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Exponents of Diophantine Approximation
in Dimension Two

Michel Laurent

Abstract. Let Θ = (α, β) be a point in R2, with 1, α, β linearly independent over Q. We attach to

Θ a quadruple Ω(Θ) of exponents that measure the quality of approximation to Θ both by rational

points and by rational lines. The two “uniform” components of Ω(Θ) are related by an equation due to

Jarnı́k, and the four exponents satisfy two inequalities that refine Khintchine’s transference principle.

Conversely, we show that for any quadruple Ω fulfilling these necessary conditions, there exists a point

Θ ∈ R2 for which Ω(Θ) = Ω.

1 Introduction and Results

Let α and β be real numbers. We first introduce four exponents which quantify

various notions of rational approximation to the point (α, β) in the plane R2.

Define ω(α, β) as the supremum (possibly infinite) of all real numbers ω such that
there exist infinitely many integers H for which the inequalities

|xα + yβ + z| ≤ H−ω and max{|x|, |y|, |z|} ≤ H

admit a non-zero integer solution (x, y, z). Following the general notations of [4],

we define moreover ω̂(α, β) as the supremum of all real numbers ω such that for any

sufficiently large integer H, the above system of inequations has a non-zero integer
solution. Considering as well the simultaneous rational approximation to α and β,

we define similarly two further exponents ω
(

α
β

)

and ω̂
(

α
β

)

by repeating word for word

the previous sentences and replacing the above inequalities by

max{|zα − x|, |zβ − y|} ≤ H−ω and max{|x|, |y|, |z|} ≤ H.

The exponents ω(α, β) and ω
(

α
β

)

are those which occur most frequently in Dio-

phantine approximation. Substituting max{|x|, |y|, |z|} for H in the preceding in-

equations, we observe that these two exponents measure the sharpness of the ap-
proximation to the point (α, β) by rational lines and by rational points respectively,

in terms of their height. The corresponding uniform exponents ω̂(α, β) ≥ 2 and

ω̂
(

α
β

)

≥ 1/2 were first introduced by Jarnı́k. They quantify the possible improve-
ments to Dirichlet box principle when applied to the two systems of linear inequali-

ties.
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166 M. Laurent

Set Θ = (α, β) and denote by t
Θ =

(

α
β

)

the transposed vector. For brevity, we
shall often write

ω(Θ) = ω(α, β), ω(t
Θ) = ω

(

α

β

)

, ω̂(Θ) = ω̂(α, β), ω̂(t
Θ) = ω̂

(

α

β

)

.

The goal of our article is to describe the spectrum of these four exponents, that is, the

set of values taken by the quadruples

Ω(Θ) = (ω(Θ), ω(t
Θ), ω̂(Θ), ω̂(t

Θ)),

when Θ = (α, β) ranges over R2, with 1, α, β linearly independent over Q. We have

conventionally excluded from the spectrum the points with 1, α, β linearly depen-
dent over Q, for which the four exponents behave as for real numbers. In this latter

case, observe that the exponent ω̂
(

α
0

)

of uniform rational approximation to α is equal

to 1, whenever α is irrational (Satz 1 of Khintchine’s seminal paper [14]). Thus, if
the numbers 1, α, β are linearly dependent over Q and at least one of the numbers α
or β is irrational, the quadruple Ω(Θ) has the form

Ω(Θ) = (+∞, v, +∞, 1)

with v ≥ 1, and any value v in the interval [1, +∞] may be reached for some point

Θ. When both α and β are rational, we obviously have

Ω(Θ) = (+∞, +∞, +∞, +∞).

From now on, we shall assume that the numbers 1, α, β are linearly independent over
Q.

Jarnı́k has studied the relations between the exponents ω and ω̂ in a series of pa-

pers [11–13] dealing with any system of real linear forms. We refer to [4, 5] for a
detailled survey of his results on this topic. In dimension two [11], he proved the

formula

ω̂

(

α

β

)

=
ω̂(α, β) − 1

ω̂(α, β)
.

The exponents ω(α, β) and ω
(

α
β

)

are related by Khintchine’s transference inequalities

ω(α, β)

ω(α, β) + 2
≤ ω

(

α

β

)

≤ ω(α, β) − 1

2
.

See for instance [14, Satz VI]. Our theorem refines this latter estimate.

Theorem For any row vector Θ = (α, β) with 1, α, β linearly independent over Q,

the four exponents

v = ω(Θ), v ′
= ω(t

Θ), w = ω̂(Θ), w ′
= ω̂(t

Θ),
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satisfy the relations

2 ≤ w ≤ +∞, w ′
=

w − 1

w
,

v(w − 1)

v + w
≤ v ′ ≤ v − w + 1

w
.

When w < v = +∞, we have to understand these relations as w − 1 ≤ v ′ ≤ +∞,

and when w = +∞, the set of constraints should be interpreted as v = v ′
= +∞ and

w ′ = 1. Conversely, for each quadruple (v, v ′, w, w ′) in (R>0 ∪ {+∞})4 satisfying the

previous conditions there exists a row vector Θ = (α, β) of real numbers with 1, α, β
linearly independent over Q such that Ω(Θ) = (v, v ′, w, w ′).

Notice that the estimate

v(w − 1)

v + w
≤ v ′ ≤ v − w + 1

w

refines Khintchine’s inequalities since w ≥ 2.

Few explicit computations of quadruples Ω(Θ) have actually been achieved. It
follows from Roy’s works [16, 17] that

ω̂(α, α2) =
3 +

√
5

2
, ω̂

(

α

α2

)

=

√
5 − 1

2
,

when α is a so-called Fibonacci continued fraction. Next, Bugeaud and Laurent [3]
explicitly determined the quadruple Ω((α, α2)) for any sturmian continued fraction

α. Further (very partial) information on quadruples of the form Ω((α, α2)), where
α is a real transcendental number, may also be derived from [5, 7, 18].

Jarnı́k [12, 13] has improved the obvious lower bounds ω(Θ) ≥ ω̂(Θ) and

ω(tΘ) ≥ ω̂(tΘ). We deduce his results from our theorem and we show that they
are optimal.

Corollary 1 For any row vector Θ = (α, β) with 1, α, β linearly independent over Q,

the lower bounds

ω̂(Θ) ≥ 2 and ω(Θ) ≥ ω̂(Θ)(ω̂(Θ) − 1)

hold. Conversely, for any v ∈ R>0 ∪ {+∞} and any w ∈ R>0 ∪ {+∞} satisfying
2 ≤ w ≤ +∞ and w(w− 1) ≤ v ≤ +∞, there exists a row vector Θ = (α, β) with

1, α, β linearly independent over Q, such that

ω(Θ) = v and ω̂(Θ) = w.

Corollary 2 For any column vector Θ =
(

α
β

)

with 1, α, β linearly independent over Q

we have
1

2
≤ ω̂(Θ) ≤ 1 and ω(Θ) ≥ ω̂(Θ)2

1 − ω̂(Θ)
.

Conversely, for any w ′ ∈ R>0 and any v ′ ∈ R>0 ∪ {+∞} satisfying

1

2
≤ w ′ ≤ 1 and

w ′2

1 − w ′
≤ v ′ ≤ +∞

there exists a column vector Θ =
(

α
β

)

with 1, α, β linearly independent over Q such that

ω(Θ) = v ′ and ω̂(Θ) = w ′.
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The existence of a column (resp. row) vector Θ for which ω̂(Θ) takes an arbitrary
value in the interval [1/2, 1] (resp. [2, +∞]) follows from [13]. Jarnı́k’s approach,

which is based on some explicit construction of continued fractions, differs from
ours.

In order to derive both corollaries from the theorem, observe that for given posi-

tive real numbers v and w, the interval

v(w − 1)

v + w
≤ v ′ ≤ v − w + 1

w

occurring in our theorem is non-empty exactly when v ≥ w(w−1). For the minimal

value v = w(w − 1), it reduces to the point

(w − 1)2

w
=

w ′2

1 − w ′
.

