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Abstract

Suppose that Visa finite dimensional vector space over a finite field of characteristic 2, G is the symplectic
group on V and a is a non-zero vector of V. Here we classify irreducible subgroups of G containing a
certain subgroup of 02(StabG<a)) all of whose non-trivial elements are 2-transvections.
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1. Introduction

Let k denote the Galois field GF(<y), where q — 2m, and suppose V is a finite dimen-
sional vector space over k. An involution g of GL( V) is a transvection (respectively a
2-transvection) of V if Cv(g) has codimension 1 (respectively 2) in V. A subgroup K
of GL(V) is called a transvection subgroup if CV(K) has codimension 1, [ V, K] has
dimension 1, and K is isomorphic to the additive group of k. Assume, additionally,
that dim V = 2n where n > 2 and / is a non-degenerate alternating bilinear form on
V. Letting G denote Sp( V), the symplectic group on V defined by / , we may now
state our main result.

THEOREM 1.1. Let a be a non-zero vector of V and put H = StabG(a). Suppose
that X is a subgroup of Oi(H) which satisfies

(i) \X\ = q2n-2;and
(ii) no element ofX acts as a transvection on V.
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If L is a subgroup of G which contains X and acts irreducibly on V, then L acts
naturally on V as one of Sp(V), Q±(V), O±(V) or q = n = 2 and L = Alt(6) =
Sp4(2)' or r L(2, 4) = Sym(5).

We remark that the listed groups all satisfy the hypothesis of Theorem 1.1. The
exceptional cases when q = n = 2 are caused by the non-simplicity of Sp4(2) =
Sym(6) in the Alt(6) case and by the fact that Sym(6) has two classes of subgroups
isomorphic to Sym(5) in the second case. To clarify the second case further take V
to be the doubly deleted GF(2)-permutation module for Sym(6), the point stabilizer
Sym(5) acts on V as O4 (2), while the transitive Sym(5) when restricted to Alt(5) acts
on V as SL2(4).

Observe that, as the non-trivial elements of the elementary abelian 2-group O2(H)
are either transvections or 2-transvections, every non-trivial element of X must act
as a 2-transvection on V. So Theorem 1.1 may be seen as a kindred spirit to the
results of McLaughlin [3, 4], on irreducible linear groups which contain transvection
subgroups and also to work of Dempwolff's [1,2]. In [1, 2] Dempwolff shows that an
irreducible subgroup Y of SL( V) which is generated by 2-transvections either contains
transvections, has a normal abelian subgroup of odd order which has 1-dimensional
homogeneous components on V which Y permutes transitively, contains a normal
complex of Stellmacher elements, or a normal complex of roots involutions.

Theorem 1.1 generalizes a result due to Timmesfeld for the case q — 2, which plays
an important part in the proof of his Theorem 4.5 [9]. This more general theorem
plays an equally vital role in the classification of symplectic amalgams [5]. The proof
given here is modelled on Timmesfeld's approach. We remark that Theorem 1.1 is
also the principal content of [7, Satz 3.10]. However, the proof there calls upon the
(lengthy) classification of groups generated by root involutions and then deals with the
resulting configurations case by case. Our proof is direct and elementary—the only
substantial results we use being the classification of groups generated by transvections
due to McLaughlin [3,4].

Our notation follows that of [8]. The following elementary result will be used in
the proof of Theorem 1.1.

LEMMA 1.2. Let V be a vector space of dimension 2n, n > 1 which is equipped
with a non-degenerate alternating bilinear form f. Put G — Sp( V). If a and b are
non-zero vectors of V with f (a, b) ^ 0, then

G = (02(Stabc(a», O2(StabG(b))).

