
ON CONJUGATES IN DIVISION RINGS 

CARL C. FAITH 

Let D be a non-commutative division ring with centre C, and let A be a 
proper division subring not contained in C. In (4) Cartan raised the question: 
is it ever possible for each inner automorphism of D to induce an auto­
morphism of A? As is well-known, Cartan (4, Théorème 4) with the aid of his 
Galois Theory answered this negatively in case D is a finite dimensional 
division algebra. Later Brauer (3), and Hua (8), using elegant, elementary 
methods, extended Cartan's theorem to arbitrary division rings. 

Let D* denote the group of all non-zero elements of D, and let H (A) be 
the subgroup of all elements of D* which effect inner automorphisms of D 
that map A onto A. In this note I prove the following extension of the Cartan-
Brauer-Hua theorem: H(A) cannot have finite index in Z>*. This theorem 
implies (and is implied by) the condition: D always contains infinitely many 
subrings xAx~l isomorphic {or conjugate) to A. 

Although this result implies that every finite division ring is commutative, 
its proof does not constitute a new proof of this old theorem (17) of Wedder-
burn's. As a matter of fact, the proof requires not only Wedderburn's theorem 
but also Jacobson's theorem (9) on algebraic division algebras over a finite 
field. 

1. Conjugates in division rings. If 5 is any subset of a division ring D, 
the centralizer of S in D is the set Sf = {x Ç D\sx = xs for all s Ç S}. When 
5 consists of the single element 6, df denotes this division subring. S" is the 
division subring (Sf)'. If A is any division subring of D, A* represents the 
multiplicative group of non-zero elements of A. C will always be the centre 
of D. 

The group of all automorphisms of D which leave fixed each element of A 
is signified by G (A); J (A) is the subgroup of those inner automorphisms of D 
which belong to G (A). The group G (A) is outer when J (A) is the identity 
subgroup (e). Since /(A) is isomorphic toV*/C*, whereV = A', one deduces 
from the following proposition that if J (A) is a finite group 9^ (e), then A' 
is a finite field. Thus when C is not a finite field, J{A) is finite if and only if 
G (A) is outer. 

PROPOSITION 1. IfV is any proper division subring of a division ring D> 
thenX/* has finite index in D* if and only if D is a finite field. 

Proof. If D is a finite field there is nothing to prove. Conversely, if D is not 
a finite field, then D is not finite (17). SupposeV* has finite index in D*. Then 
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V* necessarily has infinitely many elements; for each 6 Ç D, there exist 
elements Ôh Ô2, and Ô Ç V, ôi ^ <52, such that 6 + 5i = <5(0 + <52). But then 
(1 - 8)6 e V. Since <5i ̂  ô2, ô cannot be 1. Thus (<5 - l)~l £ V, so that 
0 Ç V. Hence Z> = V , andV is not a proper subring. 

Proposition 1 actually implies that a non-central element 0 of a non-com­
mutative division ring D has infinitely many conjugates in D. This is Her-
stein's theorem (7). As several authors (15, 16) have remarked, the Cartan-
Brauer-Hua theorem is not needed in the proof. 

If A is an arbitrary division subring of D, there is occasion to consider 
isomorphisms of A(0) which leave fixed the elements of A. Such an isomorphism, 
often called an isomorphism of A(0) with respect to A, when induced by an 
inner automorphism of D is effected by an element x £ A'. If 0 commutes 
with every element of A', that is, if 0 £ A", then no non-trivial isomorphism 
of the kind mentioned exists. If A' is finite, then the number of conjugates 
x~ldx, with x Ç A', is also finite. In all other cases, however, 0 has infinitely 
many such conjugates, as can be deduced from the caseV = A' of the next 
theorem, which has been obtained also by Kasch (11). 

THEOREM 1. Let D be a non-commutative division ring, and let V be an 
infinite division subring not contained in the center of D. Then every element 
0 in D which is outside of\/' possesses infinitely many conjugates x~lBx with 
x GV. 

Proof. If 0 has only finitely many conjugates with x € V , then A* has 
finite index inV*, where A = V / ^ #'. Since V is not finite, by Proposition 1, 
A must be all ofV. But thenV' = A'. Since 6 G A' this implies that 6 GV', 
contrary to its choice. Thus 6 must have infinitely many conjugates x~l0x, 
with x Ç V. 

