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Abstract

Motion planning for high-DOF multi-arm systems operating in complex environments remains a challenging
problem, with many motion planning algorithms requiring evaluation of the minimum collision distance and its
derivative. Because of the computational complexity of calculating the collision distance, recent methods have
attempted to leverage data-driven machine learning methods to learn the collision distance. Because of the sig-
nificant training dataset requirements for high-DOF robots, existing kernel-based methods, which require O(N?)
memory and computation resources, where N denotes the number of dataset points, often perform poorly. This
paper proposes a new active learning method for learning the collision distance function that overcomes the limita-
tions of existing methods: (i) the size of the training dataset remains fixed, with the dataset containing more points
near the collision boundary as learning proceeds, and (ii) calculating collision distances in the higher-dimensional
link SE(3)" configuration space — here n denotes the number of links — leads to more accurate and robust colli-
sion distance function learning. Performance evaluations with high-DOF multi-arm robot systems demonstrate the
advantages of the proposed active learning-based strategy vis-a-vis existing learning-based methods.

1. Introduction

For typical industrial robots operating in simple, static structured environments, motion planning has
now almost been reduced to a black box technology. Sampling-based methods like RRT and its many
variants [1-3] potential field methods [4-8] and related hybrid approaches involving graph search and
optimization [9, 10] are well-established and widely used in many application settings.

At a minimum, these methods require a function that, given a robot’s pose and information about
obstacles in the environment, can determine whether the robot’s pose is collision-free or not. To do so,
CAD models of the robot, obstacles, and the environment together with a simulation environment are
usually assumed available. Typically, the links and obstacles are approximated by boxes [11], spheres
[12], capsules [13], and other simple convex shapes [14] that simplify collision calculations, and standard
computational geometric algorithms for collision checking are employed. For typical low-DOF robots
operating in static structured environments, these methods work well enough.

For more complex robots, however, for example, those with higher degrees of freedom, or robots
with more complex topologies like parallel robots or multiple arms manipulating a common object,
even the most basic form of the motion planning problem — finding a collision-free path — can pose a
formidable challenge. Usually, more information beyond a simple collision checking function is needed
in order to make the problem computationally tractable, that is, the distance between the robot and the
nearest obstacle (including distances between robot link pairs, to avoid self-collisions) together with its
derivative may be needed.

Evaluating the collision distance is a highly computation-intensive task that involves finding the min-
imum distance between an obstacle and each of a robot’s links, with distances computed in either the
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Figure 1. The configuration space for a 2R planar robot [15]: The robot with workspace obstacles
(left), and corresponding collision regions in the configuration space (right).

joint configuration space or the task space. Even for a simple planar two-link robot, the collision-free
configuration space can become very complicated as shown in Fig. 1; for robots with multi-arm or
closed chain topologies, computing pairwise distances between the links and obstacles quickly becomes
computationally intractable, especially as the robot degrees of freedom and the number of obstacles
increases.

Motivated in part by the remarkable success of machine learning methods in robot grasping,
researchers have attempted to leverage similar machine learning methods to learn the collision distance
function. Given sufficient data in the form of robot configurations that are in-collision and collision-free,
distance functions have been learned using a variety of machine learning models, for example, sup-
port vector machine (SVM) models [12, 16], kernel perceptron models [17], and neural network (NN)
models [7, 16, 18-21]. Once the correct distance function is learned, whether or not a configuration is
collision-free can now be inferred in real-time.

The main drawback with existing methods, and a significant one, is the explosion in data requirements
as the degrees of freedom and number of obstacles increase. To illustrate the case of two seven-DOF arms
operating in a shared workspace, discretizing the joint configuration space for the combined 14-DOF
robot system at 10-degree intervals (which is clearly insufficient in realistic settings), and assuming a
200-degree joint range for each joint, this coarse sampling would result in more than 100 billion robot
configurations (~ 20'%).

A somewhat obvious observation is that uniform sampling of the configuration space is inefficient
and in most cases unnecessary; it is much better to sample as many points as possible near the collision
space boundary. The collision space boundary is of course not known a priori, but the boundary must
necessarily lie in those parts of the configuration space in which the in-collision configurations are
adjacent to collision-free configurations.

