similarly we have
(20) gi*(x) = g"(x), Vn > L.
This implies that x, € W'(p; g,). Also, we can prove similarly that any
point of the form (¢, 0) with |¢ — b] small enough is contained in W*(p; g,).
Thus it is proved that x, is a non-transversal homoclinic point of g,.
It is clear that the g, orbit of x, meets U and hence g, has a non-
transversal homoclinic point in U. By Lemma A in Appendix, we have
a small perturbation of g with a non-hyperbolic periodic point in U.
This contradicts the hypothesis, i.e. feint s#2(U). q.ed
For the proof of Assertion 2 we first prove the following. For Vp e
Sd (f) N U,, we define N(p) to be the smallest positive integer n such that
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I Tf" | E*(p; DINTF | E*(p; HI < 2.
Clearly, N(p) does not exceed the period of p.
AsSERTION 4. sup {M(p);peSd(f) N U} < oo.

Proof. Given ¢ > 0, take a positive integer n, such that

(1) @A — 2™ < 2%
Suppose the above is not true. Then there is p e Sd (f) N U; with N(p)
> n, + 3. Let r be the greatest integer such that 2¢ + 2 < N(p). Let «
be the period of p. Then,

(2) n+2<2+2< Np)<a.

We take unit vectors Ve E(p;f), V*e E*(p;f). In what follows, we
simply write

(3) p.=["Yp),

(4) Vi=Tf\(VY), V¥=TfY(VY, vneZ.
Note that p, = p, but V=% V§, V¥ = Vg

By Lemma B, in Appendix we construct A = h, € Diff* (M) with the
following properties (5) ~ (11) in such a way that h approaches the
identity in the C'® sense as ¢ — 0.

(5) h(pz) =p., VO<n<a

(6) h(x) = x, Yx outside a small neighborhood of {p,;0 < n < a}.

(7) Tp(VY) = Vi, Tp,W(V*) = Vi* + eV

(8) v2<n<c+1;

T, n(V)=QQ—=9o'Vy, T,WV)=Q0A-=9Vr.
(9) Ve+2<n<2 +1;
T,hV)=(1—eV:, T, m(V¥)=(1—e Ve,

10) v2r+2<n<La—1; T,.h: T, M<«——is the identity.
(1) T, ,n(V2) = Vi, T,, (V) = Vi — eV,
Then we define g = h-fe Diff* (M). By (5),
(12) g"(p) = f"(p), Vne Z.
It follows from (8), (9), (10) that
13) T,g"=T,f" vV2r<n<a-—2
Now we want to show that
(14) T,.8" = Tyf".
For this, it is sufficient to show the following:
(15) T,.8(Vy) = Vi, T,8(Vy) = Ve
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The first is easily shown, so we check the latter:

Tpoga(‘lou) = Tpa—ngmga_z pog(vﬂu)
= (TphTpuif) - (Tpuf* ") - (TR T /)(Vi)  (by (13)
= Tpathlfa—lTlllh(Vlu)
= Tp AT f* (Vi + eVE)  (by (1)

= T (Ve + €V0) (by (4))
= (V& —eV) + V2 (by (11))
= Vr.

It follows from (14) that g¢ is hyperbolic at p, and
(16) E"(po; 8) = E*(po; 8)-
It is also clear by the construction of A that

A7) E'(p.;8) = E'(p.; f), VO< n < a.

Now we are in a position to conclude the proof. We estimate
d(E¥(D..1; 8), E*(p..1; £)). By virtue of (16) and (17), this is equal to the
angle 6 between T,,g°" (V) and E*(p...;f). :

Write T,,g*'(V¢) = (w,, w,) regarding E*(p...;f) ® E*(p...;f). Let us
compute w,, w,.

T8 (V) = T,8€Vi+ Vi)  (by (7))
eT,g°(VY) + Tpg°(VY)
=&l — T (V) + QA — oT,f (VD).

I

Hence
(18 w, =&l — )T, f(VY), w, = 1 — ey T,f (V).
By (2) and the definition of N(p), it follows that

lwullllwll = @ — ) I T f (VO T (VDI (by (18))
< e — o)
<e'A =9 <e  (by ().
Hence it follows that
cos § = (w, + w,) - w,flw, + w,||w.] > 1 -1+ —>1,

as ¢ — 0.
Therefore, § approaches 0 as ¢— 0, which contradicts Assertion 1.
g.e.d.

Proof of Assertion 2. By Assertion 4, let
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N = sup{N(p); peSd(f) N U} < oo .