The following corollaries are all proved under the assumption of Theorem 1, 
that is,V = A' is infinite. In case D is an algebraic division algebra, Jacobson's 
theorem (9) makes this assumption on A' superfluous. 

COROLLARY. Let [9] denote the set of elements in D of the form x0x-1, with 
x G A'. Then, if [6] contains an element other than 6, then [6] contains infinitely 
many elements. 

Proof. Since [8] 9e 0, then 6$ A", so by Theorem 1, the set [6] is infinite. 

If [d] is finite for every d Ç D, then D = A". Thus A' = C, that is, G (A) 
is outer. This yields the next corollary, which emphasizes the severity of 
Nobusawa's locally finite condition (13). 

COROLLARY. If the set of conjugates of 0 with respect to A is finite for each 
6 Ç D, then G (A) is outer. 

Let X be indeterminate over A, and let A[X] denote the polynomial ring 
consisting of all finite sums of elements of the form aXbX . . . cXd, with 
a, b, . . . , c, d, Ç A. If 6 G D is a zero of a polynomial in A[X], then so is 
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every conjugate of 6 with respect to A. Thus the next corollary is a conse­
quence of Theorem 1. When A = C it specializes to a corollary of Herstein's 
(7). 

COROLLARY. If at least one zero of a polynomial p(X) Ç A[X] lies in D but 
outside of A", then p{X) has infinitely many zeros in D. 

The next theorem provides another generalization of Herstein's theorem. 

THEOREM 2. Let D be a non-commutative division ring with centre C, and let 
A be a proper division subring which contains C, and has finite dimension d 
over C. Then any element of D which lies outside of A possesses infinitely many 
conjugates with respect to A. 

Proof. H. Cartan (4) has shown under the hypotheses of the theorem that 
D has finite dimension over A' equal to d, and moreover, that A" = A. Now 
A' cannot be finite. Otherwise D is an algebraic division algebra over a finite 
field, and hence, by Jacobson's theorem (9, Theorem 8), D is commutative, 
contrary to hypothesis. Theorem 1 now applies. 

2. Isomorphic division subrings. Let A be a division subring of a non-
commutative division ring D, such that A is not contained in the centre C of 
D. Then the number of distinct isomorphisms of A of the form x~lAx is equal 
to the index ofV* in Z>*, whereV is the centralizer of A in D. That this index 
is always infinite can be obtained from the case A = D of the next proposition, 
as well as from Proposition 1. 

PROPOSITION 2. Let D be a division ring, and let A be a division subring with 
infinitely many elements. Let A be a division subring of D not contained in the 
centralizer A' of A. Then there exist infinitely many isomorphisms of A of the 
form x~xAx, with x 6 A. 

Proof. By Theorem 1, any 6 in D not in A' is moved infinitely many times 
by the inner automorphisms of D effected by the elements of A. Since A is 
not contained in A', there must be infinitely many distinct isomorphisms of 
the form x~lAx, with x £ A. 

Let A be a proper division subring not contained in the centre C of a non-
commutative division ring D. Let 

H(A) = {x Ç D^xAx-1 = A}, 

and consider the two conditions: 

(1) index of H(A) in D* = m < oo ; 
(2) index o/V* in H(A) = r < oo ; 

where V is the centralizer of A in D. I wish to prove that (1) cannot hold. 
Since Proposition 1 asserts that (1) and (2) cannot hold simultaneously, it will 
be useful to note some conditions under which (2) holds. Equation (2) can 
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be interpreted as follows : The inner automorphisms of D induce only finitely 
many distinct automorphisms in A. This case certainly occurs when A is a 
field having finite degree over A C\ C. More generally, since the centre Z of 
A is mapped onto Z by every automorphism of A, it is easily seen that 
H{Z) ~D H (A). Thus if Z is not contained in C, the case just mentioned for 
fields having finite degree produces the next lemma. 

LEMMA 1. Let A be a proper division subring of a non-commutative division 
ring D such that the centre Z of A has finite degree n > 1 over Z C\ C, where C 
denotes the centre of D. Then H (A) has infinite index in D*. 