Based on this observation, an active learning strategy based on sampling points near the boundary
is proposed in ref. [17]. Key to their approach is a kernel perceptron model for estimating collision
distances: by using an active learning-based update strategy, the model can quickly adapt to dynamic
changes in the environment. Results for low-DOF systems in simple structured environments show rea-
sonably good performance. For higher-DOF robots, however, the performance of the kernel perceptron
model is considerably diminished. The underlying reason is that the computational complexity of train-
ing a kernel perceptron model is O(N?), where N denotes the number of training data. Since the training
data requirements for high-DOF robot systems increase substantially, kernel perceptron models are not
well-suited for such systems from both a computational and memory requirement perspective.

In this paper, we propose an active learning strategy for high-DOF multi-arm robot systems that
overcomes these limitations of existing learning-based methods. The proposed active learning-based
boundary data sampling strategy samples near-boundary configurations, even in high-dimensional con-
figuration spaces. A training dataset of fixed size is updated with these sampled configurations so that
the dataset eventually consists mostly of points near the collision boundary. Another key feature of the
proposed algorithm, and one that at first sight may seem somewhat paradoxical, is that by calculating
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distances not in the robot’s configuration space or the task space, but in the larger space of link SE(3)
configurations — for an n-DOF robot system consisting of n articulated links, this space corresponds to
n copies of SE(3) — the learned collision distance function is more accurate, and learning is also more
robust and efficient. The redundancy in representation appears to significantly enhance the ability of a
neural network to learn the distance function.

In summary, our contributions are as follows:

« We propose an active learning-based training method for high-DOF robot systems. This method
ensures that the training dataset focuses more on the near-collision boundary configurations.

o We propose a link SE(3) configuration space representation, a redundant representation of the
joint configuration that enables more accurate model training.

« Experimental evaluations involving high-DOF robot systems verify that our approach achieves
significant performance improvements compared to existing state-of-the-art methods.

In the remainder of this paper, we first discuss related works (Section 2) followed by the problem
formulation of collision distance learning and details of the neural network model (Section 3). Next,
we describe our novel methods (Section 4). To validate the proposed methodology, numerical eval-
uations are performed for two high-DOF multi-arm robot systems. We also conducted a real-world
experiment using a 7-DOF robot arm and obstacles to further validate the effectiveness of our approach.
(Section 5).

2. Related works

A variety of techniques based on machine learning have been proposed to estimate collision distances
and their derivatives. In ref. [7], SVM classifiers are used to classify the safe or dangerous self-collision
status of a humanoid robot’s part pairs, and minimum distances for only the dangerous pairs are esti-
mated using a capsule bounding volume algorithm. A similar approach is proposed in ref. [12], in which
an SVM classifier is used to predict collision labels for a 14-DOF dual-arm robot manipulation system. A
neural network model was trained in ref. [18] to predict the self-collision cost by inputting the Cartesian
joint positions as a concatenated vector. Similarly, the neural network model employed in ref. [19] uti-
lizes the positional encoding vector of the joint configuration as its input. In ref. [16], neural network
models are trained to predict collision labels of a humanoid manipulation system. Ten sub-models are
employed, each corresponding to a separate collision classifier model trained for specific sub-part pairs,
such as the left arm and right leg. In ref. [20], they take an extended configuration, which includes both
joint and workspace configurations, as inputs. GraphDistNet [21] utilizes a graph neural network model
to estimate collision distances, in which the shape information of the manipulator links and obstacles
are represented as graphs, and the geometric relationship between the two graphs is utilized to predict
the collision distance.

Similar to the approach proposed in this paper, DiffCo [17] utilizes an active learning strategy that
modifies the trained collision score function to adapt to dynamic updates in the environment. DiffCo
generates both the collision score and its derivative as a collision classifier model based on the ker-
nel perceptron. A Forward Kinematics (FK) kernel that calculates distances as the Euclidean distance
between points on the robot body is employed. Their active learning approach generates a dataset to
address environmental changes, such as moving obstacles, by combining exploitation points and explo-
ration points: exploitation points are sampled from a Gaussian distribution located near the support
point of the trained kernel perceptron model, while exploration points are sampled from a uniform dis-
tribution within the robot’s joint range limits. The effectiveness of the majority of existing methods is
mostly limited to low-DOF robot systems and struggles with accurately estimating collision distances
for high-DOF systems. A key feature of the proposed approach is that collision distance learning per-
formance is improved through the utilization of the link SE(3) configuration space representation as an
input vector. The proposed method also samples new data points near the decision boundaries of the
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trained model. As noted earlier, kernel perceptron models cannot handle large datasets (i.e., those on
the order of a million data points), and as such these methods are not well-suited to high-DOF systems
with their larger training dataset requirements.