PROOF. See [6]. •
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2. Orbits on points and vectors and a quadratic form

From now on we assume the situation depicted in Theorem 1.1. If L con-
tains a transvection subgroup, then we may avail ourselves of McLaughlin's re-
sults ([3, 4]) to conclude, since L < Sp( V), that L must be isomorphic to one of
Sp(V), O±(V), Sym(2n + 1), or Sym(2rc + 2). Of these groups only Sp(V) and
O±( V) can contain an elementary abelian 2-group as large as X and so Theorem 1.1
holds in this case. Henceforth, therefore, we shall suppose that L contains no transvec-
tion subgroups.

LEMMA 2.1. (i) [ax,X] = (a>;
(ii) [V,X] = a±;

(Hi) CV(X) = (a); and
(iv) Let Z be a subgroup of index q in X and let U = (a, c) be a 2-dimensional

subspace of aL. IfZ centralizes U, then CV(Z) = U.

PROOF. Since O2(H) > X, (a) = [ax, O2(H)] > [ax, X] and part (i) follows as
X contains no transvections. Now suppose that [V, X] < aL. Then |[V, X]\ < q2n~2.
So, letting v e V \ a1, y = {[v,x] \ x € X] contains at most q2n~2 vectors. If
| r | = q2n~2, then f = [V, X] and hence, by part (i), [v,x] = a, for some x e X.
But then [ V, JC] < ([a1, x], [v, x]) < (a), which implies that x is a transvection on V,
a contradiction. Thus | ^ | < q2"'2. Since \X\ = q2n~2, there must exist distinct
x\,x2 € X with [u,;ci] = [u,x2], whence [ u , * ^ ] = 0- This then implies that xxx2

is a transvection on V. Hence we infer that [V, X] = aL, and we have (ii). Using
part (ii) gives CV(X) = [V, X]x = (a1)1 = {a), so proving (iii).

For part (iv), since Z centralizes a and c, we have [V, Z] < a1 D cL = Ux

with | ( / x | = q2"~2. Now, as \Z\ = q2n~3, we may argue as in part (ii) to obtain
[V, Z]= U1. Hence CV(Z) = [V, Z]x = U. •

By hypothesis L acts irreducibly upon V and so {aL) — V. Thus we can find an
image {b} of (a) (under L) with be V \ aL. Select the vector representative b of {b)
so as f(a,b) = 1. Then, for k € k we put 6^ = [(b* + ka) \ x € X), and note that
each ffx is an X-orbit which consists of points (1-spaces of V) in V \ ax.

LEMMA 2.2. X has q regular orbits on the points in V \ ax. These X-orbits are

PROOF. Suppose {v) is a point of V \ aL which is fixed by x e X*. Then, by
Lemma 2.1 (ii), [(v),x] < [V,X]r\(v] = ax n (v) = 0. Hence

[V,x] = [aL + (v),x] = [a±,x] < (a),
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a contradiction as X contains no transvections. Therefore the X-orbits of points of V
not contained in a1 are regular. So, by counting, we see that X has exactly q orbits
on the points in V \ a1. To complete the proof of the lemma we must show that for
X, ix € it, &k = 6^ implies that X = /x. Let X, n € k be such that 6^ = £?M. Then
ft + Xa = ft* + (ia for some x e X. So [ft, x] = ft + b* = (// + X)a € (a) and
consequently [ V, x] < {a). Since no element of X* is a transvection on V, we must
have x = 1 and then Xa = \ia. Hence X = /x. •

For each x 6 X* we define a 2-dimensional subspace 7̂  of a-1 by

Tx = [V,x] = (fl, 0,*]) = (a) + ([b,x]).

LEMMA 2.3. For * 6 Z# w /lave 7; n ftx = ([Z>, ;c] + / (ft, Zr^a).

PROOF. Since dimb1 = 2n-l and (a) £ b1, dim(Tx n 61) = 1. Now

, [ft, x] + f (ft, b*)a)=f(b,b + bx)+f (ft, ft*)/ (ft, a)

and so [ft, x] + / (ft, b*)a e Tx n ftx. Thus, as [ft, x] + / (ft, ft*)a 5̂  0, Lemma 2.3
holds. D

LEMMA 2.4. Suppose T is a 2-dimensional subspace of a1 which contains (a).