The proposition below is actually a result of Brauer's (3). It asserts that 
in general h and h + 1 cannot both belong to H (A). I include the proof for 
the sake of completeness. 

PROPOSITION 3. Let h and h + 1 be non-zero elements of D. Then both h and 
h + 1 belong to H(A), where A is a division subring of D, if and only if h lies 
in A, or in the centralizer of A. 

Proof. The sufficiency is evident. Let 8 Ç A. Then following Brauer (3); 

(i) hô = ôoh, where ô0 = hhhr1 Ç A; 
(ii) (h + 1)0 = ôi(A + 1), where Ôi = (h + l)ô(h + l)"1 € A. 

From (ii), hô + ô = ôji + ôu so that by (i), (<50 — ôi)h = (ôi — S). If for some 
choice of 5, 50 9

e ou then h — (ô0 — 5i)_1(ôi — ô) lies in A. Otherwise, for all 
5, ôo = ôi. Then from (ii) ô = <50. This is true for all ô. Thus h lies in the 
centralizer of A. This completes the proof. 

Now let h and h0 both belong to H (A). Then if h + h0 6 H (A), it is 
necessary that M0

_ 1 + 1 6 H (A). By the preceding proposition hhçT1 lies in 
A, or A'. If further h0 Ç A C\ A', then h lies in A, or A'. This produces the 

COROLLARY. If h, h0j and h + h0 all belong to H (A), A as in the preceding 
proposition, then hh<rl lies in either A, or A'. If further ho lies in the centre of 
A, then h lies in A, or A'. 

Let D be a non-commutative division ring with centre C, and let A be a 
proper division subring not contained in C. Then there exist two elements 
v and d, v in D but outside of A, and d in A, such that vd ^ dv. Now Nagahara 
(12, Lemma 1) has shown that there is at most one c in d' C\ A such that 
(v + c)d(v + c)~l lies in A. Now let (v + c)d(v + c) - 1 be outside of A, 
c G df C\ A. Then v + c does not belong to H (A). It is natural to inquire 
whether there exist at most two c's in d' C\ A, say C\ and c2, such that v + c\ 
and v + Ci belong to the same right coset of H (A) in D*. This question is 
answered in the affirmative below. 

PROPOSITION 4. Let D be a non-commutative division ring with centre C, and 
let A be a proper division subring not contained in C. Choose v in D outside of 

https://doi.org/10.4153/CJM-1958-036-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1958-036-7


378 CARL C. FAITH 

A, and d in A, such that vd 7^ dv. Let \ck) be a sequence of distinct elements of 
d' C\ A. Then at most two elements of the sequence {v + ck) can belong to the 
right coset of H(A) in D* determined by any one of them. 

Proof. Suppose v + ck, k = 1, 2, 3, all belong to the same right coset of 
H (A) in D*, where the ck, k = 1, 2, 3, are distinct elements of dr C\ A. Then 
(v + ci)(v + c2)~

l = h, and (v + cz)(v + c2)~
l = h0} where h and h0 belong 

to H(A). This implies that (1 — h)v = hc2 — Ci, and (1 — h0)v = h0c2 — Cz. 
Thus, 

(a) v = — c2 + (1 — h)-1^ — Ci), 
and, 

(0) v = - c2+ (1 - Ao)""1^ - Ci). 

Moreover, by equating v in (a) and (0), one obtains: 

(1 - A)(l - Ao)-1 = (c2 - cx){c2 - C3)-1 = do 6 d7 H A. 

Therefore, 
(7) sWo = h + (do — 1). 

From the corollary to Proposition 3, it follows, since neither do nor do — I 
equals zero, that h (do — l)""1 G A, whence h G A, or else h (do — 1)_1 G A'. 
Now A cannot belong to A, otherwise by (a), v must belong to A, contrary 
to its choice. Consequently h(do — 1)_1 G Ar, so that h belongs to the division 
ring A generated by A' and the elements c\, c2, and c*. But then (a) shows 
that v G A. Thus v G d\ that is, vd = dp, contrary to its choice. This com­
pletes the proof. 