3. Collision distance learning
3.1. Problem formulation

Our objective is to train a collision distance estimator model for a given target robot system, represented
as a parameterized function f,. Initially, we assume that we have access to the ground-truth collision
distance function fsr of the target system, which uses all the necessary information such as the robot
kinematics and the geometric shapes of links and obstacles, to calculate the collision distances d; € R
from joint configurations ¢; € R, that is, d; = fgr(g;). The f5r function encompasses the forward kine-
matics of the robot, 3D shape information of all objects in the system, and minimum distance calculation
between them (clearly, calculating fsr(q) is computationally expensive and impractical for path planning
tasks, but it is feasible for generating the dataset offline).

Next, we collect a dataset D = {(g;, d;);}, containing joint configurations ¢; and corresponding colli-
sion distances d;, computed by the ground-truth collision distance function fgr. Finally, we optimize the
parameters 6 of the model f; by minimizing the mean-squared error loss function L, which measures the
difference between the predicted collision distances f;(g;) and the actual collision distances d;, as shown
in Egs. (1) and (2).

6" = argmin, L(D, f,) D
1
= argming . > lfilg) — il )
(9idi)€D

The trained collision distance estimator model f, can be utilized for collision checking by setting a safety
threshold €. If the estimated collision distance f;(g) is less than €, then the configuration ¢ is regarded as
in-collision, while if f;(g) is greater than €, then the configuration q is collision-free. In the next section,
we describe the structure of the proposed collision distance estimator model f; (Section 3.2), the input
representation of the model (Section 4.1), and the active learning-based training method (Section 4.2).

3.2. Neural network model

When it comes to designing the form of the parametric function f;, there are several options to con-
sider. Among them, neural network models are primarily preferred for f; in the majority of recent works,
mainly because of their potential to harness big data, enable fast inference times, and their recent success
in various fields. To implement the proposed approach, which are based on a novel input representation
and training procedure, we have chosen to use a simple neural network architecture with fully con-
nected layers. By keeping the neural network structure simple, we are able to focus on the benefits of
the proposed approach without introducing additional complexity.

A fully connected layer, also known as a dense layer, is a layer in a neural network where each neuron
is connected to every neuron in the previous and subsequent layers. The purpose of a fully connected
layer is to combine the features learned in the previous layers and perform a linear transformation fol-
lowed by a non-linear activation function to generate the output of the layer. Mathematically, the output
of a fully connected layer can be represented as:

y=¢Wx+D) 3

where x is the input vector of size n, representing the activations of the previous layer, W is the weight
matrix of size m x n, where m is the number of neurons in the fully connected layer and » is the number
of neurons in the previous layer, b is the bias vector of size m, containing the biases for each neuron in
the fully connected layer, ¢ is the activation function applied element-wise, such as the Rectified Linear
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Figure 2. An illustration of the link SE(3) configuration space representation mapping g. The joint
configuration q is mapped to the collection of link frames T;(q) and transformed to an input vector g(q).

Unit (ReLU) or Sigmoid function, and y is the output vector of size m, representing the activations of
the fully connected layer.

Our model consists of five fully connected layers with hidden neurons of (128, 128, 128, 128), each
followed by a ReLU activation function. The model can be formally expressed as:

Jo(q) = (NN 0 g)(q) “)
NNy (x) = WORY 4 p ®)
Y =¢WOh" +b), i=2,3,4 (6)

h(l) — ¢(W(”x+ b(l)) (7)

where g denotes the input representation mapping, and 4 € R'?® denotes the hidden neurons of the i
layer. Thus, the learnable parameter 6 includes weight matrices W@ and biases 5. The input repre-
sentation mapping g depends on user choice (e.g., the joint configuration representation [7, 16] or the
position vector representation of joints [12, 18]). Our choice is detailed in Section 4.1.

4. Methods

4.1. Link SE(3) configuration space representation

Rather than using the joint configuration as the input representation, we use the link SE(3) configuration
space representation for each of the links for more effective learning of the collision distance function.
The mapping g : RY — R!?" represents the forward kinematics from the joint configuration space to the
link SE(3) configuration space for each of the N links as shown in Fig. 2 (recall that T € SE(3) consists
of a 3 x 3 rotation matrix R and a three-dimensional translation vector p, resulting in 12 (dependent)
elements). Given a joint pose g € R", we calculate the link frame T € SE(3) for each link and then arrange
each R and p for all links into a single vector g(g) € R'?". In mathematical notation, the input vector g(q)
is given by

g(q)lz(n—1>+4(i—1)+j = T,-(jn)(é])- ()

Here, g(g); refers to the k™ element of the input vector g(g), while T,;”) represents the element located at
the i row and /™ column of the n™ link frame 7. The variables are defined such that n ranges from 1
to N, and i and j each range from 1 to 3 and 4, respectively.

