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ON A BROWNIAN MOTION PROBLEM OF T. SALISBURY

FRANK B. KNIGHT

ABSTRACT. Let B be a Brownian motion on R, B(0) ≥ 0, and let f (t, x) be continu-
ous. T. Salisbury conjectured that if the total variation of f (t, B(t)), 0 � t � 1, is finite
P-a.s., then f does not depend on x. Here we prove that this is true if the expected total
variation is finite.

For real-valued f (t), t 2 I
.
≥ [0, 1], we denote the total variation of f (Ð) in [0, t] by

V(t; f ) ≥ sup
P

i jf (ti) � f (ti�1)j, the supremum being over all finite partitions of [0, t].
If f is continuous, it is easy to check that V(t; f ) is nondecreasing and continuous before
reaching 1, and ft: V(t, f ) ≥ 1g has the form either [t0,1) or (t0,1) for some t0 �
1. In the IMS Workshop on Brownian motion and analysis held in Chapel Hill, North
Carolina, in June 1994, the following problem was raised by T. Salisbury: To show that,
if f (t, x) is continuous on I 
 R, and Bt is a (continuous) Brownian motion starting at
0 (with probability P

.
≥ P0), and if f (t, Bt) is of locally finite variation P-a.s., then f

does not depend on x. This problem gains interest in view of the paper [2], in which the
assertion is shown to be false if B(t) is replaced by a general continuous martingale Mt

such that (t, Mt) is a realization of a Hunt process.
Here we will demonstrate the assertion under the extra

HYPOTHESIS E. EV
�

1; f
�
Ð, B(Ð, w)

��
Ú 1.

“Normally” one would expect to remove such hypothesis by reducing the general case
to it, either by some localization argument using stopping times, or by some convenient
modification of f . But in the present case we have not been able to remove it. So we now
state our

MAIN RESULT. If Hypothesis E holds, then f does not depend on x.
Turning to the details, since it suffices to prove for all ¢ Ù 0 that f is free of x for

¢ � t � 1, by the Markov property at time ¢ and the additivity of V it suffices to replace
I by [¢, 1] and assume that EñV

�
1 � ¢; f (Ð + ¢, B. )

�
Ú 1 for ñ ≥ N(0, ¢) as initial

distribution for B. Denoting f (Ð + ¢) again by f , and for convenience replacing 1� ¢ by
1 (our proof will apply on any finite time interval), we see that it suffices to show that f
is free of x under

HYPOTHESIS E0. For some normal ñ ≥ N(0,õ2) (and hence, for all small õ2 Ù 0),
EñV

�
1; f (Ð, B. )

�
Ú 1.
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We now define g(a; t, x) ≥
Ra
0 f (t, x + y) dy, �1 Ú a Ú 1, and we wish to show that

for some v ≥ N
�
0,õ2(a)

�
,

(1. 1) EvV
�
1; g(a; Ð, B. )

�
Ú 1.

To this end, we need the key

LEMMA 1. For measurable f (t, x) on I
R, and g(a; t, x) ≥
Ra
0 f (t, x + y) dy, we haveRa

0 V
�
t; f (Ð, x + y)

�
dy ½ V

�
t; g(a; Ð, x)

�
.

PROOF. For any partition 0 ≥ to Ú t1 Ú Ð Ð Ð Ú tn+1 ≥ t, we have

n+1X
j≥1

jg(a; tj , x) � g(a; tj�1, x)j �
n+1X
j≥1

Z a

0
jf (tj; x + y) � f (tj�1; x + y)j dy

�
Z a

0
V
�
t; f (Ð; x + y)

�
dy, as required.

Now, to complete the proof of (1.1), we replace f (t, x) in Lemma 1 by f
�
t, x + B(t, w)

�
for a fixed point w of the probability space. Setting t ≥ 1 and x ≥ 0, we obtainRa

0 V
�

1; f
�
Ð, B(Ð, w) + y

��
dy ½ V

�
1; g(a; Ð, B. )

�
. Apply Ev to both sides, for v ≥

N
�
o,õ2(a)

�
yet to be determined. We need only arrange that

Ev
Z a

0
V
�

1; f
�
Ð, B(Ð, w) + y

��
dy Ú 1.