Corollaries 1 and 2 immediately follow, noting that the extremal values

v(w − 1)

(v + w)
and

(v − w + 1)

w

are increasing functions of v, when v ≥ w(w − 1).

The proof of our theorem splits into two parts. We first establish the two transfer-

ence inequalities by means of simple geometrical constructions involving the best
rational approximations (“minimal points” in the terminology of Davenport and

Schmidt [6]) to the point Θ. The determination of a point Θ with prescribed Ω(Θ),

needs more elaborate arguments. We simultaneously construct a sequence of ratio-
nal lines ∆n,k and a Cauchy sequence of rational points Pn,k, which approximate the

limit Θ = lim Pn,k in a controlled way. The geometrical configuration of these two
sequences of lines and of points (colinear points and concurrent lines) reflects duality

relations between two sequences of best approximations by lines and by points to a

given point Θ ∈ R2.
To conclude this introduction, let us address the problem of extending the the-

orem to higher dimensions. Then Θ should stand for any real linear proper sub-

variety of a projective space Pm(R), to which we can attach various (usual and uni-
form) exponents of approximation by rational linear subvarieties of fixed dimension

µ, 0 ≤ µ ≤ m − 1, as in [5, 20]. We refer to [5, Section 4] for precise definitions and
ask for a description of the spectrum determined by the vector Ω(Θ) of these expo-

nents when Θ ranges over the set of all real linear subvarieties of Pm(R) with given

dimension. As a next step after the present situation dealing with a point Θ in P2(R),
it should be interesting to investigate the case of a point in P3(R) which gives rise to

six exponents.

2 Transference Inequalities

We prove in this section the transference inequalities

v(w − 1)

v + w
≤ v ′ ≤ v − w + 1

w
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for any point Θ = (α, β) with 1, α, β linearly independent over Q. Two specific
sequences of best approximations will serve our purpose. We define in our setting

the notion of best approximation as follows.
For any triple X = (x, y, z) of real numbers, set

L(X) = |xα+yβ+z|, M(X) = max(|zα−x|, |zβ−y|), and ‖X‖ = max{|x|, |y|, |z|}.

We say that the sequences of integer triples (∆n)n>1 and (Pn)n≥1 are best approxima-

tions to L and M respectively, if they satisfy the following properties. Put

hn = ‖∆n‖, qn = ‖Pn‖, Ln = L(∆n), Mn = M(Pn).

Then

1 < h1 < h2 < · · · and 1 < q1 < q2 < · · · ,

1 > L1 > L2 > · · · and 1 > M1 > M2 > · · · .

Moreover, for any n ≥ 1 and any non-zero integer triple ∆ (resp. P) with norm

‖∆‖ < hn+1 (resp. ‖P‖ < qn+1), we have the lower bounds

L(∆) ≥ Ln and M(P) ≥ Mn.

We refer to [4, 15] for further information on the notion of best approximation.

Now define the positive exponents vn, v ′
n, wn, w ′

n by the equations

Ln = h−vn
n = h−wn

n+1 and Mn = q
−v ′

n
n = q

−w ′

n

n+1 , (n ≥ 1).

Our interest in these two sequences of best approximations rests on the formulas

ω(Θ) = lim sup
n→+∞

vn, ω(t
Θ) = lim sup

n→+∞
v ′

n,

ω̂(Θ) = lim inf
n→+∞

wn, ω̂(t
Θ) = lim inf

n→+∞
w ′

n,

which, thanks to the sequences of test points ∆n and Pn, enable us to compute Ω(Θ)
as is easily seen from the above properties.

A geometrical point of view may be enlightening. Write

∆n = (rn, sn, tn), Pn = (an, bn, cn), n ≥ 1.

We denote by ∆n the line in R2 with equation rnx + sn y + tn = 0, and by Pn the
rational point with coordinates Pn = (an/cn, bn/cn). In the sequel we shall follow

these conventions of notations. An underlined symbol will always stand for some
non-zero real triple. The same symbol without underlining will indicate either the

associated line (as for ∆n), or the point obtained by dehomogenization with respect

to the third coordinate (as for Pn). The alternative will be clear from the context.
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Observe now that two consecutive best approximations ∆n and ∆n+1 are not pro-
portional. Therefore the vector product

Q
n

= ∆n ∧ ∆n+1 =

(

∣

∣

∣

∣

sn sn+1

tn tn+1

∣

∣

∣

∣

,−
∣

∣

∣

∣

rn rn+1

tn tn+1

∣

∣

∣

∣

,

∣

∣

∣

∣

rn rn+1

sn sn+1

∣

∣

∣

∣

)

,

is a non-zero triple, so that ∆n cuts ∆n+1 at the point Qn. Since both lines ∆n and

∆n+1 are close to Θ, their intersection Qn should also be close to Θ. More precisely,
write

∣

∣

∣

∣

rn rn+1

sn sn+1

∣

∣

∣

∣

α −
∣

∣

∣

∣

sn sn+1

tn tn+1

∣

∣

∣

∣

= sn+1(rnα + snβ + tn) − sn(rn+1α + sn+1β + tn+1),

∣

∣

∣

∣

rn rn+1

sn sn+1

∣

∣

∣

∣

β +

∣

∣

∣

∣

rn rn+1

tn tn+1

∣

∣

∣

∣

= −rn+1(rnα + snβ + tn) + rn(rn+1α + sn+1β + tn+1).

It follows that

M(Q
n
) ≤ hn+1L(∆n) + hnL(∆n+1) ≤ 2hn+1Ln = 2h−vn+vn/wn

n .

Bounding from above the norm

‖Q
n
‖ ≤ 2‖∆n‖‖∆n+1‖ ≤ 2hnhn+1 = 2h1+vn/wn

n ,

we find that

M(Q
n
) ≤ 2(‖Q

n
‖/2)−vn(wn−1)/(vn+wn).

For any ǫ > 0, we know that wn ≥ w − ǫ, provided n is large enough. Selecting an

arbitrarily large index n such that vn is arbitrarily close to the upper limit v, we obtain

the lower bound v ′ ≥ v(w − 1)/(v + w).
The proof of the inequality v ′ ≤ (v − w + 1)/w is quite similar, making use now

of the sequence (Pn)n≥1. Define the non-zero integer triple Dn by

Dn = Pn ∧ Pn+1 =

(

∣

∣

∣

∣

bn bn+1

cn cn+1

∣

∣

∣

∣

,−
∣

∣

∣

∣

an an+1

cn cn+1

∣

∣

∣

∣

,

∣

∣

∣

∣

an an+1

bn bn+1

∣

∣

∣

∣

)

,

so that Dn is the line joining Pn and Pn+1. Writing

∣

∣

∣

∣

bn bn+1

cn cn+1

∣

∣

∣

∣

=

∣

∣

∣

∣

bn − cnβ bn+1 − cn+1β
cn cn+1

∣

∣

∣

∣

,

∣

∣

∣

∣

an an+1

cn cn+1

∣

∣

∣

∣

=

∣

∣

∣

∣

an − cnα an+1 − cn+1α
cn cn+1

∣

∣

∣

∣

,

∣

∣

∣

∣

an an+1

bn bn+1

∣

∣

∣

∣

=

∣

∣

∣

∣

an − cnα an+1 − cn+1α
bn bn+1

∣

∣

∣

∣

+ α

∣

∣

∣

∣

cn cn+1

bn − cnβ bn+1 − cn+1β

∣

∣

∣

∣

,

and
∣

∣

∣

∣

bn bn+1

cn cn+1

∣

∣

∣

∣

α −
∣

∣

∣

∣

an an+1

cn cn+1

∣

∣

∣

∣

β +

∣

∣

∣

∣

an an+1

bn bn+1

∣

∣

∣

∣

=

∣

∣

∣

∣

cnα − an cn+1α − an+1

cnβ − bn cn+1β − bn+1

∣

∣

∣

∣

,
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we obtain the upper bounds

‖Dn‖ ≤ (1 + |α|)
(

qn+1M(Pn) + qnM(Pn+1)
)

≤ 2(1 + |α|)q
1−w ′

n

n+1 ,

L(Dn) ≤ 2M(Pn)M(Pn+1) ≤ 2q
−(v ′

n+1+w ′

n )
n+1 ,

from which we deduce the expected inequality

v ≥ v ′ + w ′

1 − w ′
= v ′w + w − 1,

taking into account Jarnı́k’s relation w ′ = (w − 1)/w.

