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ON A BROWNIAN MOTION PROBLEM OF T. SALISBURY

FRANK B. KNIGHT

ABSTRACT.  Let B beaBrownian motion on R, B(0) = 0, and let f(t, ) be continu-
ous. T. Salisbury conjectured that if the total variation of f(t, B(t)), 0 < t < 1, isfinite
P-as., then f does not depend on x. Here we prove that thisis true if the expected total
variation isfinite.

For real-valued f(t),t € | = [0, 1], we denote the total variation of f(-) in [0,t] by
V(t;f) = sup ¥ [f(t) — f(ti—1)|, the supremum being over al finite partitions of [0, t].
If f iscontinuous, it is easy to check that V(t; f) is nondecreasing and continuous before
reaching oo, and {t: V(t,f) = oo} has the form either [to, 00) or (to, 00) for somety <
00. In the IMS Workshop on Brownian motion and analysis held in Chapel Hill, North
Carolina, in June 1994, the following problem wasraised by T. Salisbury: To show that,
if f(t,x) iscontinuouson | ® R, and B; is a (continuous) Brownian motion starting at
0 (with probability P = P°), and if f(t, B,) is of locally finite variation P-a.s., then f
does not depend on x. This problem gainsinterest in view of the paper [2], in which the
assertion is shown to be false if B(t) is replaced by a general continuous martingale M
such that (t, M;) is arealization of a Hunt process.

Here we will demonstrate the assertion under the extra

HYPOTHESIS E. EV(l;f(-, B(-,W))) < oo.

“Normally” onewould expect to remove such hypothesisby reducing the general case
to it, either by some localization argument using stopping times, or by some convenient
modification of f. But in the present case we have not been ableto remove it. So we now
state our

MAIN RESULT. If Hypothesis E holds, then f does not depend on x.

Turning to the details, since it sufficesto prove for all ¢ > 0 that f is free of x for
e <t <1, by the Markov property at time e and the additivity of V it sufficesto replace
| by [¢,1] and assume that E"V(1 — ;f(- +¢,B.)) < oo for u = N(0,¢) asinitial
distribution for B. Denoting f (- + £) again by f, and for conveniencereplacing 1 — ¢ by
1 (our proof will apply on any finite time interval), we see that it suffices to show that f
isfree of x under

HyPOTHESIS E’.  For some normal 1 = N(0, ¢?) (and hence, for all small 02 > 0),
E'V(L(-,B.)) < oo.
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We now defineg(a; t,x) = J§f(t,x +y)dy, —oo < a < oo, and we wish to show that
for somev = N(0,0%(a)),
1.1) E'V(Lg(a - B.)) < oo.

To this end, we need the key

LEmMMA 1. For measurablef(t,x) onl @ R, and g(a;t,x) = J§ f(t, x+Y) dy, we have
BVETCx+y))dy > V(tg@-,x).
PrROOF. For any partition0=1t, <t; <--- < tn1 =t, wehave

n+l n+l

Zlg(a t,%) — g(& t—1,%)| <Z/ If(t;x+y) — f(ti—1;x +y)| dy

/ tf( x+y) dy, asrequired.

Now, to complete the proof of (1.1), wereplacef(t,x) in Lemmal by f (t, X+ B(t, W))
for a fixed point w of the probability space. Settingt = 1 and x = 0, we obtain
jgv(l;f(~,B(-,w) + y)) dy > V(Lg(a-,B.)). Apply E' to both sides, for v =

N(0,0?()) yet to be determined. We need only arrange that

E"./Oav<1;f(-, B(-, ) +y)) dy < oo.

This becomes easily

_1 roo 22 a
(2m0*(a)) 2./_ooeXp_2(;2(a)E0./o V(l;f(.;y+z+B(~,w)))dydz

= (27r02(a))_% /_OO (/anxp (; 2(y)) d )Eov(l;f(-,x+ B.)) dx
We separate the last integral into the part over {|x| < 2a} and that over {|x| > 2a}. Over

the former, for any o?(a) > 0, exp— ﬁzﬁ(% is bounded by a constant times exp — 2;2,
where o2 is from Hypothesis E'. Over the latter we use

2

o0~y ~ ¥z (1) <0

2
802(a)’

Soif we set 6%(a) = ”742, itisclear that (1.1) isvalid.
For any b, we now introduce

b
o(a b;t,x) =/0 g(at,x+y)dy.

Under HypothesisE’ for f, we see as above that HypothesisE’ also holds for g(a, b; t, x).

L et us pause to complete the proof in the important special case in which f (t, x) does
not depend on t, and the conclusionisthat f isaconstant. Then we can likewise delete a
tin g, and write g(a; x) and g(a, b; X). It is easy to seethat g(a, b; X) has two continuous
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derivatives in x, and a%g(a, b;xX) = g(a,b +x) — g(a,x). Since g(a, b; B;) is of finite
variation, and Ito’s Formula is applicable, we have

(1.2) A 'g(a:Bs+b)— g(a;B)dBs = 0, P-as,

where 1 = N(0, ¢?) for some g® > 0. Then 0 = fé(g(a; Bs + b) — o(a; Bs))zds, and it
follows by continuity that g(a; Bs + b) = g(a; Bs) for all a,b,s < 1, P#-a.s. Thisimplies
that g(a; X) doesnot depend on x. Hence, neither does %g(a; X), whichisf(z+a), and the
proof is complete in this case.