Put C=|Tf||| Tf'|. We take a positive integer m with C"A™ < 1/2. Let
vy = (m + 1)N.

For vpeSd(f) N U;, we define q,, q,, - - -, ¢r.1 € Sd (f) as follows:

(1) ¢.=p.

(2) qa=f""%q), 1<i<r.

(3) v—=N< 2l Ngs) <.
Since N(g,)) < N, vl <i < r, it follows that N > v — N = mN and hence
r=>m.

Noting E°, E* are 1 dimensional, we have

ITFIE @I o o {7 127701 EX(g)
ITFIEXp)| — =1 | T | E%(q)|
<OV <OV < 12,

(The second inequality follows from the definition of N(q,).) g.e.d.

§6. Appendix

Let M be a compact manifold without boundary. Let f: M — M be
a C' diffeomorphism. The purpose here is to prove the following.

LemmaA A. If ze M is a non-transversal homoclinic point of f, then
f can be approximated by a diffeomorphism with z as a non-hyperbolic
periodic point.

Remark. A similar result was proved by Newhouse [4] in a dif-
ferent way.

We will apply the perturbation lemmas below to the proof of Lemma
A. We fix a metric d on M and a C* metric d' on a neighborhood of I
in Diff' (M), where I is the identity of M.

LemMmA B,. There are constants C > 0, 7 > 0 depending only on d and
d' with the following property: Let x,x,€ M. If d(x,, x;) < &b for 0 <e
<7, 0< 8 <7, then we have a (Ce) — C* perturbation k of I, i.e. d'(k, I)
< Ce, such that k(x)) = x,, and if d(y, x;) > 3, k(y) = y.

Lemma B,. There are constants C > 0, 7 > 0 depending only on d' with
the following property: Let xe M and let L,: T,M <—— be a linear mapp-
ing. Let I, be the identity of T,M. If |L, — L||<e for 0<e <y, then
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for any 6 > 0 we have a (Ce) — C* perturbation k of I such that k(x) = x,
T.k = L., and if d(y, x) > 9, k(y) = y.

These facts are well-known and can be proved easily, so we omit
their proofs.

Proof of Lemma A. It is sufficient to consider the case where z¢
Wi(p) N W*p) for some fixed point p because the other cases can be
treated similarly. For convenience we denote by s, the dimension of
Wi(p) and W*(p) respectively. In what follows, D° (resp. D¥) denotes the
unit disc of R* (resp. R*) centered at 0, and B,(x) the ball neighborhood
of x of radius r > 0 in M.

We take a coordinate neighborhood (U, +) of p with the following
properties (1) ~ (4).

(1) ¥w(U)= D x D~
From now on, we identify U with D* X D*

(2) D x {0} € W(p), {0} X D*C W*p).

(3) 30<2<1;

”Tpf(v,O)“gX”U”, VUGRS,
HTpf_l(O, w)” < lew” s Ywe R*.
(Note T,U = R* X R*. | - | means the Euclidean norm.)

(4) vxeUN fU)NFHO);
ITef = Tofll < e,  NTef" = Tof M < e,

where & = (1 — 2)/4.
Remark. As regards (3), refer to Nitecki [5], pp. 71 ~ 78.

Let xe UN f(U) N f'(U). For (v, w)e R* X R*, we write (v, w,) =
T.f(v, w), (U, wy) = T,f (v, w). Then we have (5) ~ (8) below.
(5) If [vliflwl < 1/2, [uliflwi <1/2.

Proof. Let m;: R®* X R*— R*, m,: R* X R*— R* be projections.

v, = 0, T.f(v, w)
= 2(T.f — T, ), w) + 7T, f(v, 0) + =, T,f(0, w) .

Hence we have
lodl = a(lvl + wl) + 2ol < @2 + a2+ o) |w]| < [|w]/2.

Similarly
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w, = n,T.f(v, w)
= ”2(T:cf— Tpf)(vy w) + 7r2Tp (Ur O) + ﬂ.'szf(O, w) .

and hence
lw ]| = 27wl — a(lv] + w]) = @' — «/2 — @) |w]| > [[w] .

Thus ||v, ||/}l w:]] < 1/2 follows. q.e.d.
(6) If wlfilvl < 1/2, w.ll/llve]] < 1/2.
The proof is similar to (5).
(7) I jwlfivl < 1/2, vl < 4 |lv]| where 2, = (1 + 2)/2.