Then

(i) there exists x e X* such that Tx = T\ and

(ii) XT ••= {x € X* I £ = T) U {1} w a subgroup ofX of order q.

PROOF. Let T be a 2-dimensional subspace of a1 containing (a), and suppose that
{x e X* I Tx = T} has at least q distinct elements. Then, since dim(T n ft1) = 1,
Lemma 2.3 implies there exists xux2 e X* with Xi ^ x2 such that

So ft + b" + ft -I- ft12 = (/" (ft, ft") + / (ft, ft*2)K whence

ft + ft*"!1 = (/(ft, ft") +/(ft , ft12))^" = (/(ft, ft11) +/(ft , ft"))a e (a).

This forces xixf' to be a transvection of V and so we conclude that

\[x eX*\Tx = T}\<q-l.

So there must be at least (\X\ - \)/{q - 1) = (q2n~2 - l)/(q - 1) 2-dimensional
subspaces of V of the form Tx, for some x e X*. However, this is also the number
of 2-dimensional subspaces of aL which contain (a) and so (i) holds. Moreover,
\{x eX* \Tx = T}\ = q - l . Since, for xux2 € XT, [ft,x,x2] = [ft ,x,p + [b,x2] 6
7 we infer that X r is a subgroup of X of order q. •

https://doi.org/10.1017/S144678870000848X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000848X


[5] Irreducible subgroups of symplectic groups 89

LEMMA 2.5. If T is a 2-dimensional subspace of a1 containing (a), then

(i) \X/Cx(T)\=q;and
(ii) X has two orbits on the points of T, with one of length q and one consisting

of {a).

PROOF. By definition T = Tx for all x e X*T. Thus Cv(x) = [V, x]1 = T/ = T±.
Hence CV(XT) = TL. Select a 2-dimensional subspace U of ax containing (a) so as
U + TL = a1. Since Tx ^ a i , ( / i n r = (a). Because Cv(Xu) = U1 we then
deduce that CT{XV) = (a) and therefore Xu has orbits of size 1 and q on the points
of T. Since X/CX(T) embeds into GL2(<?), this gives the lemma. •

LEMMA 2.6. Suppose that (c) < a1- is in the same L-orbit as (a) and (c) ^ (a).
Then

(i) the non-zero vectors of (a, c) are all in the same L-orbit; and
(ii) NL((a))/CL({a)) has order q - 1.

PROOF. Put T = (a, c). By assumption (c) = (a)8 for some g e L. Applying
Lemma 2.5 (i) to the pair T, (c) gives \Xg/CX!(T)\ = q. Since X and Xs act
differently on T, we deduce that (X, XS)/C{X,X!)(T) = SL2(<7), and this gives the
result. •

An immediate consequence of Lemma 2.6 is

LEMMA 2.7. If L is transitive on the points of V, then L is transitive on V*.

LEMMA 2.8. Suppose that L is not transitive on the points of V. Then there exists a
2-dimensional subspace Tofa1 containing (a) such that {a)LC\T = {{a)}. Moreover,
forU = {b,TC\bL),Nx{U) = 1.

PROOF. Suppose no such 2-dimensional subspace of aL exists. Then all points in
a1 are in {a)L by Lemma 2.6. Let (d) be a point of V not in a1. Since dim V > 4,
there exists 0 ^ c € ax (1 dL whence (c) € (a)L. And then (d) e (a)L. So L is
transitive on the points of V, a contradiction.