3 The Inverse Problem

We have to construct a point Θ ∈ R2 for which the quadruple Ω(Θ) takes a prescribed

value (v, v ′, w, w ′) as in the theorem. We restrict the discussion in this part to real

numbers w, w ′, v, v ′. The case of possibly infinite exponents is postponed to Section
7. To this end, we shall establish the following proposition in Sections 4–6.

Proposition Let w, τ0, τ1, σ be positive real numbers satisfying the inequalities

w ≥ 2, τ1 ≤ 1, wτ0 ≤ σ ≤ τ0 + τ1.

Then there exists Θ ∈ R2 such that

Ω(Θ) =

( w − 1 + τ1

τ0
,

w − 1

σ
, w,

w − 1

w

)

.

Let us show that the quadruples

(v, v ′, w, w ′) =

( w − 1 + τ1

τ0
,

w − 1

σ
, w,

w − 1

w

)

given by the proposition are exactly those for which the conditions

w ≥ 2, w ′
=

w − 1

w
and

v(w − 1)

v + w
≤ v ′ ≤ v − w + 1

w

of our theorem hold.
Let us fix w ≥ 2. Observe first that for given real numbers τ0 > 0 and 0 < τ1 ≤ 1,

the interval wτ0 ≤ σ ≤ τ0 + τ1 occurring in the proposition is non-empty exactly

when (τ0, τ1) belongs to the triangle T ⊂ R2 defined by the inequalities 1 ≥ τ1 ≥
(w − 1)τ0 > 0. Now fix v ≥ w(w − 1). The necessity of this last assumption follows

from Corollary 1. Then the intersection of T with the line of equation vτ0 = w−1+τ1

in the plane R2, is the segment whose extremities are the points

( w − 1

v − w + 1
,

(w − 1)2

v − w + 1

)

and
( w

v
, 1

)

.
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The set of all admissible values σ, when the point (τ0, τ1) ranges along this segment,
coincides with the interval

w(w − 1)

v − w + 1
≤ σ ≤ w

v
+ 1.

Therefore v ′ = (w − 1)/σ takes any assigned value in the interval

v(w − 1)

v + w
≤ v ′ ≤ v − w + 1

w
.

In order to construct a point Θ as in the proposition, it will be relevant to assume
the stronger conditions

(3.1) w ≥ 2, 0 < τ0 < τ1 ≤ 1, wτ0 ≤ σ ≤ τ0 + τ1, σ < w − 1 + τ0.

Notice that the assumptions of the proposition imply the slightly weaker inequalities

0 < τ0 ≤ τ1 ≤ 1 and σ ≤ w − 1 + τ0.

Hence the additional constraints in (3.1) exclude only the choices of parameters

w = 2, τ0 = τ1, σ = 2τ0 and w = 2, τ1 = 1, σ = 1 + τ0,

which lead to extremal quadruples of the form

(

v,
v − 1

2
, 2,

1

2

)

and
(

v,
v

v + 2
, 2,

1

2

)

for some v ≥ 2. It turns out that Jarnı́k [8–10] has established for any v ≥ 2 the

existence of points Θ for which

(ω(Θ), ω(t
Θ)) =

(

v,
v − 1

2

)

and (ω(Θ), ω(t
Θ)) =

(

v,
v

v + 2

)

.

Then we deduce from our refined transference inequalities that

ω̂(Θ) = 2 and ω̂(t
Θ) = 1/2.

We shall therefore assume that (3.1) holds without any loss of generality.

4 Constructing Points and Lines in the Plane

We shall construct in the next section a sequence of points and a sequence of lines

which may be viewed as analogues of the sequences (Pn)n≥1 and (∆n)n≥1 considered
in Section 2. To that aim, we establish here some preliminary results. Lemma 1

provides us with families of rational points which are close together and lie on a

given rational line. Next, we rephrase our result dually to obtain families of close
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rational lines passing through a given rational point. As a main tool, we take again
standard arguments arising from the theory of continued fractions.

Let us first introduce various notions of distance between points and lines in the
projective plane P2(R), and state some of their (easily proved) properties. It is conve-

nient to view R2 as a subset of P2(R) via the usual embedding (x, y) 7→ (x : y : 1).

With some abuse of notation, we shall identify a point in R2 with its image in P2(R).
For any pair of points P and P ′ in P2(R), with homogeneous coordinates P and

P ′, denote by

d(P, P ′) =
‖P ∧ P ′‖
‖P‖‖P ′‖

the so-called projective distance between P and P ′, which is obviously independent

on the choice of P and P ′. Inside the square [−1/2, +1/2]2 the projective distance

coincides with the distance associated to the norm of supremum. In other words, the
formula

d((x, y), (x ′, y ′)) = max(|x − x ′|, |y − y ′|)
holds whenever max(|x|, |y|) ≤ 1/2 and max(|x ′|, |y ′|) ≤ 1/2. Moreover, for any
0 ≤ R < 1, the projective ball

{

P ∈ P2(R) ; d(P, (0, 0)) ≤ R
}

, centered at the origin

of R2 with radius R, is equal to the square [−R, +R]2. Note also that the triangle

inequality

d(P, P ′) − 2d(P ′, P ′ ′) ≤ d(P, P ′ ′) ≤ d(P, P ′) + 2d(P ′, P ′ ′)

holds for any points P, P ′, P ′ ′ in P2(R) (see formula (5) of [18]). Now let ∆ be a
line in P2(R) with equation rx + sy + tz = 0. We set ∆ = (r, s, t) and define the

(projective) distance d(∆, ∆ ′) between two lines ∆ and ∆ ′ by the formula

d(∆, ∆ ′) =
‖∆ ∧ ∆

′‖
‖∆‖‖∆′‖ .

The distance d(∆, ∆ ′) is again independent of the choice of the triples ∆ and ∆
′

respectively associated with ∆ and ∆ ′. Suppose that ∆ intersects ∆ ′ inside the square

[−1, +1]2. Then, denoting by 〈∆, ∆ ′〉 the acute angle determined by the two lines in

R2, we have the estimate

1

2
sin〈∆, ∆ ′〉 ≤ d(∆, ∆ ′) ≤ 2 sin〈∆, ∆ ′〉.

Finally, we define the distance d(P, ∆), between a point P with homogeneous coor-
dinates P = (x, y, z) and a line ∆ with leading coefficients ∆ = (r, s, t), to be the

quantity

d(P, ∆) =
|rx + sy + tz|
‖P‖‖∆‖ .

In the next sections, we shall make use of the formula

(4.1) d(P, ∆) = d(P, P ′) d(∆, ∆ ′),
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which is valid for any point P ′ of ∆, distinct from P, and where ∆
′ stands for the line

joining P and P ′. This equality, which follows from the formula for the double vector

product in R3, shows moreover that d(P, ∆) compares with the minimal projective
distance between P and the points of ∆.

We call normalized homogeneous coordinates of a rational point P in P2(R), any

triple P = (a, b, c) of homogeneous coordinates of P, such that a, b, c are coprime

integers. The triple P is clearly defined up to a multiplicative factor ±1, and we
denote by

H(P) = ‖P‖ = max(|a|, |b|, |c|)
the usual height of the rational point P. Note that H(P) = |c| when P is located in the

unit square [−1, +1]2. Similarly, we normalize the equation rx + sy + tz = 0 of any
rational projective line ∆ by requiring that r, s, t be coprime integers, and we define

its height H(∆) as being the norm max(|r|, |s|, |t|).

Lemma 4.1 Let ∆ be a rational line in P2(R) with height h, and let P0 be a rational

point belonging to ∆ with height q0. Let ℓ be a positive integer and let q1, . . . , qℓ be a

sequence of positive real numbers satisfying

(4.2) q1 ≥ 14q0, q0q1 ≥ 4h and qk+1 ≥ 3qk (0 ≤ k ≤ ℓ − 1).