REMARK. Itisnoteworthy that our methodsrequire HypothesisE evenin thisspecial
case. According to [2], however, this case has been solved without Hypothesis E by
E. Cinlar and J. Jacod (unpublished). A proof is given at the end.

For the general case, take ¢ > 0 and set g(a,b,c;t,X) = S .d(a,b;s x)ds =
§9(a b;t — s,x)ds, where we set f(t,x) = 0fort < 0, so that the same is true of
three g-functions. It is now to be shown, under Hypothesis E/, that for small ¢ > 0,

(1.3) P*(V(Lg(ab,c-,B.)) <oo) =1

(for normal 1). We again apply Lemma 1, this time with g(a, bt —x, Bt(w)) in place of
f(t,x), where w is afixed sample point. We conclude that

(1.4) /Ocv(l; g(ab;- —x—sB.))ds>V(Lg(ab,c- —xB.)).

Setx = 0, andtakeE" on bothsidesof (1.4), wherev = N(0, o?) for ac? to bedetermined.
Then it remains to see that for small ¢ > 0

C
(1.5) /0 V(Lg(@ab;- —sB.))ds < oo, P-as.
We note that V(t; o(a,b;- —s,B. )) = 0for s> t, andfor s <t we have
(1.6)  V(tg(ab;-—sB.)) =Ag(ab;0,Bs) +V(t— s g(ab; -, B.ob)),

where A denotesthejump att = 0and 65 isthe usual translation operator. Since B is con-
tinuousalongwithg(a, b; -, -), itisclear that thefirst term on theright of (1.6) makesonly
afinite contributionto (1.5). Asto thesecondterm, itisboundedby V(t; g(a, b; -, B. o6s)),
where

EY / V(1;9(a,b;-, B.obs)) ds

0
= [as/” dz] (2n(0? + 9)~* exp_%g(v(l; ga.b:-.B.) )|

It is routine to check that the normal integrand is increasing in sfor s < c and |2] >
(02 +¢), hence setting 62 = o2 + ¢, we have the bound

c(2r62)"t /|Z|< . EZ(V(l; 9(ab: -, B. ))) dz

V4

+ C-/|Z|>\/5(27T62)7% exp_% (5)2EZ(V(1; g b; -, B. ))) dz
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The first term is finite by Hypothesis E/, while the second is also finite if 62 is less than
the variance assumed in HypothesisE’ for g. Thisgivesac? > 0if cissmall, as needed
to prove (1.5). Hence (1.3) is proved.

We now make a (slightly novel) application of Ito’s Formula to g(a, b, c;t,x). The
sufficient continuous differentiability of g in t holds expect for the jump

A%g(a, b, ¢;t,X)|i=c = —9(a, b; 0,X).

However, if we apply Ito’s Formula separately in [0, c) and in [c, 00), using the left-
derivative at t = cinthe former case, we abtain (by addition for t > c) an expression of
the form

1.7 g(a,b,c;t,By) = /Ot a%g(a, b, c; s, Bs) dBs + (finite variation)

It follows, since g(a, b, c; t, By) is of finite variation for PY, that
t 9 (a,b,c;s,Bs)dBs =0, PY-as
/0 &g y My Ly 9 D, S — Y -y

or again

t/ 0 : 2 v
./0 <&g(a, b,c;s, Bs)) ds=0 fort>0,P-as.
By continuity we see that, P'-a.s., %g(a, b,c;t,B)) = Oforadla b,andal ¢c > 0,
t > 0. Then it follows that %Xg(a, b,c;t,B;) = 0, wherefort > c, %Xg(a, b,c;t,x) =
og(a;t —c,x+b) —g(a;t — c,x). Now lettingc — Owehaveg(a;t, B+ b) — g(a; t, By) =
0 fort > 0, and by varying b it follows readily that g(a;t,x) is free of x. Finaly,
lima_o+ a1g(a;t,x) = f(t,X) isalso free of x, and the proof is finished.

ADDENDUM. Proof of Main Result when f = f(x), without assuming E. Let L(X)
denote the continuousmartingalelocal timeof Batt = 1, andfor k2" < x < (k+1)2~"
let Nn(X) denote the number of successive upcrossings of [k2™",(k+ 1)27" by t = 1.
Then it is known ([1]) that P{limn_.,(2™*Na(X) — L(x)) = O uniformly in x} = 1.
Also, since L(x) > 0 holds for x inside the range of B, it is clear that for any a < b,
P{L(X) > e > 0,a < x < b} > 0for somee > 0. Thus P{2™Ny(x) > §,a < x < b,
for nlarge} > 0. Now wehavefora=i2""<b=j2™",

00 > V(L f 0B) > Y[f((k+ 12™) — f(k2 ™)|Nn(k2 ™)
k

> |f(b) — f(a)] min Nn(k2™").
i<k<j

Keeping a, b fixed, and letting n — oo, thelast term tendsto oo with positive probability
unlessf(a) = f(b), completing the proof.
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