Evidently from this proposition, H (A) has infinite index in D* provided 
only that A is a proper subring of D not contained in the centre such that 
for some choice of d in A, d $ C, the division ring d' C\ A is infinite. Otherwise 
every d G A belongs to a finite division ring. Thus (directly, even without 
applying Wedderburn's theorem) A is an algebraic division algebra over the 
finite field Z = A H A ' . Then Jacobson's theorem (9, Theorem 8) implies that 
A = Z, that is, A is commutative, so that d' C\ A = A for each d G A. Con­
sequently A must be a finite field of necessarily finite degree n > 1 over the 
subfield AC\ C. The first lemma now may be applied to complete the proof 
of the next theorem. 

THEOREM 3. Let D be a non-commutative division ring, and A a proper division 
subring not contained in the centre. Then there exist infinitely many distinct 
subrings xAx~1. 

3. Applications. Let D be a non-commutative division ring, and let A 
and A be division subrings such that the following conditions are satisfied: 

(1) A does not contain A. 
(2) A' does not contain A. 
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When A is infinite, (2) in conjunction with Proposition 2 implies that A has 
infinitely many isomorphisms of the form aAa~l with a Ç A. Then it is 
interesting to ask: Are there infinitely many different subrings aAa~l with 
a £ A? Theorem 3 shows that the answer to this question is yes in case A 
contains A properly, inasmuch as (2) implies that A is not contained in the 
centre of A. This is a special case of (I) of the next corollary. 

COROLLARY 1. Let D be a non-commutative division ring, and let A and A 
be division subrings such that (1) and (2) above hold. Then D contains infinitely 
many different subrings of the form aAa-1 with a Ç A, provided any one of the 
following conditions are satisfied: 

(I) A C\ A is not contained in the centre of A. 
(II) Z P A is infinite, where Z is the centre of A. 

(III) D has characteristic 0. 
(IV) D is algebraic over the prime subfield. 

Proof. (I) Let B = A P A, and let HB = H(B) P A*, HA = H(A) P A*. 
It is easily verified that HB 3 iJA. Since B é A, and since B is not contained 
in the centre of A, HB, and a fortiori HA, has infinite index in A*. This com­
pletes the proof of (I). 

(II) Since i ' H A ^ A , and since A P A ^ A, one can choose d £ A, 
d $ A', and v Ç A, v i A such that vd ^ dv. Now df C\ A C\ A contains ZC\A. 
By Proposition 4 the sequence {(v + c)A(v + c)-1} is infinite, c ^ Z C\ A. 
This completes the proof of (II). 

(111)-(IV). Let P denote the prime subfield of D. If D has characteristic 
0, then P is infinite, and so is Z P A. Hence (II) applies. If D is algebraic 
over P , then Jacobson's theorem shows that P must be infinite. 

COROLLARY 2. Let D be a non-commutative division ring, and let F be a 
division subring whose centralizer F' is not a field. Let d be any element of F' 
not contained in its centre. Let R be any division subring of F, and let A = R(d) 
denote the division subring generated by R and d. Then there exist infinitely 
many different xAx~1 with x G Fr. 

Proof. Let A = Ff. It is clear that (1) of Corollary 1 holds inasmuch as 
A is contained in the centralizer df of d, whereas A is not. Moreover, since 
d Ç A P A, it follows that A P A is not contained in the centre of A. Thus 
(I) and (2) of Corollary 1 hold, so that its conclusion applies. 

It is an interesting consequence of this result that the extension D/F of 
the corollary possesses infinitely many intermediate division rings xAx~l in 
the case R = F. That the hypothesis on Fr is necessary in some cases for 
this situation to arise can be seen as follows: Let F be a division subring 
of D containing C, and having finite dimension over C. It is known (10, p. 
165) that there is a 1 — 1 correspondence between intermediate division 
subrings of F/C and those of D/F'', and that F" = F. Now suppose that 
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F' is a field. Then, since F 2 Ff, F' has finite degree over C. If further we 
assume that F'/C is separable, then this extension contains only finitely 
many intermediate fields. Then D/F contains only finitely many intermediate 
division rings. 

The Cartan-Brauer-Hua theorem has been generalized extensively to 
simple and other rings (1, 2, 6, 14). I have obtained an analogue of Theorem 3 
for these rings, and this has been announced in (5). The new results in (5) 
neither depend upon, nor contain, the results of the present paper. 
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