Clearly, this representation is redundant (e.g., the third column of each R could be fully determined
by the first and second columns), but we use this redundant representation instead of other alternatives,
for example, three-parameter representations or quaternion representations for the rotation matrix R.
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Figure 3. An illustration of the active learning-based training procedure. The process starts with (1) an
initial dataset and proceeds to (2) train the model using this data. Once trained, (3) the model generates
new data points near the trained collision boundary. (4) The true collision distances of these new data
points are determined using the ground-truth collision distance function. (5) The current dataset is then
updated with the newly sampled data points. By repeating this loop of training (2) and dataset updating
(5), the model’s performance in estimating collision distances is progressively refined, allowing for
greater accuracy in the proximity of the collision boundary.

This choice is motivated by its simplicity in implementation and its superior collision distance learning
performance. The link SE(3) configuration space representation only necessitates a flatten() oper-
ation on the link frame 7', thereby making the mapping g and its derivative Vg simple to implement.
Furthermore, our ablation study reveals that the proposed redundant representation shows better learning
performance than other non-redundant representations (Section 5.4).

4.2. Active learning-based training with boundary data sampling

In this section, we describe the proposed active learning-based training method. We employ an iterative
procedure to enhance the model’s performance in estimating collision distances as illustrated in Fig. 3.
Starting with an initial dataset, we use this data to train the model, adjusting its parameters to minimize
the loss function. Once trained, we generate new data points near the trained collision boundary, a region
where f;(g) is close to 0. We then determine the true collision distances for the newly sampled data points
using the ground-truth collision distance function, fgr. These new data points, along with their true col-
lision distances, are then integrated into the current dataset. This entire process, from training the model
to updating the dataset, is repeated N, times. This iterative procedure enables the model to estimate
collision distances more accurately as it encounters new data points near the collision boundary.

The overall process of the proposed active learning-based training method can be easily understood
through a toy experiment of a 2R planar robot system, as illustrated in Fig. 4. We create a robot envi-
ronment consisting of a 2R planar robot and obstacles, along with the ground-truth collision distance
function fsr for this system (Fig. 4(a)). We begin by initializing an initial dataset containing 500 data
points. We then train the first model £} using this dataset. While the first model demonstrates good colli-
sion check accuracy for the training data points, it still shows an inaccurate collision boundary, as shown
in Fig. 4(b). To improve the model, we employ an active learning-based training method that involves
boundary data sampling and dataset update procedures. The target distribution /() for boundary data
sampling of the first model is illustrated in Fig. 4(c), with a high sampling probability near the colli-
sion boundary of the model f;". The updated dataset and trained model after 20 and 50 iterations of
the active learning loop are shown in Fig. 4(d) and (e), respectively. As the active learning loop con-
tinues, the updated dataset increasingly includes more near-collision data points. The plot in Fig. 4(g)
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Figure 4. (a) A 2R planar robot system and its joint configuration space. The gray region in the joint
configuration space indicates the collision area, while the remaining space represents the non-collision
area. (b) The initial dataset, D,, is uniformly sampled in the joint configuration space. The black line
delineates the collision boundary of the model trained using the initial dataset. (c) The target (unnor-
malized) distribution hél)(q) for the boundary data sampling procedure. The sampling probability for
new data points is higher near the trained collision boundary. (d) and (e) depict the updated dataset
and the collision boundary of the trained model after 20 and 50 iterations of the active learning loop,
respectively. (g) The ratio of near-boundary data points, which are the data points in the area shown in
(f), in the dataset increases with each iteration of the active learning loop.

represents the ratio of near-boundary data points in the dataset, with the near-boundary region displayed
in Fig. 4(f). Initially, only 23% of the data points are in the near-boundary region. However, this ratio
converges to nearly 100% as the active learning loop progresses. Once the trained collision boundary
closely approximates the ground-truth collision boundary and the majority of the dataset comprises
near-boundary data points, the active learning loop no longer makes significant changes to the dataset
or the model. At this stage, the data distribution of the dataset remains unchanged, and the performance
of the collision distance estimation model converges. The active learning loop concludes, resulting in
a model that accurately estimates collision distances near the true collision boundary. We have set the
hyperparameter N,.. to a sufficiently large value to ensure that this active learning loop can converge
satisfactorily.