There exist rational points P1, . . . , Pℓ located on ∆, such that the estimates

1

2
qk ≤ H(Pk) ≤ 2qk (0 ≤ k ≤ ℓ)

and
1

32

h

qkqk+1

≤ d(Pk, Pk ′) ≤ 16
h

qkqk+1

(0 ≤ k < k′ ≤ ℓ)

are verified. On the other hand, for any pair of distinct rational points P and P ′ lying on

∆, we have the lower bound

d(P, P ′) ≥ h

H(P)H(P ′)
.

Proof Fix an equation rx + sy + tz = 0 of ∆ whose coefficients r, s, t are coprime

integers, so that h = max(|r|, |s|, |t|). We denote by ∆(Z) the additive group of
integer triples (a, b, c) for which ra + sb + tc = 0. Then a rational point P lies on ∆,

if and only if its normalized homogeneous coordinates P belong to ∆(Z). Thanks to

[2, Theorem 2], we can find a basis A, B of the Z-module ∆(Z) such that

‖A‖ ≤ ‖B‖ and ‖A‖‖B‖ ≤
√

3h.

An integer triple mA + nB is primitive if and only if the coefficients m and n are

relatively prime integers. Note that A ∧ B = ±(r, s, t), so that ‖A ∧ B‖ = h.

We first prove Liouville’s inequality, which is the last assertion of Lemma 4.1. Sup-

pose that P and P ′ are distinct rational points located on the line ∆. Let P and P ′ be
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normalized homogeneous coordinates of P and P ′. Then the vector product P ∧ P ′

is a non-zero integer multiple of A ∧ B. Therefore, we obtain the lower bound

d(P, P ′) =
‖P ∧ P ′‖
‖P‖‖P ′‖ ≥ h

H(P)H(P ′)
.

Let P0 be normalized homogeneous coordinates of the point P0. Since P0 belongs
to ∆(Z), we may write P0 = mA + nB for some coprime integer coefficients m and n.

Using Cramer’s formula, we easily obtain the upper bounds

|m| ≤ 2q0‖B‖
h

≤ 2
√

3q0

‖A‖ and |n| ≤ 2q0‖A‖
h

≤ 2
√

3q0

‖B‖ .

Let e and f be integers satisfying the equation m f − ne = 1, chosen so that f has

minimal absolute value. Suppose first that n is non-zero. Noting that f is an element
of smallest absolute value in some coset modulo n, we bound

| f | ≤ |n|
2

≤
√

3q0

‖B‖ and |e| ≤ |m|| f | + 1

|n| ≤ |m|

2
+ 1 ≤

√
3q0

‖A‖ + 1.

Thus

‖eA + f B‖ ≤ 2
√

3q0 + ‖A‖ ≤ 4
√

3q0 ≤ q1/2,

since ‖A‖ ≤ ‖B‖ ≤ |n|‖B‖ ≤ 2
√

3q0. When n = 0, we have A = ±P0. Then
e = 0, f = ±1, and we bound again

‖eA + f B‖ = ‖B‖ ≤
√

3h

‖A‖ =

√
3h

q0
≤ q1/2.

We are now able to construct the sequence of points P1, . . . , Pℓ. Define

g1 =

⌈ q1

q0

⌉

and P1 = g1P0 + eA + f B.

The integer triple P1 is primitive. Let P1 be the rational point in P2(R) with homo-

geneous coordinates P1. Its height H(P1) is therefore equal to ‖P1‖, and satisfies the
required estimate

q1/2 ≤ q1 − ‖eA + f B‖ ≤ ‖P1‖ = H(P1) ≤ q1 + q0 + ‖eA + f B‖ ≤ 2q1.

Next, when ℓ ≥ 2, we define recursively a sequence of primitive integer triples

P2, . . . , Pℓ by the relations

Pk = gkPk−1 + Pk−2, (2 ≤ k ≤ ℓ),

where we have set

gk =

⌈

qk

‖Pk−1‖

⌉

≥ 1.
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Let Pk be the rational point with homogeneous coordinates Pk. Arguing by induction
on k, we obtain similarly the estimate of height

(4.3)
1

2
qk ≤ qk − ‖Pk−2‖ ≤ H(Pk) = ‖Pk‖ ≤ qk + ‖Pk−1‖ + ‖Pk−2‖ ≤ 2qk.

It remains to estimate the distances between the points Pk. Let us write

Pk = ukP0 + vkP1

for integer coefficients uk, vk satisfying the usual recurrence relations

uk = gkuk−1 + uk−2 (u0 = 1, u1 = 0),

vk = gkvk−1 + vk−2 (v0 = 0, v1 = 1),

occurring in the theory of continued fractions. We therefore have the formula

uk

vk

= [0; g2, . . . , gk], (1 ≤ k ≤ ℓ).

Observe next that the estimates of norms

1

2
vk‖P1‖ ≤ vk(‖P1‖ − [0; g2, . . . , gk]‖P0‖) = vk‖P1‖ − uk‖P0‖ ≤ ‖Pk‖(4.4)

≤ uk‖P0‖ + vk‖P1‖ = vk([0; g2, . . . , gk]‖P0‖ + ‖P1‖) ≤ 2vk‖P1‖

hold as well for 1 ≤ k ≤ ℓ. Now for any 0 ≤ k < k′ ≤ ℓ, we have

d(Pk, Pk ′) =
‖Pk ∧ Pk ′‖
‖Pk‖‖Pk ′‖ =

|ukvk ′ − uk ′vk|h
‖Pk‖‖Pk ′‖ ,

since

Pk ∧ Pk ′ = (ukvk ′ − uk ′vk)P0 ∧ P1

= (ukvk ′ − uk ′vk)(m f − ne)A ∧ B = ±(ukvk ′ − uk ′vk)(r, s, l).

By a standard result on continued fractions, we know that

1

2vk+1

≤
∣

∣

∣
vk

uk ′

vk ′

− uk

∣

∣

∣
≤ 1

vk+1

.

It follows that

1

2

vk ′h

vk+1‖Pk‖‖Pk ′‖ ≤ d(Pk, Pk ′) ≤ vk ′h

vk+1‖Pk‖‖Pk ′‖ .

The required estimate for d(Pk, Pk ′) follows from (4.3) and (4.4).
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We state now a dual version of Lemma 4.1, in which the roles of lines and points
are exchanged.

Lemma 4.2 Let ∆0 be a rational line with height h0, and let P be a rational point

lying on ∆0, with height q. Let ℓ be a positive integer and let h1, . . . , hℓ be a sequence of
positive real numbers satisfying

(4.5) h1 ≥ 14h0, h0h1 ≥ 4q and hk+1 ≥ 3hk (0 ≤ k ≤ ℓ − 1).

There exist rational lines ∆1, . . . , ∆ℓ passing through the point P, such that the estimates

of height
1

2
hk ≤ H(∆k) ≤ 2hk (0 ≤ k ≤ ℓ)

and of distance

1

32

q

hkhk+1

≤ d(∆k, ∆k ′) ≤ 16
q

hkhk+1

(0 ≤ k < k′ ≤ ℓ)

are verified. On the other hand, for any pair of distinct rational lines ∆ and ∆ ′ contain-
ing P, we have the lower bound

d(∆, ∆ ′) ≥ q

H(∆)H(∆ ′)
.

Proof The proof is completely parallel to that of Lemma 4.1. The formalism remains
exactly the same, and we omit the details.

5 The Basic Construction

Recall the stronger assumptions (3.1) relating the data w, τ0, τ1, σ. Observing that
0 < τ0 < τ1 ≤ 1, we put ℓ = 1 if τ1 = 1, and otherwise pick an integer ℓ ≥ 2 and an

increasing sequence of real numbers τ2, . . . , τℓ, such that

(5.1)

0 < τ0 < τ1 < · · · < τℓ = 1 and
w − 1 + τk+1

τk

≤ w − 1 + τ1

τ0
, (0 ≤ k ≤ ℓ−1).