This becomes easily

�
2ôõ2(a)

�� 1
2
Z 1
�1

exp�
z2

2õ2(a)
E0
Z a

0
V
�

1; f
�
Ð; y + z + B(Ð, w)

��
dy dz

≥
�
2ôõ2(a)

�� 1
2
Z 1
�1

 Z a

0
exp�

(x � y)2

2õ2(a)
dy
!

E0V
�
1; f (Ð, x + B. )

�
dx.

We separate the last integral into the part over fjxj � 2ag and that over fjxj Ù 2ag. Over

the former, for any õ2(a) Ù 0, exp� (x�y)2

2õ2(a) is bounded by a constant times exp� x2

2õ2 ,

where õ2 is from Hypothesis E0. Over the latter we use

exp�
(x � y)2

2õ2(a)
≥ exp

�
�x2

2õ2(a)

�y
x
� 1

�2½
� exp�

x2

8õ2(a)
.

So if we set õ2(a) ≥ õ2

4 , it is clear that (1.1) is valid.
For any b, we now introduce

g(a, b; t, x) ≥
Z b

0
g(a; t, x + y) dy.

Under Hypothesis E0 for f , we see as above that Hypothesis E0 also holds for g(a, b; t, x).
Let us pause to complete the proof in the important special case in which f (t, x) does

not depend on t, and the conclusion is that f is a constant. Then we can likewise delete a
t in g, and write g(a; x) and g(a, b; x). It is easy to see that g(a, b; x) has two continuous
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derivatives in x, and ∂
∂x g(a, b; x) ≥ g(a, b + x) � g(a, x). Since g(a, b; Bt) is of finite

variation, and Ito’s Formula is applicable, we have

(1. 2)
Z t

0
g(a; Bs + b)� g(a; Bs) dBs ≥ 0, Pñ-a.s.,

where ñ ≥ N(0,õ2) for some õ2 Ù 0. Then 0 ≥
R t

0

�
g(a; Bs + b) � g(a; Bs)

�2
ds, and it

follows by continuity that g(a; Bs + b) ≥ g(a; Bs) for all a, b, s � 1, Pñ-a.s. This implies
that g(a; x) does not depend on x. Hence, neither does d

da g(a; x), which is f (z +a), and the
proof is complete in this case.

REMARK. It is noteworthy that our methods require Hypothesis E even in this special
case. According to [2], however, this case has been solved without Hypothesis E by
E. Cinlar and J. Jacod (unpublished). A proof is given at the end.

For the general case, take c Ù 0 and set g(a, b, c; t, x) ≥
R t

t�c g(a, b; s, x) ds ≥R c
0 g(a, b; t � s, x) ds, where we set f (t, x) ≥ 0 for t Ú 0, so that the same is true of

three g-functions. It is now to be shown, under Hypothesis E0, that for small c Ù 0,

(1. 3) Pñ
�
V(1; g(a, b, c; Ð, B. )

�
Ú 1) ≥ 1

(for normal ñ). We again apply Lemma 1, this time with g
�
a, b; t � x, Bt(w)

�
in place of

f (t, x), where w is a fixed sample point. We conclude that

(1. 4)
Z c

0
V
�
1; g(a, b; Ð � x � s, B. )

�
ds ½ V

�
1; g(a, b, c; Ð � x, B. )

�
.

Set x ≥ 0, and take Ev on both sides of (1.4), where v ≥ N(0,õ2) for a õ2 to be determined.
Then it remains to see that for small c Ù 0

(1. 5)
Z c

0
V
�
1; g(a, b; Ð � s, B. )

�
ds Ú 1, Pv-a.s.