Boundary Data Sampling. We define a target distribution, %, an unnormalized probability distribution
for sampling new data points near the collision boundary:

- m(q)v]

e

qncw ~ h9 (Q) = eXp|: (9)
As shown in Fig. 4(c), hy is highest at the boundary, decreasing with distance from it. o, is a hyperparam-
eter that dictates the rate of decrease in the probability with increasing distance from the boundary. We
then utilize Markov Chain Monte Carlo (MCMC) [22], a powerful and widely used method for sampling
from probability distributions. It is often used when we can’t directly sample from a desired distribution,
but we can calculate some function proportional to its density (in our case, hy). MCMC methods build
a Markov chain of samples, where the next sample is generated based on the current one, and the chain
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Algorithm 1. Active learning-based training method

1: Given an initial dataset D, = {(g;, d;);}, learning rate n, updating dataset size k

2: Initialize 6 — f”

3:fori=0,..., Ny do

4: forj=1,..., Nepon do > Model Training
5: Calculate L(D;, f")
6: Update 6, <6, —nV,L
7 end for
8:  Sample g, < BounparySampLing(fi ") > Boundary Data Sampling
9: Label d,.,, < collision distance calculation fr(gnew)
10: Dt < {(Guew> dnew )i} > Dataset Update
11: D~ <« A subset of D;, consisting of k randomly chosen elements
12: D, < DtU(D; — D)
13: end for

Algorithm 2. Boundary data sampling (MCMC sampling)

1: function BOUNDARYSAMPLING( f;)

2 Gi o . Ifs(9)I?
: iven a target distribution h,(q) =exp [ — — ]
3: Initialize g <— sample from UNIFORM(gin, qmaxl)
4: DPq < ho(q)
5: fori=1,...,max_step do
6: q"<—q+e€,e~N@O,o0) > Random walk
7: Py < ho(g?)
8: u <— sample from UNIFORM (Ui, 1) > Relaxed rejection
9: if P;—: > u then
10: qg<q"
11: end if
12: end for
13: return g

14: end function

is constructed such that its stationary distribution is the desired distribution we want to sample from.
There are many variants of MCMC, here we use Metropolis-Hastings (MH) algorithm [23].

The MH algorithm starts with an arbitrary point from the joint configuration space. A new point is
proposed from an easily sampled distribution, for example, Gaussian distribution. The algorithm then
decides to accept this point, based on an acceptance probability computed from the ratio of the proba-
bility densities at the proposed and current points under the target distribution 4. If the proposed point
is less likely than the current one, it’s accepted with a probability equal to this ratio. A random number
u is drawn to determine whether to accept or reject the proposed point. This process repeats, resulting
in a sequence of points converging to the target distribution 4,, which is data points near the boundary.
The boundary data sampling procedure is detailed in Algorithm 2.

Dataset Update. After generating the new data points Dt with a size of k, we update the training dataset
D; for the next training process. We randomly select data points D~ from the training dataset, also with a
size of k, to be removed. Subsequently, we replace D~ with D in order to preserve the overall size of the
next training dataset D;, . This replacement strategy is employed to prevent the continuous growth of

https://doi.org/10.1017/50263574723001790 Published online by Cambridge University Press


https://doi.org/10.1017/S0263574723001790

Robotica 4063

Table I. Hyperparameters.

Name Value
Nactive 20
Nepoch 1000
k 100,000
o, 0.1

o 0.05
Upnin 0.8
max_step 1000

training time in each active learning loop. By incorporating near-boundary data points and this dataset
update strategy, the training dataset gradually focuses more on the near-boundary area, as demonstrated
in Fig. 4. Once the majority of training data points are located in the near-boundary area (Fig. 4(e)),
updating the dataset with new data points does not yield substantial changes to the distribution of the
training dataset. At this stage, we can conclude the active learning loop and proceed to obtain the final
trained model.

5. Collision distance learning performance
5.1. Evaluation setting

Proposed Methods and Baselines. In this section, we train and compare various models for collision
distance learning. These models include the methods proposed in this paper as well as existing collision
distance learning methods used as the baseline. The trained models are as follows:

o JointNN: A neural network model that directly takes the joint configuration as inputs (the input
representation used in refs. [7, 16]).

o PosNN: A neural network model that takes the Cartesian coordinates of the joint positions as
inputs (the input representation used in refs. [12, 18]).

o ClearanceNet [20]: A neural network model composed of two fully connected layers with each
followed by a dropout layer, taking the joint configuration as inputs.

o DiffCo [17]: A kernel perceptron model with FK kernel, which inputs the joint configuration
and outputs the collision score.

o SE3NN (ours): A neural network model that takes the link SE(3) space representation as inputs.