We now let T be such a 2-dimensional subspace and prove that, for U = (b, THb1),
NX(U) = 1. Let 1 ^ x € X. We claim that [b, x] £ T n b^. For if [b, x] € T n bx,
then (b) < ([b, x], b) = (b", b) < bL. Since (b*, b) is a 2-dimensional subspace by
Lemma 2.1 (ii), we may apply Lemma 2.6 (with b in place of a) to conclude that
([b,x]) 6 {b)L. Hence, as (a) and (b) are in the same L-orbit, {[b, x]) € (a)L f~l T =
{{a)}, a contradiction which establishes the claim. Since b & T, U is a 2-dimensional
subspace and UCia1 = T nb1. If there exists 1 ^ x e NX(U), then, since {&)* is a
regular X-orbit, (b,b*) = U and consequently [ft, x] € £/ fl a 1 = T D bL, contrary
to [b,x] i T D fcx. Therefore, NX(U) = I. •
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LEMMA 2.9. Either L is transitive on the points of V or L has two orbits on the
points of V. In the latter case we have

(a)L \ a1 = {b)x = Ga and {a + b)L \ ax = \J 0k.
Xek'

PROOF. Suppose that L is not transitive on the points of V. Then, by Lemma 2.8,
there exists a 2-dimensional subspace T with (a) < T < a1 and (a)L fl T — [(a)}.
Setting U = (b, T D b1) we also have Nx (U) = 1 by Lemma 2.8. Since the elements
of X* all have order 2, it follows that no two points of U \ ax are in the same X-orbit.
Hence the q points of U \ ax may be chosen as representative of the X-orbits on
V \ a1. Let g € L be such that {a)g = (b), and set Y = Xs. Then, by Lemma 2.5 (ii),
Y has orbits of length 1 and q on the points of U and so, as (b)r = {(b)}, UA.«=*» ^A. is
contained in an L-orbit.

For (c) < a1, if (c) & (a)L, then we may use the above argument with (a, c) in
place of T to show that (c) is in the same L-orbit as Uxet* ^ - Thus ^ has two orbits
on the points of V with {a)L \ aL = ffQ and {a + b)L \ a1 = Uxet* ^ ' an^ l^e l e m m a

is proven. •

So far we have been dealing with points of V. The next lemma tells us about the
orbits of L on the vectors of V. As will shortly be seen this plays an important role in
the remainder of the proof of Theorem 1.1.

LEMMA 2.10. Suppose that L is not transitive on the points of V. Then

(i) the vectors of {a + b) are in distinct L-orbits; and
(ii) the vectors of {a)* are in a single L-orbit.

PROOF. Clearly, if q = 2 there is nothing to prove, so we may assume q > 2. Again
we choose a 2-dimensional subspace T with (a) <T < aL and {a)L D T = {{a}}. Let
x €X*be such that T = Tx. Then, by Lemma 2.3, c = [b, x] +f(b, b*)a eTDb1.
Put U = {b, c). Then T and U are both subspaces of cx which contain (c). Let
g 6 L be such that (a)g = {b), and set Y = X*. Put K = (Cx(c), Cy(c)) and
W = c-7(c>. By Lemma 2.5 (i), \Cx(c)\ = \Cr(c)\ = q2"'3 and clearly K acts
upon W. From Lemma 2.8 NX(U) = 1 and so, as (c) < U < c1, CCx(c)(W) = 1.
Likewise CCr(C)(W) = 1. Put ~K = K/CK(W). By orders Cx(c) and CY(c) are,
respectively, the largest normal 2-subgroups of the stabilizer, in K, of a + (c) and
b + (c). Sincef(a + (c),b+{c)) = 1, using Lemma 1.2 we deduce that ~K = Sp( WO-
Because L is assumed to contain no transvection subgroups, the structure of CG(c)
and q > 2 imply that O2(CL(c)) = 1. So CK(W) = 1 and hence K = Sp(W).
Since Sp( WO acts transitively upon the non-zero vectors of W and {a)L fl T = {(a)},
it follows that the vectors of (a)# are in the same L-orbit, so (ii) holds. If (i) were
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false, then there would exist an element in L acting non-trivially upon (c). Hence, as
K = Sp( W) and O2(CL(c)) = 1, StabL«c)) = ZxK with Z £ 1 and Z centralizing
W. Noting that |Z| divides (g — 1) and Z must act non-trivially on V/cL, we see that
V = [ V, Z] x CV(Z) with dim[ V, Z] = 2 and AT inducing the full symplectic group
on CV(Z). Since K is a simple group (recall q > 2) and AT centralizes c € [ V, Z], it
follows that K centralizes [V, Z]. But then AT, and hence L, contains a transvection
subgroup. Thus we conclude that (i) also holds. •

LEMMA 2.11. Suppose that L has two orbits on the points of V. Then for k, fi €
i , (i ^ 0, the vectors ka + fib and kfia + b are in the same L-orbit.