As an example, we may choose τk = min(1, τ0 + k(τ1 − τ0)) for k = 1, . . . , ℓ, where
ℓ is the smallest integer such that τ0 + ℓ(τ1 − τ0) ≥ 1. Note that, in any case, the

sequence (τk)0≤k≤ℓ increases and ends at τℓ = 1. Now set σ0 = σ and σ1 = w.

It follows from (3.1) that 0 < σ0 < σ1 ≤ σ/τ0. Similarly, we extend this second
sequence into an (eventually longer) increasing sequence

(5.2) 0 < σ0 < · · · < σℓ ′ = σ/τ0,

for some integer ℓ ′ ≥ 1 selected so that the growth conditions

(5.3)
σk+1 − 1

σk

≤ w − 1

σ
, (0 ≤ k ≤ ℓ ′ − 1)
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hold. The constraints (5.2) and (5.3) can be simultaneously fulfilled by taking bound-
ed ratios

1 <
σk+1

σk

≤ w − 1 + τ0

σ
for 1 ≤ k ≤ ℓ ′ − 1.

Next, we introduce two sequences of positive real numbers (hn,k)n≥1,0≤k≤ℓ and

(qn,k)n≥1,0≤k≤ℓ ′ in the following way. For simplicity, set hn = hn,0. We start with
any large initial value h1, and define inductively hn,k and qn,k thanks to the recurrence

relations

(5.4) hn+1 = h1/τ0
n , hn,k = hτk

n+1, (0 ≤ k ≤ ℓ), qn,k = hσk

n+1/16, (0 ≤ k ≤ ℓ ′).

Taking into account the equalities τℓ = 1 and σℓ ′ = σ/τ0, observe that the branching
equations

hn,ℓ = hn+1,0 and qn,ℓ ′ = qn+1,0

hold for any n ≥ 1. With the exception of these equalities, the sequences (hn,k)

and (qn,k), where the indices (n, k) have been lexicographically ordered, are strictly
increasing, since so are the sequences of exponents (τk) and (σk). Notice as well that

both sequences (hn,k) and (qn,k) increase at least as a double exponential.

For further use, let us quote the estimates

(5.5)
hn+1

hn
<

qn,1

qn,0
and

hn,khn+2

qn+1,0qn+1,1
= o

( hn+1

hn,k+1qn,1

)

, (0 ≤ k ≤ ℓ − 1),

which follow from (3.1) and (5.4). In order to check the second part of (5.5), write
both ratios in terms of hn+1, and observe that

τk +
1 − σ − w

τ0
< 1+

1 − wτ0 − w

τ0
= −(w−1)(1+

1

τ0
) < −2(w−1) ≤ 1−τk+1−w.

Lemma 5.1 There exists a sequence of rational lines (∆n,k)n≥1,0≤k≤ℓ and a sequence
of rational points (Pn,k)n≥1,0≤k≤ℓ ′ satisfying for any n ≥ 1 the compatibility relations

∆n,ℓ = ∆n+1,0, Pn,ℓ ′ = Pn+1,0,

and the following properties. The points Pn,0, . . . , Pn,ℓ ′ are pairwise distinct and lie on

the line ∆n+1,0. The lines ∆n,0, . . . , ∆n,ℓ are pairwise distinct and pass through the point
Pn,0. Moreover the estimates of distances1

d((0, 0), P1,0) ≫≪ h1

q1,0
,

d(Pn,k, Pn,k ′) ≫≪ hn+1

qn,kqn,k+1

, (0 ≤ k < k′ ≤ ℓ ′),

d(∆n,k, ∆n,k ′) ≫≪ qn,0

hn,khn,k+1

, (0 ≤ k < k′ ≤ ℓ),

(5.6)

1The implicit constants involved in the forthcoming symbols ≫ and ≪ are absolute. Their computa-
tion is however useless for our purpose. We frequently write F(n) ≫≪ G(n) to signify that F(n) ≫ G(n)
and F(n) ≪ G(n) for all sufficently large n.
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are satisfied, as well as the estimates of heights

(5.7)
1

2
qn,k ≤ H(Pn,k) ≤ 2qn,k and

1

2
hn,k ≤ H(∆n,k) ≤ 2hn,k.

Proof We carry out simultaneously the construction of both sequences ∆n,k and Pn,k

by successive steps.

Start (for instance) by defining ∆1,0 as the line with equation ⌈h1⌉x − y = 0, and
by choosing the point P1,0 = (1/⌈q1,0⌉, ⌈h1⌉/⌈q1,0⌉) on ∆1,0 ∩ R2. Observe that

q1,0 = hσ
2 /16 ≥ hw

1 /16

is much bigger than h1 when h1 is large. Then the required estimates

d((0, 0), P1,0) ≫≪ h1

q1,0
,

1

2
h1 ≤ H(∆1,0) = ⌈h1⌉ ≤ 2h1 and

1

2
q1,0 ≤ H(P1,0) = ⌈q1,0⌉ ≤ 2q1,0,

clearly hold for sufficiently large initial values h1. Note also that P1,0 may be taken

arbitrarily close to the origin (0, 0) of R2, provided h1 is large enough.

Suppose now that P1,0, P1,1, . . . , Pn,0 and ∆1,0, ∆1,1, . . . , ∆n,0 have already been
selected for some n ≥ 1. We first use Lemma 4.2, applied to the point Pn,0 lying on

the line ∆n,0 and to the sequence hn,1, . . . , hn,ℓ. The main assumption H(∆n,0)hn,1 ≥
4H(Pn,0) occurring in (4.5), follows from (5.4), (5.7) and from the inequality σ ≤
τ0 + τ1 in (3.1). Therefore we may find rational lines ∆n,1, . . . , ∆n,ℓ = ∆n+1,0 passing

through Pn,0, for which the third estimate of (5.6) and the second one of (5.7) are
verified. Next, starting with the point Pn,0 ∈ ∆n+1,0, we apply Lemma 4.1 to the

sequence qn,1, . . . , qn,ℓ ′ . We obtain rational points Pn,1, . . . , Pn,ℓ ′ = Pn+1,0 belonging

to ∆n+1,0 and satisfying (5.6) and (5.7). Notice that the condition H(Pn,0)qn,1 ≥
4H(∆n+1,0) occurring in the assumptions (4.2) of Lemma 4.1 is easily fulfilled, since

qn,1 = hσ1

n+1/16 ≥ h2
n+1/16.

The two sequences have thus been extended up to the rank (n + 1, 0).

Let us show that the sequence of points (Pn,k)n≥1,0≤k≤ℓ ′−1 furnished by Lemma

5.1 is a Cauchy sequence in P2(R). Observe first that the sequence

( hn+1

qn,kqn,k+1

)

n≥1,0≤k≤ℓ ′−1

occurring in (5.6) is decreasing when the indices (n, k) are lexicographically ordered.

The only non-obvious inequality,

hn

qn−1,ℓ ′−1qn−1,ℓ ′
>

hn+1

qn,0qn,1
,
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follows from the first part of (5.5). Moreover this sequence tends to 0 much more
quickly than any geometric sequence with ratio < 1. Take any index (n, k) smaller

than (n′, k′) for that lexicographic order. Combining the triangle inequality with the
upper bounds (5.6), we find

d(Pn,k, Pn ′,k ′) ≤
∑

(n,k)≤(ν,κ)<(n ′,k ′)

2rk(ν,κ)d(Pν,κ, Pν,κ+1)

≪
∑

(n,k)≤(ν,κ)<(n ′,k ′)

2rk(ν,κ) hν+1

qν,κqν,κ+1
≪ hn+1

qn,kqn,k+1

,

where rk(ν, κ) denotes the rank of (ν, κ) in the ordered sequence (n, k) < · · · <
(n′, k′) of all indices between (n, k) and (n′, k′), starting with the initial value

rk(n, k) = 0.

Let Θ be the limit of the Cauchy sequence (Pn,k). The same argument as above

yields the estimates

(5.8) d(Pn,k, Θ) ≫≪ hn+1

qn,kqn,k+1

, (0 ≤ k ≤ ℓ ′ − 1),

and

(5.9) d(Pn,0, Pn+1,0) ≫≪ hn+1

qn,0qn,1
.