To compare the effectiveness of the proposed link SE(3) configuration space representation with other
input representations, we implement JointNN and PosNN with the same network structure as our model
(SE3NN) as described earlier in Section 3.2. ClearanceNet and DiffCo, which are existing learning-
based collision estimator models, are also used as baselines. Details on implementing ClearanceNet and
DiffCo are consistent with those specified in refs. [17, 20].

We employ two distinct training procedures for the neural network models: the training procedure
denoted as active is the proposed active learning-based training framework described in Section 4.2,
while the training procedure denoted none corresponds to the standard training procedure using only the
initial training dataset (without active learning). The hyperparameters used in these training procedures
are presented in Table I. DiffCo also employs an active learning-based boundary data sampling strategy
that is specific to the kernel perceptron model. The active learning-based training procedure of DiffCo
models that we implement is denoted DiffCo; these are similar to our framework, the key difference
being that the boundary data sampling strategy is replaced with DiffCo’s strategy.

Target Environment and Datasets. We select two high-DOF multi-arm robot manipulation systems as
our target environment as shown in Fig. 5. The first system features two Franka-Emika Panda robot
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Figure 5. An illustration of the target multi-arm systems. (a) Two 7-DOF Franka-Emika Panda robot
arms resulting in a 14-DOF system. (b) Three 7-DOF robot arms resulting in a 21-DOF system.

arms, each with 7-DOF, placed 0.6 m apart and facing each other. The second system features three
Panda robot arms arranged equidistantly on a circle of radius 0.5 m centered at the origin, each facing
towards the center.

For each target environment, we generate a collision distance dataset D = {(g;, d;);} by randomly
sampling joint configurations ¢g; from a uniform distribution within the joint limits, and calculating
the corresponding collision distance d; using mesh-based collision distance calculation methods [24].
Using the collision distance calculation algorithm implemented in PyBullet [25], a Python wrapper for
the Bullet physics engine library, we generate 1 million data points for both the training and test dataset.
For training the DiffCo model, we use 75,000 data points with Boolean collision labels (-1 for collision-
free and 1 for collision). This dataset size is the maximum manageable dataset size for kernel perceptron
training on our computing hardware (AMD Ryzen Threadripper 3960X, 256 GB RAM, and NVIDIA
GeForce RTX4090 with 24 GB VRAM).

Evaluation Metrics. In this section, we present the numerical metrics used to evaluate the performance
of our collision distance learning models. Since collision distance estimation models are typically used
for collision label classification, we evaluate classification performance using two metrics: accuracy
with the threshold € = 0.0, and Area Under the Receiver Operating Characteristic (AUROC). AUROC
is a widely used performance metric for classification tasks that measures the model’s ability to distin-
guish between different classes. It quantifies the overall performance of a classifier by calculating the
area under the ROC curve, which represents the tradeoft between the true positive rate and the false pos-
itive rate at various classification thresholds. AUROC provides a single scalar value that summarizes the
classifier’s discriminative power across all possible thresholds, making it robust to threshold selection.
Higher AUROC values indicate better classification performance, with a perfect classifier achieving an
AUROC of 1. We also report the near-accuracy and near-AUROC metrics, which evaluate the classi-
fication performance only on data points in the test dataset with collision distances within the range of
-0.1 to 0.1 m, since accurately classifying collisions in the close-to-collision region is critical for actual
robot manipulation tasks.

5.2. Evaluation results

We conduct a comparative analysis of the collision classification performance of our methods against
baseline models. Table II presents the main results, highlighting the effectiveness of the active learning-
based training framework and the link SE(3) configuration space representation. The top-performing
metrics for each target environment are indicated in bold, all of which are achieved by the SE3NN
model trained with the active procedure.

Compared to other input representations like the joint configuration and the Cartesian coordinates
of joint positions, the use of the link SE(3) configuration space representation results in a significant
improvement in collision classification performance in both robot systems. Furthermore, our SE3NN
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Table I1. Collision distance learning performance.