We note that V
�
t; g(a, b; Ð � s, B. )

�
≥ 0 for s Ù t, and for s � t we have

(1. 6) V
�
t; g(a, b; Ð � s, B. )

�
≥ ∆g(a, b; 0, Bs) + V

�
t � s; g(a, b; Ð, B. Žís)

�
,

where ∆ denotes the jump at t ≥ 0 and ís is the usual translation operator. Since Bs is con-
tinuous along with g(a, b; Ð, Ð), it is clear that the first term on the right of (1.6) makes only
a finite contribution to (1.5). As to the second term, it is bounded byV

�
t; g(a, b; Ð, B. Žís)

�
,

where

Ev
Z c

0
V
�
1; g(a, b; Ð, B. Žís)

�
ds

≥
Z c

0
ds
Z 1
�1

dz
��

2ô(õ2 + s)
�� 1

2 exp�
z2

2(õ2 + s)
Ez
�

V
�
1; g(a, b; Ð, B. )

��½
.

It is routine to check that the normal integrand is increasing in s for s Ú c and jzj Ù
(õ2 + c)

1
4 , hence setting é2 ≥ õ2 + c, we have the bound

c(2ôé2)�
1
2

Z
jzjÚ

p
é

Ez
�

V
�
1; g(a, b; Ð, B. )

��
dz

+ c
Z
jzjÙ

p
é
(2ôé2)�

1
2 exp�

1
2

� z
é

�2
Ez
�

V
�
1; g(a, b; Ð, B. )

��
dz
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The first term is finite by Hypothesis E0, while the second is also finite if é2 is less than
the variance assumed in Hypothesis E0 for g. This gives a õ2 Ù 0 if c is small, as needed
to prove (1.5). Hence (1.3) is proved.

We now make a (slightly novel) application of Ito’s Formula to g(a, b, c; t, x). The
sufficient continuous differentiability of g in t holds expect for the jump

∆
∂
∂t

g(a, b, c; t, x)jt≥c ≥ �g(a, b; 0, x).

However, if we apply Ito’s Formula separately in [0, c) and in [c,1), using the left-
derivative at t ≥ c in the former case, we obtain (by addition for t Ù c) an expression of
the form

(1. 7) g(a, b, c; t, Bt) ≥
Z t

0

∂
∂x

g(a, b, c; s, Bs) dBs + (finite variation)

It follows, since g(a, b, c; t, Bt) is of finite variation for Pv, that

Z t

0

∂
∂x

g(a, b, c; s, Bs) dBs ≥ 0, Pv-a.s.,

or again Z t

0

� ∂
∂x

g(a, b, c; s, Bs)
�2

ds ≥ 0 for t ½ 0, Pv-a.s.

By continuity we see that, Pv-a.s., ∂
∂x g(a, b, c; t, Bt) ≥ 0 for all a, b, and all c ½ 0,

t ½ 0. Then it follows that ∂2

∂c∂x g(a, b, c; t, Bt) ≥ 0, where for t Ù c, ∂2

∂c∂x g(a, b, c; t, x) ≥
g(a; t� c, x + b)� g(a; t� c, x). Now letting c ! 0 we have g(a; t, Bt + b)� g(a; t, Bt) ≥
0 for t Ù 0, and by varying b it follows readily that g(a; t, x) is free of x. Finally,
lima!0+ a�1g(a; t, x) ≥ f (t, x) is also free of x, and the proof is finished.

ADDENDUM. Proof of Main Result when f ≥ f (x), without assuming E. Let L(x)
denote the continuous martingale local time of B at t ≥ 1, and for k2�n � x Ú (k + 1)2�n

let Nn(x) denote the number of successive upcrossings of [k2�n, (k + 1)2�n] by t ≥ 1.
Then it is known ([1]) that Pflimn!1

�
2n+1Nn(x) � L(x)

�
≥ 0 uniformly in xg ≥ 1.

Also, since L(x) Ù 0 holds for x inside the range of B, it is clear that for any a Ú b,
PfL(x) Ù è Ù 0, a Ú x Ú bg Ù 0 for some è Ù 0. Thus Pf2n+1Nn(x) Ù è

2 , a Ú x Ú b,
for n largeg Ù 0. Now we have for a ≥ i2�n Ú b ≥ j2�n,

1 Ù V(1; f Ž B) ½
X

k

þþþf �(k + 1)2�n
�
� f (k2�n)

þþþNn(k2�n)

½ jf (b) � f (a)j min
i�kÚj

Nn(k2�n).

Keeping a, b fixed, and letting n !1, the last term tends to1with positive probability
unless f (a) ≥ f (b), completing the proof.
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