PROOF. Since all the non-zero vectors of (a) are in the same L-orbit by Lem-
ma 2.10 (ii), as = fia for some g e L. So g stabilizes {a) and hence leaves a1

invariant. Consequently g leaves invariant (a) L\a1 = (b)x, using Lemma 2.9. So fora
suitable* e X,gx stabilizes (b). Setgi — gx, and notice that aSl — agx = /xax = fia.
Now 1 = f(a, b) = f(as',bg]) = f(fia, b8>) = f (a, fj,bs'). Since fibg] € (b), we
must have fxb*' — b by the original choice of b. So bg' = ii~lb and then

(ka + ixb)Sl = kas' + fib8' = kfia + fifi~lb = kfia + b,

which gives the result. •

For the moment we suppose that L has two orbits on the points of V. For v e V
define Q : V -»• k by

JO if.^UfO}
[k2 if v € (ka + kb)L.

In view of Lemma 2.10, Q is well defined. Observe that for v = fia + b, fi ^ 0, v is in
(y/JIa + JJlb) by Lemma 2.11 and therefore Q(v) = fi. Also for all fi G k, v € V,
we have Q(fiu) — fi1 Q(v). It is immediate from its definition that Q is L-invariant.

LEMMA 2.12. Assume that v 6 aL. Then for w e V and a, (3 e k

Q(av + 0w) = a2 Q(v) + f32 Q(w) + apf (w, w).

PROOF. Clearly, if 0 = 0 then we are done—so we assume [3 ^ 0. Without loss of
generality we may suppose that v = a. Suppose first that w € a1. In this case we need
to show that Q(aa + (3w) = f32Q(w) = Q(f3w). This means we need to show that
aa + f3w is in the same L-orbit as f3w. Ifwe {a}, then Q(aa + f3w) = 0 = Q(f3w).
Therefore, we may also assume w g (a) and so (w, a) is a 2-dimensional subspace
ofax . By Lemma 2.5 ( i)X/Cx((io, a)) has order g and hence there exists* e X such
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that [fiw, x] = aa. Thus fiw + fiw* = aa, which is to say that fiw = (aa + fiw)x

and we are done.
Next we suppose that w gax. Then we have two cases, the first being when w €aL.

Here we have w = xb* for some x e k (r ^ 0), x € X by Lemma 2.9. Hence,
as X fixes a, aa + fiw = aa + fixb* = (aa + fixb)*. Therefore, by Lemma 2.11,
aa + fiw is in the same L-orbit as afixa + b, whence Q(aa + fiw) = afix. Now
/ (a, w)=f (a, xb") = f (a, xb) = xf (a, b) = x. Therefore,

a2Q(a) + fi2 Q(w) + afif (a, w) = c*20 + yS2O + afix = afix = Q(aa + fiw),

as required. Turning to the second case, w & aL, again using Lemma 2.9 we have
w = xb* + xka, for some k, x € k(x ^ 0 ^ k),x € X. So, by Lemma 2.11, aa+fiw
and fix (a+fix k)a+bare in the same L-orbit and hence Q(aa+fiw) = fix(a+fixk).
Because w and xb + xka are in the same L-orbit, we obtain Q(w) = x2k. Since
Q(a) = 0 and f (a, w) = x,

a2Q(a) + P2Q(w) + afif (a, w) = p2x2k + a/3x = Q(aa + fiw).

This verifies the equation in the final case and so the lemma holds. •

LEMMA 2.13. Q is a quadratic form on V.