Accuracy near-Accuracy
Env. Model Training (¢ =0.0) AUROC (e =0.0) near-AUROC
Figure 5(a) JointNN none 0.9765 0.9942 0.8799 0.9491
(Two arms) active 0.9809 0.9960 0.9018 0.9643
PosNN none 0.9810 0.9965 0.9025 0.9681
active 0.9828 0.9971 09117 0.9735
ClearanceNet none 0.9627 0.9855 0.8128 0.8845
active 0.9707 0.9900 0.8516 0.9186
DiffCo none 0.9541 0.9828 0.7786 0.8641
DiffCo 0.9328 0.9827 0.7024 0.8674
SE3NN none 0.9862 0.9981 0.9293 0.9830
active 0.9886 0.9987 0.9416 0.9877
Figure 5(b) JointNN none 0.9691 0.9868 0.8189 0.8875
(Three arms) active 0.9765 0.9918 0.8609 0.9280
PosNN none 0.9799 0.9943 0.8808 0.9485
active 0.9821 0.9955 0.8937 0.9587
ClearanceNet none 0.9443 0.9507 0.6944 0.7202
active 0.9532 0.9619 0.7377 0.7746
DiffCo none 0.9453 0.9589 0.7019 0.7557
DiffCo 0.9447 0.9600 0.7105 0.7642
SE3NN none 0.9826 0.9958 0.8969 0.9619
active 0.9858 0.9971 0.9092 0.9701

model demonstrates better performance than other baseline models, ClearanceNet and DiffCo, which
both use the joint configuration as inputs.

The proposed active learning-based training framework also demonstrates improved performance
compared to the none training procedure. Although the improvements in terms of accuracy and AUROC
may seem modest, the near-accuracy and near-rAUROC metrics show significant improvement compared
to the baseline models. This indicates that our method enables the model to make more accurate collision
classifications in the close-to-collision region, where collision classification is critical. In contrast, the
classification performance metrics of the DiffCo model are even worse in some cases when the DiffCo
training procedure is applied. This may be due to the fact that the boundary data sampling strategy
of DiffCo targets the update of the kernel perceptron model for dynamic changes in the environment
for low-DOF systems, rather than constructing datasets for high-DOF robot systems that require over a
million data points for collision distance learning.

5.3. Time and memory

The results of measuring the training time, inference time, and the required GPU memory of the mod-
els are presented in Table III. The measured training times are all based on using the proposed active
training procedure. To ensure a fair performance comparison, we also trained using the none training
procedure for the same number of epochs as the active training procedure (Nycive X Nepoen)- Thus, there
is no significant difference in the training time between the two training procedures. For Diffco, we have
provided both training times in the table as there was a difference in the training time between the none
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Table II1. The training time, inference time, and required GPU memory.

Figure 5(a) (Two arms) Figure 5(b) (Three arms)

Training Inference Training Inference

time (h) time (ms) time (h) time (ms) Required GPU
Model CPU GPU CPU GPU memory (GB)
JointNN 1.18 0.076  0.186 1.26 0.079 0.184 1.364
PosNN 16.4 0.079  0.183 23.9 0.076  0.186 1.378
ClearanceNet 34.9 0.233 0.139 449 0.239  0.148 1.384
DiffCo 0.13/2.96* 0.128 0.097 0.22/6.83* 0.878  0.098 23.166
SE3NN 16.9 0.082  0.181 23.8 0.079  0.189 1.378

*In case of Diffco, training time when utilizing the none/ DiffCo training procedure.

training procedure and the DiffCo training procedure. The required GPU memory was measured as the
maximum GPU memory utilized during the model training.

Training PosNN and SE3NN requires more time compared to JointNN because these two models
involve calculating the robot’s forward kinematics during the training process. For ClearanceNet, we
set the batch size to the value used in ref. [20], which is 191. Hence, compared to other models with a
batch size of 10,000, ClearanceNet requires more gradient steps (assuming the same number of epochs),
resulting in longer training times. The training time for DiffCo is notably shorter compared to other
neural network-based models. However, it is due to the fact that we utilized only 7.5% of the training data
points for training DiffCo models. The kernel perceptron model’s training process involves computing
the distance between all training data points, which requires O(N*) memory where N is the number of
training data points. Consequently, this limitation hinders the use of large datasets. In our DiffCo model
implementation, we were able to utilize a maximum of 75,000 data points under the 24 GB graphics
processing unit memory constraint.

The inference time represents the average time taken by each model to perform collision distance
estimation 10,000 times in repetitions. Both CPU and GPU execution scenarios were considered sepa-
rately. Due to the simplicity of the neural network architectures and the limited number of layers used,
all models achieved inference times within 1ms. This level of performance is compatible with a 1 kHz
control frequency, ensuring efficient real-time operation.