Moreover, taking h1 large enough, we may assume that d((0, 0), Pn,k) ≤ 1/4 for any
index n ≥ 1, 0 ≤ k ≤ ℓ ′ − 1, so that all points Pn,k lie in the square [−1/4, +1/4]2.

Then Θ obviously belongs to [−1/4, +1/4]2.

Put now Θ = (α, β) and recall the notations

L(X) = |xα + yβ + z|, M(X) = max(|zα − x|, |zβ − y|), X = (x, y, z),

introduced in Section 2. Let

Pn,k =(an,k, bn,k, cn,k), with qn,k/2 ≤ |cn,k| ≤ 2qn,k and gcd(an,k, bn,k, cn,k) = 1,

∆n,k =(rn,k, sn,k, tn,k), with hn,k/2 ≤ ‖∆n,k‖ ≤ 2hn,k and gcd(rn,k, sn,k, tn,k) = 1,

be normalized integer triples respectively associated to the rational point Pn,k and to

the rational line ∆n,k. Recall also that the projective distance d coincides inside the
square [−1/2, +1/2]2 with the distance associated to the norm of supremum. The

estimate of distance (5.8) is therefore equivalent to

(5.10) M(Pn,k) = |cn,k|d(Θ, Pn,k) ≫≪ hn+1

qn,k+1

≫≪ h1−σk+1

n+1 , (0 ≤ k ≤ ℓ ′ − 1).
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Observe next that the point Pn+1,0 = (an+1,0/cn+1,0, bn+1,0/cn+1,0) belongs to the line
∆n+1,0 which intersects ∆n,k at the point Pn,0. Employing the formula (4.1) to esti-

mate the distance d(Pn+1,0, ∆n,k), we deduce from (5.6), (5.7), (5.9) that

|rn,k
an+1,0

cn+1,0
+ sn,k

bn+1,0

cn+1,0
+ tn,k| ≫≪ ‖∆n,k‖d(∆n,k, ∆n+1,0)d(Pn,0, Pn+1,0)

≫≪ hn+1

hn,k+1qn,1
≫≪ h1−w−τk+1

n+1 .

Using (5.8) and the second part of (5.5), we may replace an+1,0/cn+1,0 and bn+1,0/cn+1,0

in the above inequalities by their limits α and β. We therefore obtain the estimate

(5.11) L(∆n,k) ≫≪ hn+1

hn,k+1qn,1
≫≪ h1−w−τk+1

n+1 , (0 ≤ k ≤ ℓ − 1).

At the present stage, we have constructed two sequences of integer triples Pn,k and
∆n,k that provide good approximations to Θ with respect to the functions M and L.

Since the norm of Pn,k (resp. ∆n,k) compares to hσk

n+1 (resp. hτk

n+1), the upper bounds

given by (5.10)–(5.11) yield the lower bounds

ω(Θ) ≥ max
0≤k≤ℓ−1

( w − 1 + τk+1

τk

)

=
w − 1 + τ1

τ0
,

ω(t
Θ) ≥ max

0≤k≤ℓ ′−1

( σk+1 − 1

σk

)

=
w − 1

σ
.

ω̂(Θ) ≥ min
0≤k≤ℓ−1

( w − 1 + τk+1

τk+1

)

= w,

ω̂(t
Θ) ≥ min

0≤k≤ℓ ′−1

( σk+1 − 1

σk+1

)

=
w − 1

w
.

(5.12)

Notice that the two first equalities on the right-hand side of (5.12) follow from (5.1)–
(5.3).

It turns out that the lower bounds (5.12) are actually equalities, as we shall prove

in the next section.

6 Upper Bounds

In order to bound from above the exponents ω(tΘ) and ω̂(tΘ), (resp. ω(Θ) and

ω̂(Θ)), we establish that the rational points, (resp. the rational lines), which well
approximate the point Θ belong necessarily to the set of points Pn,k, (resp. the set of

lines ∆n,k), previously considered. That is the underlying principle for the proof of

the next two lemmas.

Lemma 6.1 For any non-zero integer triple P which is not proportional to some triple

Pn,k, and having sufficiently large norm ‖P‖, we have the lower bound 2

M(P) ≫ ‖P‖−λ with λ = max
( 1

w − 1 + τ0
,
σ − τ0

σ

)

.

2In this section, the constants involved in the symbols ≫ and ≪ may possibly depend upon the data
w, τ0, τ1, σ.
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There exists a positive real number ǫ such that for any sufficiently large integer n and
for any non-zero integer triple P with norm ‖P‖ ≤ ǫqn,1, we have the uniform lower

bound
M(P) ≫ ǫq

−(w−1)/w
n,1 .

Proof Let us first observe that the sequence

γ(n,k) = qn,1
hn,k

hn+1
, (n ≥ 1, 0 ≤ k ≤ ℓ),

indexed by the couples of integers (n, k) lexicographically ordered, increases (the in-

equality γ(n+1,0) > γ(n,ℓ) follows from the first part of (5.5)), and tends to infinity.

We denote by (n, k) + 1 the successor of (n, k) for the lexicographic order. Then the
estimate (5.11) may be written as

L(∆n,k) ≫≪ 1

γ(n,k+1)

=
1

γ(n,k)+1

, (0 ≤ k ≤ ℓ − 1).

Write P = (a, b, c) and put q = ‖P‖. Suppose first that the point P with ho-

mogeneous coordinates P lies ouside the square [−1/2, +1/2]2. Since Θ belongs to

[−1/4, +1/4]2, we bound from below

M(P) = |c|max
(

|α − a

c
|, |β − b

c
|
)

≥ 1

4
,

when c is non-zero, and M(P) ≥ 1 if c = 0. We shall therefore assume that P belongs

to the square [−1/2, +1/2]2, so that q = |c|. The identity

rn,ka + sn,kb + tn,kc = c(rn,kα + sn,kβ + tn,k) − rn,k(cα − a) − sn,k(cβ − b)

yields for any index (n, k) the upper bound

(6.1) |rn,ka + sn,kb + tn,kc| ≤ qL(∆n,k) + 2hn,kM(P) ≪ q

γ(n,k)+1

+ hn,kM(P).

Let ǫ be a positive real number. Assuming q is large enough, we define (n, k) as the

unique index for which
ǫγ(n,k) < q ≤ ǫγ(n,k)+1.

We use a different argumentation depending on whether 0 ≤ k ≤ ℓ − 1 or k = ℓ.

Suppose first that k ≤ ℓ− 1. Replacing the index k by k + 1 in (6.1), we obtain the
two upper bounds

|rn,ka + sn,kb + tn,kc| ≪ ǫ + hn,kM(P)

|rn,k+1a + sn,k+1b + tn,k+1c| ≪ ǫ + hn,k+1M(P).

(6.2)

If we suppose that M(P) ≤ ǫh−1
n,k+1 and ǫ is small enough, the left-hand sides of both

inequalities (6.2) must vanish, since these are integers. It follows that

P = ∆n,k ∩ ∆n,k+1 = Pn,0,
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which is impossible since we have assumed that P differs from all points Pn,k. There-
fore

M(P) > ǫh−1
n,k+1 = ǫh−τk+1

n+1 and q > ǫγ(n,k) =
ǫ

16
hw−1+τk

n+1 ,

so that
M(P) ≫ ǫ(q/ǫ)−τk+1/(w−1+τk) ≫ ǫ(q/ǫ)−λ.

We now consider the case k = ℓ. Then q belongs to the interval

ǫγ(n,ℓ) = ǫqn,1 < q ≤ ǫqn+1,1
hn+1

hn+2
= ǫγ(n+1,0).

In this situation, (6.1) yields the upper bound

|rn+1,0a + sn+1,0b + tn+1,0c| ≪ q

γ(n+1,1)
+ hn+1M(P) ≪ ǫ + hn+1M(P).

When the point P does not lie on the line ∆n+1,0, the sum rn+1,0a + sn+1,0b + tn+1,0c is a

non-zero integer. Thus, if ǫ is small enough, we obtain in this case the stronger lower
bound

M(P) ≫ h−1
n+1 = (16qn,1)−1/w ≫ (q/ǫ)−λ.