PROOF. Let v, w € V and a, f) € k. So we must show that Q(av + fiw) =
(*2Q(v) + fi2Q(w) + afif (v, w). In view of Lemma 2.12 we only need examine
the case when v and w are not in the same L-orbit as a. Also, we may assume that
w & a1. Then, by Lemma 2.2, w e Gx for some k € k*. Hence w = b* + ka for
some x e X. Therefore, w + ka = b* e aL and so, using Lemma 2.12,

Q(av + 0w) = Q(av + fika + fiw + fika)

= Q(av + fika) + Q(fiw + fika) + f (av + fika, fiw + fika)

= a2 Q(v) + fi2k2 Q(a) + afikf (v, a) + fi2 Q(w)

+ fi2k2 Q(a) + fi2kf (w, a) + afif (v, w)

+ afikf (v, a) + fi2kf (a, w) + fi2k2f (a, a)

= a2 Q(v) + fi2 Q(w) + afif (v, w).

This proves the lemma. •

LEMMA 2.14. IfL has two orbits on the points of V, then L acts naturally on V as
oneofQ±(V)andO±(V).

PROOF. From Lemma 2.13 L preserves the quadratic form Q and so L is a subgroup
ofO(V, Q)(=O±(V)). Now* = (92(StabO(v,e)(a))andtheorbitsofLandO(V, Q)
upon the points of V are the same. HenceL > (X0(V-Q)) > fi±(V). ThusLemma2.14
holds. •
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3. Proof of Theorem 1.1

In the light of Lemma 2.14 from now on we may assume that L is transitive on the
points of V, whence, by Lemma 2.6, L is transitive on V*. We recall there is a one-to-
one correspondence between vectors c of V and symplectic transvections rc of Sp( V)
where rc is defined by zc(v) = v + f(v, c)c (v e V). Hence L acts transitively (by
conjugation) upon the symplectic transvections. Therefore if L contains a transvection
it must contain them all and, in particular, will then contain a transvection subgroup.
So we conclude that L contains no transvections. For c a non-zero vector of V we
define Xc to be Xs where g € L is such that ag — c. If agl = c for g, € L, then
XgXs< < 02(StabG(c» and if Xs £ Xs', then XSXS> intersects the transvection
subgroup of 02(StabG(c)) non-trivially. So XC is well defined; note that Xa = X. We
now complete the proof of Theorem 1.1, arguing by induction on n and starting with
n = 2. When q — 2 we have G = Sym(6) and it is fairly straightforward to calculate
in Sym(6) to deduce that L = Alt(6) or T L(2,4). Thus we may assume q > 2. We
note that \Xa\ = \X\ = q2. Let T be a 2-dimensional space of aL containing (a),
and let t e T\ {a). From Lemmas 2.4 (ii) and 2.5 (i) we have that XT = CXa(T)
has order q. Put Ya, = (Xa, X,). Then Yat < StabG T ~ ql+2(SU(q) x (tf - 1)).
Recall that O2(StabG(r)) is a indecomposable GF(^)StabG(7)-module. Hence,
since Yal < O2 (Stabc(7")) and L contains no transvections, Yat = q x SI-^C^) with
Yat H O2(StabG(r)) = XT having order q. Evidently Xa € Syl2 Yat. Furthermore
NYa,(Xa) has order q2(q - 1), stabilizes (a) and induces {(o ?) I * e GF(g)} on Xa.
For 2-dimensional subspaces T\, T2 of aL containing {a) with Tx ^ T2 we must have
XTl # XT2 for otherwise XTl = XTl centralizes 7, + T2 = a x . Thus

N = (NYJXa) \T=(t,a)a subspace of a x ) (< StabG(a))

induces a 2-transitive action upon the points of Xa, and consequently N/CN(Xa)
= SL2(^) x (q — 1). So, as L has no transvections, N ~ ^2(SL2(^) x (q — 1)). But
this contradicts the structure of StabG(a) and therefore we have verified the theorem
for n = 2.