5.4. Compared to other non-redundant representations of SE(3)

In the proposed approach, we utilize the redundant representation of SE(3), which involves the 12-
dimensional flattened vector of a rotation matrix and a translation vector. To evaluate the effectiveness
of our redundant representation, we compare our approach to other non-redundant representations,
namely quaternions and Euler angles. In mathematical notation, we introduce two distinct mappings:
8qua : RY > RV representing the quaternion representation and gg,e : RV — R for the Euler angles
representation. The input vectors for these mappings are given by:

8qua(@)7n-17n = [to_quaternion(R™(¢)), p"(q)] € R/, (10
geurer(@en—16n = [to_Euler_angles(R"(q)), p"(¢)] € R". an

Here, R™ denotes the rotation matrix and p™ the translation vector for the n™ link frame, represented
by 7®. QuatposNN utilizes gq..(¢), while EulerposNN employs gg,.e-(¢) for their input mappings.

Table IV shows the comparison results. The performances of these different representations do not
show a big performance gap; however, it is noteworthy that the proposed redundant representation
exhibits slightly better performance compared to the other non-redundant representations.
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Table IV. Performance of other non-redundant input representations.

Accuracy near-Accuracy
Env. Model (e =0.0) AUROC (e =0.0) near-AUROC
Figure 5(b)  QuatposNN 0.9819 0.9955 0.8930 0.9586
(Three arms) EulerposNN  0.9818 0.9955 0.8923 0.9586
SE3NN 0.9826 0.9958 0.8969 0.9619

0.08 Collision
— SE3NN (active)

WL

=
32 34 36 38 40 42
Time (s)

Collision Distance (m)
°
4

Figure 6. An illustration of the real robot experiment. (a) A 7-DOF single-arm robot system with obsta-
cles and (b) the corresponding simulation environment. (c) The plot demonstrates the collision labels
and estimated collision distances of the proposed model (SE3NN with the active training procedure).

6. Real-world experiments

To validate the performance of our collision distance estimation, we conducted real-world experiments
using a 7-DOF Panda robot arm (Fig. 6). The workspace was designed with complex obstacles like
shelves and tables, introducing complexity to the robot arm’s workspace. To safely generate close-to-
collision trajectories, we conducted a human-guided demonstration as illustrated in Fig. 6(a). During this
demonstration, the robot arm followed guided trajectories that came close to, and occasionally collided
with, various parts of the obstacles. The guided trajectory encompassed motions that closely swept the
inner space of the shelves and the top of the tables.

We employed the active training procedure to train the SE3NN model, following the same data gener-
ation and model training process as described in Sections 4 and 5. To calculate the ground-truth collision
distance of the dataset, we constructed a simulation environment for the real-world robot system, as
illustrated in Fig. 6(b). The collision distance estimated by the trained SE3NN model and the real-world
collision labels are plotted in Fig. 6(c). The plot demonstrates that the model successfully predicts neg-
ative collision distance when the robot collides with obstacles. Throughout the entire trajectory, we
conducted collision distance estimation with a frequency of 1 kHz, resulting in a total of 84,668 colli-
sion distance estimations. The proposed model exhibited a collision classification accuracy of 95.9%
with a threshold of € = 0.0.

7. Conclusion

In this paper, we have presented an active learning strategy for learning the collision distance function
for high-DOF multi-arm robot systems operating in complex environments. The proposed method rests
on two key ideas — an active learning-based training method with a boundary data sampling strategy that
efficiently provides near-boundary data points for the training dataset, and using the link SE(3) config-
urations as inputs to the model instead of the usual joint configurations. Our methods enable the model
to accurately learn complex collision distance functions for high-DOF robot systems. We validate our
approach on two high-DOF multi-arm robot systems with two and three 7-DOF robot arms, respectively.
Our results show significant improvement in collision classification performance over the existing state-
of-the-art. The SE3NN model with the active training procedure, which is the model to which both the
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active learning-based training method and the link SE(3) configuration space representation are applied,
demonstrates the best performance in every performance metric.

The proposed methods successfully demonstrate novel collision distance estimation performance
when applied to a static environment, but if the environment changes, for example, changing the robot
base position, the training process must be repeated. In future work, we will address this problem through
transfer learning or other learning-based methods; it may be possible to quickly fine-tune or retrain the
model with some new data points for different environments.
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