It remains to deal with points P located on ∆n+1,0. Since ǫqn,1 < q, define k′ as the
largest positive integer k ≤ ℓ ′ such that ǫqn,k < q. Therefore ǫqn,k ′ < q ≤ ǫqn,k ′+1

when 1 ≤ k′ ≤ ℓ ′ − 1, and ǫqn+1,0 < q ≤ ǫqn+1,1hn+1/hn+2 when k′ = ℓ ′. Now the
Liouville inequality (on the line ∆n+1,0) provides us with the lower bound

d(P, Pn,k ′) ≫ hn+1

q qn,k ′

≫ ǫ−1 hn+1

qn,k ′qn,k ′+1

when 1 ≤ k′ ≤ ℓ ′ − 1, or

d(P, Pn,ℓ ′) ≫
hn+1

q qn+1,0
≫ ǫ−1 hn+2

qn+1,0 qn+1,1

when k′ = ℓ ′. On the other hand, (5.8) gives the upper bounds

d(Pn,k ′ , Θ) ≪ hn+1

qn,k ′qn,k ′+1

, (1 ≤ k′ ≤ ℓ ′ − 1) and d(Pn,ℓ ′ , Θ) ≪ hn+2

qn+1,0 qn+1,1
.

In both cases, the triangle inequality shows that

d(P, Θ) ≫ hn+1

q qn,k ′

,

provided ǫ is small enough. It follows that

M(P) = q d(P, Θ) ≫ hn+1

qn,k ′

= 16h
1−σk ′

n+1 ≫ (q/ǫ)−(σk ′−1)/σk ′ ≫ (q/ǫ)−λ,
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noting that the exponent 1 − σk ′ is negative, since k′ ≥ 1 and σk ′ ≥ σ1 = w ≥ 2.
Finally, fixing ǫ small enough so that the previous estimates are valid, we have thus

proved the first assertion of Lemma 6.1.
As for the second part of Lemma 6.1, we take again the same argumentation in a

simpler way. Observe that

ǫqn,1 = ǫγ(n,ℓ) =
ǫ

16
hw

n+1.

Let P = (a, b, c) be any non-zero integer triple with norm ‖P‖ ≤ ǫqn,1. Now (6.1)

gives
max

k∈{ℓ−1,ℓ}
|rn,ka + sn,kb + tn,kc| ≪ ǫ + hn+1M(P).

If M(P) ≤ ǫh−1
n+1 and ǫ is small enough, the left-hand side of the above inequality

vanishes, and we find that P = ∆n,ℓ−1 ∩ ∆n,ℓ = Pn,0. Then by (5.10) M(P) ≥
M(Pn,0) ≫ h1−w

n+1 ≫ q
−(w−1)/w
n,1 . Otherwise M(P) > ǫh−1

n+1 ≫ ǫq
−1/w
n,1 . Therefore the

lower bound M(P) ≫ ǫq
−(w−1)/w
n,1 holds for any non-zero integer triple P with norm

‖P‖ ≤ ǫqn,1.

The next result may be viewed as a dual version of Lemma 6.1.

Lemma 6.2 For any non-zero integer triple ∆ whose norm ‖∆‖ is large enough, and

which is not proportional to some triple ∆n,k, we have the lower bound

L(∆) ≫ ‖∆‖−µ with µ = max
( σ

(w − 1)τ0
,

w − 1 + τ0

τ0

)

.

There exists a positive real number ǫ such that for any sufficiently large integer n and for
any non-zero integer triple ∆ with norm ≤ ǫhn, we have the uniform lower bound

L(∆) ≫ h−w
n .

Proof We take again the same arguments as in Lemma 6.1, exchanging the roles of
lines and points. Set now (note that k ≥ 1 here)

δ(n,k) =
qn−1,k

hn
, (n ≥ 2, 1 ≤ k ≤ ℓ ′).

The sequence δ(n,k), indexed by the couples of integers (n, k) with 1 ≤ k ≤ ℓ ′ in
lexicographical order, increases and tends to infinity. We denote again by (n, k) + 1

the successor of (n, k) relatively to the lexicographic order. Notice that (5.10) may
actually be written in the form

M(Pn−1,k) ≫≪ 1

δ(n,k)+1

, (1 ≤ k ≤ ℓ ′).

Let ǫ be a positive real number which will be selected later to be sufficiently small.

Write ∆ = (r, s, t) and put h = ‖∆‖. Assuming h is large enough, there exists a
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unique index (n, k) such that ǫδ(n,k) < h ≤ ǫδ(n,k)+1. A similar splitting of cases
occurs as in Lemma 6.1.

Suppose first that 1 ≤ k ≤ ℓ ′ − 1. Then we bound from above

|ran−1,k + sbn−1,k + tcn−1,k| ≤ |cn−1,k|L(∆) + 2hM(Pn−1,k)

≪ qn−1,kL(∆) + ǫ,

|ran−1,k+1 + sbn−1,k+1 + tcn−1,k+1| ≪ qn−1,k+1L(∆) + ǫ.

(6.3)

If we suppose that L(∆) ≤ ǫq−1
n−1,k+1 and ǫ is small enough, the left-hand sides of

both inequalities (6.3) must vanish, since these are integers. Then the line ∆, which
contains the two points Pn−1,k and Pn−1,k+1, coincides with ∆n,0, in contradiction

with our assumptions. Therefore the lower bounds

L(∆) > ǫq−1
n−1,k+1 = 16ǫh−σk+1

n and h > ǫδ(n,k) =
ǫ

16
hσk−1

n

hold, so that

L(∆) ≫ ǫ(h/ǫ)−σk+1/(σk−1) ≫ ǫ(h/ǫ)−µ,

bounding σk+1 ≤ σ/τ0 and σk − 1 ≥ w − 1, since k ≥ 1.
Consider now the case k = ℓ ′. Then h belongs to the interval

(6.4)
ǫ

16
hσ−τ0

n+1 =
ǫqn,0

hn
< h ≤ ǫqn,1

hn+1
=

ǫ

16
hw−1

n+1 .

Arguing as in (6.3), we use here the single inequality

(6.5) |ran,0 + sbn,0 + tcn,0| ≪ qn,0L(∆) + ǫ.

If ∆ does not pass through the point Pn,0, the left-hand side of (6.5) is ≥ 1, and

noting that σ ≥ wτ0, we obtain the required lower bound

L(∆) ≫ q−1
n,0 ≫ (h/ǫ)−σ/(σ−τ0) ≫ (h/ǫ)−µ,

provided ǫ is small enough. It remains to deal with lines ∆ containing the point Pn,0.

Since ∆n+1,0 is the line joining Pn,0 and Pn+1,0, we may apply formula (4.1) to find

(6.6)
1

h

∣

∣

∣
r

an+1,0

cn+1,0
+ s

an+1,0

cn+1,0
+ t

∣

∣

∣
= d(Pn+1,0, ∆) = d(∆, ∆n+1,0)d(Pn,0, Pn+1,0).

It readily follows from (6.4) and (3.1) that

h >
ǫ

16
hσ−τ0

n+1 ≥ ǫ

16
h(w−1)τ0

n+1 ≥ ǫ

16
hτ0

n+1 =
ǫ

16
hn.

Accordingly, we may define k′ as the largest integer k ≤ ℓ such that h > ǫhn,k/16.

Suppose first that k′ ≤ ℓ− 1, so that ǫhn,k ′/16 < h ≤ ǫhn,k ′+1/16. Then the Liouville

inequality, applied to the pencil of lines passing through Pn,0, yields the lower bound

d(∆, ∆n,k ′) ≫ qn,0

hn,k ′ h
≫ ǫ−1 qn,0

hn,k ′hn,k ′+1

.
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On the other hand, (5.6) gives the upper bound

d(∆n,k ′ , ∆n+1,0) ≪ qn,0

hn,k ′ hn,k ′+1
.