From now on we assume that n > 3. Again we consider a 2-dimensional subspace
T of a 1 which contains (a), and let t € T \ (a). Put XTj = (x e X,\[V, t] = T), and
let KTj be a complement to Xr,, in CX,(T). By Lemmas 2.4 and 2.5 (i) |XV,,| = qln~4.
We next show that

3.1. (i) \KT,,O2(H)/O2(H)\ = q2"-*;
(ii) KTJO2(H) centralizes TL/ T; and

(iii) no element of KTi, induces a transvection on a1/(a).

Suppose that 1 ^ x e KTj n O2(H). Then [ a 1 , * ] < (a) and [ r \ ; c ] < (t). Since
x is not a transvection on V this gives [V,x] = T which implies x e KT,,r\XT,t — l , a
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contradiction. Therefore part (i) holds. Part (ii) follows from [ r x , KTl] < [/x,Xr] <
(t) < T. Finally suppose that 1 / x e KTi, operates as a transvection on a1 /(a), and
let W be the preimage of Ca±/<a)(x). Then [W,x] < (a). Assume that [W,x] = {a)
holds. Since x is a 2-transvection on V and x € X,, this gives [V, x] = T and so
x e KTil D XTit = 1, a contradiction. Therefore [ W, x] = 0 and s o W = CV(JC) < fx.
Hence CV(JC) = W = t1 D a x = TL. But then [ V, x] - TL± = T which again gives
the impossible x e KT,t n XTj = 1. Thus (iii) holds. Put a = a1 /(a) and

Lo = (Cx,(r) | f e 7* \ (a) and 7 a 2-dimensional subspace of a1 containing (a)).

3.2. Lo acts irreducibly upon a.

Suppose that W is an L0-invariant subspace with {a} < W < aL. Let c e a 1 be a
vector not in W, and put £/ = {a, c). Then, by Lemma 2.1 (i),

[cx n w, cXc(ir>] < w n ( c ) = o.

Therefore (a) < cx n W ^ Cv(CXe(L0). Hence as c ^ W, cx n W = (a) by
Lemma 2.1 (iv) and so dim W — 1. Thus every proper non-zero L0-invariant subspace
of a has dimension one. Since W is L0-invariant, this forces W = W , whence
dim V — 4. However we have dim V > 4, and so (3.2) holds.

Together (3.1) and (3.2) imply that Lo acting on the 2(n — 1 )-dimensional symplectic
space a satisfies the hypotheses of the theorem. Therefore, by induction, Lo/CLo(a)
is isomorphic to one of O±(a), Q±(a), Sp(a), Alt(6), or TL(2, 4) with q = n -
1 = 2 in the latter two cases. The orthogonal cases are impossible as for every
1-dimensional subspace T of a there is a corresponding subgroup of order q2n~4

centralizing TL/T which is not the case in the orthogonal groups when we select a non-
isotropic 1-dimensional subspace (stabilizer Sp2n_4(g)). Thus Lo/ CLo(a) = Sp(a) or
Lo/ CLo(a) = Alt(6) and q = n — 1 = 2. Now L containing no transvections forces
Lo to have index q (or 4 in the Lo/CLo(a) = Alt(6) case) in H both of which are
impossible. Therefore, we have that L0/CLo(a) = TL(2,4) and Lo ~ 2 4 rL(2 ,4)
with 02(Lo) a 'natural' GF(2)FL(2,4) module. However, this means that Lo is a
subgroup of index 12 in H ~ 21+4 Sp(4, 2), and, since it has order coprime to 11, has
an orbit of length at most 10 on its twelve right cosets in H. By considering an orbit on
which the O2(L0) acts non-trivially we find that Lo must have a subgroup of index 10,
which intersects O2(L0) in a subgroup of order 8 and projects to Sym(4) in Lo/ O2(LQ).
This contradicts the module structure of O2(L0) and thus Lo/CLo(a) £ FL(2, 4). This
completes the proof of Theorem 1.1. •
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