Proof. Decompose v, as in (5). Then we estimate
ol < aivll + lwlh + vl < @ + 20 o] < 4 jvl] .

Thus we have (7). q.e.d.

(8) If vliflwll < 172, [w.|| < 4 [|w].

The proof is similar to (7).

We choose integers n,, n, such that f"(z) e D X {0}, f~"(2) € {0} X D*
respectively. Remark that these sets really imply their inverse images
by 4. Take 6 > 0 so small that

(9) @ By(z) U By(z,), Yn; —n, < n<n
where z, = f"(2), 2z, = f™(2).

Regarding U = D* X D*, we write

(10) 2 =(a,0), 2. = (0, an).

Let ¢ > 0 be arbitrary. We define

F* = {(a,, w) e D* X D*; ||w| < &b},
F* = {(v,a;) e D* X D*; ||v|| < &b} .

If n, is sufficiently large, then f~"(F"*), f*(F“) are represented by C' map-
pings h,: D' — D* and h,: D* — D° respectively. Furthermore, we can
assume

A1) Al < b, [[hof] < &0

(12) | Th,|| < e/2, [ Thy|l < ¢/2.

Let V be a nonzero vector in T.W(p) N T, W*(p). We put

(13) Vi =T, f™(V), Vo= T,f™(V).
Clearly V, has the form (v, 0) with v, € R, and V, has the form (0, w,)
with w, e R*. We put

(14) x = (a,, (@), x, = (ho(ay), @)
Since x, = f~"(F*) N F*, x, = F* N f™(F"), it follows that
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(15) x, = f"*(xy).
We put
(16) wi = Tohu(vy).
By the definition of A, there is v, € R® such
17 (v, w) = Touf (v, 0).
Let us write (v¥, w¥) = T,,f (v,,0), i =0,1, ---, n,. Since |[w|/|v¥||=0
< 1/2, it follows inductively by (6) that |wf|/|vi|<1/2, i=0,1, - -, n,.
Hence it follows by (7) that
18) vl < 2 |lvill.
Likewise we put
(19) v, = To,ha(w,).
By the definition of h, there is w, € R* such that
(20) (vz, wy) = To.f"™(0, wy).
Applying (5) and (8) as above, we have
2D fwll < 2 [|well.
By (18), (21), for sufficiently large n, we have
22) (willlvdll < e/2,
23) lul/lw.| < e/2.
We define
249 Vi=@,w + w), Vi = (v, + v, w;).
Then we have
T..f(V{) = T,.f"(v,, w, + wy)
= T, f"(vy, w1) + T, [0, w,)
= (v, 0) + (v, w) (by (A7), (20))
= VJ.
That is,
25) T,.f(V)=Vi.
By (24), (13), (22), (23) and (12), we estimate
26) |Vi— ViIVill <e,
@n Vo= VNV <e.
By (26) we have a linear mapping L,: R™ — R™ (m = dim M) such that
(28) LI(VI) = 1,,
(29) ||IL, — I|| < &, where I is the identity of R™.
For example, take an orthogonal basis {V}, e, - - -, e,}, and define L, by

LV, + te, + - - +tmem)=t1V1/+tzez+ et e,
Vi,eR;1<i<m.
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Similarly, by (27) we have a linear mapping L,: R™ — R™ such that

(30) Lz(Vz/) =V,

B L, — Il <e.

By the way, we defined 2z, = f"(2), 2, = f""(z). By (10), (11) and (14)
we have

32) llz; — x| << &0,

(33) |z — x| < ed.

By (29), (31), (32) and (33) we can apply Lemmas B, and B, to con-
structing k € Diff’ (M) such that

B4) k(z) =x, T,k =L,

35) k(xy) = z, T,k = L,

(36) k(x) = x, Vx & By(z;)) U Bj(2).

(87) k is a (Ce) — C' perturbation of the identity of M (C is the one
in Lemmas B, and B,).

Now we shall conclude the proof. Define g = k-fe Diff' (M). First,
it follows easily from (9), (15), (34), (35) and (36) that z is a periodic point
of g of period n, + n, + n;,. We show that

T.g" (V) =V,
which implies that z is not hyperbolic.

T.gmt (V) = Tp,g™ " TkT.f"(V)  (by (9), (36))
= T..g™"™L(V)) (by (13), (34)
= T.,g™"™(VY) (by (28))
= T,.8"L(V7) (by (25), (35))

= T,f(V2) (by (9), (36); (30))
=V (by (13)) .
Clearly g is near f in Diff* (M) by virtue of (37). q.e.d.
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