Using now the triangle inequality, the two above inequalities imply the lower bound

(6.7) d(∆, ∆n+1,0) ≫ qn,0

hn,k ′ h
,

provided ǫ is small enough. Notice that (6.7) follows directly from the Liouville in-
equality when k′ = ℓ. Next, combining (5.9), (6.6) and (6.7), we find the lower

bound

(6.8)
∣

∣

∣
r

an+1,0

cn+1,0
+ s

bn+1,0

cn+1,0
+ t

∣

∣

∣
≫ hn+1

hn,k ′qn,1
≫ h

−(w−1+τk ′ )
n+1 .

On the other hand, it follows from (6.4) and (5.8) that

h d(Pn+1,0, Θ) ≪ ǫ
qn,1

hn+1

hn+2

qn+1,0qn+1,1
= 16ǫh

w−1−(w−1+σ)/τ0

n+1 ≤ 16ǫh−w
n+1,

noting that σ ≥ wτ0 and 0 < τ0 < 1. Therefore in the left-hand side of (6.8) we

can replace the coefficients an+1,0/cn+1,0 and bn+1,0/cn+1,0 by their limits α and β, to
obtain the lower bound

|rα + sβ + t| ≫ h
−(w−1+τk ′ )
n+1 ≫ (h/ǫ)−(w−1+τk ′)/τk ′ ≫ (h/ǫ)−µ,

since h > ǫhn,k ′/16 = ǫh
τk ′

n+1/16. Fixing ǫ sufficiently small, we have proved the

required lower bound L(∆) ≫ h−µ for any integer triple ∆ which is not a multiple

of some ∆n,k.
Finally we prove the second part of Lemma 6.2. Let ∆ be a non-zero integer triple

with norm h ≤ ǫhn+1. The previous inequality (6.5) remains valid. When Pn,0 does
not lie on ∆, we thus obtain the stronger lower bound

L(∆) ≫ q−1
n,0 ≫ h−σ

n+1 ≫ h−w
n+1.

Suppose now that ∆ passes through Pn,0. Notice that ∆ cannot be equal to ∆n+1,0,

since the norm h of ∆ is smaller than the height H(∆n+1,0) ≥ hn+1 of the line ∆n+1,0.

Then, we use the Liouville inequality to bound from below

d(∆, ∆n+1,0) ≫ qn,0

h hn+1
.

Taking again the argumentation leading to (6.8) with k′ = ℓ, we find the lower bound

(6.9)
∣

∣

∣
r

an+1,0

cn+1,0
+ s

bn+1,0

cn+1,0
+ t

∣

∣

∣
≫ q−1

n,1 ≫ h−w
n+1.

As before, we may substitute in (6.9) the coordinates of the point Pn+1,0 by those of

Θ, to obtain the required estimate

L(∆) = |rα + sβ + t| ≫ h−w
n+1.
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We easily deduce from the assumptions (3.1) that the strict upper bounds

λ = max
( 1

w − 1 + τ0
,
σ − τ0

σ

)

<
w − 1

σ
,

µ = max
( σ

(w − 1)τ0
,

w − 1 + τ0

τ0

)

=
w − 1 + τ0

τ0
<

w − 1 + τ1

τ0
,

hold. Then Lemmas 6.1 and 6.2, together with (5.12), show that the exponents of

approximation ω(Θ) and ω(t
Θ) are reached respectively on the set of integer triples

(∆n,k)n≥1,0≤k≤ℓ and (Pn,k)n≥1,0≤k≤ℓ ′ . Now the estimates (5.10) and (5.11) give the

equalities

ω(t
Θ) = max

0≤k≤ℓ ′−1

( σk+1 − 1

σk

)

=
w − 1

σ

ω(Θ) = max
0≤k≤ℓ−1

( w − 1 + τk+1

τk

)

=
w − 1 + τ1

τ0
.

The second parts of Lemmas 6.1 and 6.2 provide us with the upper bounds

ω̂(t
Θ) ≤ w − 1

w
and ω̂(Θ) ≤ w.

Taking into account the lower bounds (5.12), this concludes the proof of our propo-

sition. Notice that Lemma 6.2, together with (5.11), yields a fine measure of linear
independence over Q of the numbers 1, α, β, which are obviously Q-linearly inde-

pendent as required by the theorem.

7 Infinite Exponents

The basic construction considered in Section 5 may be greatly extended by the in-

troduction of variable exponents τn,k and σn,k depending on n instead of the fixed

exponents τk and σk occurring in (5.4). At each step n, we may also allow ℓ and ℓ ′

to vary (observe that Lemmas 4.1 and 4.2 are valid for any positive integers ℓ and

ℓ ′). We take advantage of this flexibility to complete the proof of the theorem in the

remaining cases where v = +∞. Our intention here is not to repeat the whole argu-
ment, but to briefly indicate below some specific choices of parameters τn,k and σn,k

leading to any quadruple of the form

(+∞, v ′, w,
w − 1

w
) where 2 ≤ w ≤ +∞, w − 1 ≤ v ′ ≤ +∞.

Notice however that it might be useful to display more general constructions in order

to compute the Hausdorff dimension of subsets of points Θ ∈ R2 for which the
quadruple of exponents Ω(Θ) belongs to various parts 3 of R4.

3As an example, the precise value of the Hausdorff dimension of the set {(α, β) ∈ R2; ω̂(α, β) ≥ w},
for a given real number w > 2, remains unknown. See [1, 4, 19] for estimates of that dimension in terms
of w.
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Let w and v ′ be real numbers with w ≥ 2 and v ′ ≥ w− 1. Denote σ = (w− 1)/v ′

and for any integer n > w/σ, set

τn,0 =
1

n
, τn,1 = 1, σn,0 = σ, σn,1 = w.

We first extend the increasing sequence σn,0 < σn,1 using an arithmetical progression
with n terms

w = σn,1 < · · · < σn,n = nσ,

whose step (nσ−w)/(n−1) is < 1. Then, the properties (5.1)–(5.3), with ℓ = 1 and

ℓ ′ = n, remain true with our present choice of parameters. The assumption σ ≤ 1
yields the fundamental upper bound σn,0 ≤ τn,0 + τn,1 occurring in (3.1). Next we fix

two increasing sequences of positive real numbers (hn)n>w/σ and (qn,k)n>w/σ,0≤k≤n,

satisfying the recurrence relations

hn+1 = hn
n = h

1/τn,0
n , qn,k = h

σn,k

n+1/16, (0 ≤ k ≤ n).

The compatibility relations qn+1,0 = qn,n hold for any n. Going again through the

construction described in Section 5, we obtain a point Θ = (α, β) with

ω(Θ) = lim sup
n→+∞

( σn,1 − 1 + τn,1

τn,0

)

= +∞,

ω(t
Θ) = lim sup

n→+∞
max

0≤k≤n−1

( σn,k+1 − 1

σn,k

)

=
w − 1

σ
= v ′,

ω̂(Θ) = lim inf
n→+∞

( σn,1 − 1 + τn,1

τn,1

)

= w,

ω̂(t
Θ) = lim inf

n→+∞
min

0≤k≤n−1

( σn,k+1 − 1

σn,k+1

)

=
w − 1

w
.

We omit the details of the proof, which follows mutatis mutandis the same lines as

for the proposition. Notice that Lemma 6.1 remains actually valid with the exponent
λ = 1.

When v ′ = +∞, we make use of sequences (σn,0)n tending to 0. If w ≥ 2 is a real

number, take ℓ = ℓ ′ = 1 and set

(7.1) τn,0 =
1

n
, τn,1 = 1, σn,0 =

w

n
, σn,1 = w, (n ≥ w).

Then we obtain a point Θ such that

ω(Θ) = ω(t
Θ) = +∞ and ω̂(Θ) = w, ω̂(t

Θ) =
w − 1

w
.

If moreover w = +∞, substitute (for example)
√

n for w in the formulas (7.1). In that

case, the construction produces a point Θ = (α, β) with 1, α, β linearly independent

over Q, such that

ω(Θ) = ω(t
Θ) = ω̂(Θ) = +∞ and ω̂(t

Θ) = 1.
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pp.
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