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On Periodic Solutions to Constrained
Lagrangian System

Oleg Zubelevic

Abstract. ALagrangian system is considered. he conûguration space is a non-compactmanifold that
depends on time. A set of periodic solutions has been found.

1 Introduction

Existence problems for periodic solutions to Lagrangian systems have been studied
intensively since the beginning of the 20th century and even earlier. An immense
number of diòerent results and methods have been developed in this ûeld. We men-
tion only those that are closely related to this article.

In [2], periodic solutionswere obtained for the Lagrangian systemwith Lagrangian

L(t, x , ẋ) = 1
2 g i j(x)ẋ i ẋ j

−W(t, x), x = (x 1 , . . . , xm
) ∈ Rm .

Here and in the sequel, we use the Einstein summation convention. he form g i j is
symmetric and positive deûnite:

g i jξ i ξ j
≥ const1 ⋅ ∣ξ∣2 .

he potential is W(t, x) = V(x) + g(t)∑m
i=1 x i , where V is a bounded function,

∣V(x)∣ ≤ const2, and g is an ω-periodic function. he functions V , g i j are even.
Under these assumptions we prove that there exists a nontrivial ω-periodic

solution.
Our main tools to obtain periodic solutions are variation techniques. Variational

problems and Hamiltonian systems have been studied extensively. Classic references
for these subjects are found in [4, 6, 7].

2 The Main Theorem

We introduce some notation. Let x = (x 1 , . . . , xm) and φ = (φ1 , . . . , φn) be points of
the standard Rm and Rn , respectively. hen let z stand for the point (x , φ) ∈ Rm+n .
Denote by ∣ ⋅ ∣ the standard Euclidean norm of Rk , k = m,m + n, that is, ∣x∣2 =

∑
k
i=1(x i)2 .
he variable z can consist only of x without φ or conversely.
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Periodic Solutions to Constrained Lagrangian System 243

he main object of our study is the Lagrangian system with Lagrangian

(2.1) L(t, z, ż) = 1
2 g i j ż i ż j

+ a i ż i
− V , z = (z1 , . . . , zm+n

).

Remark 2.1 he term a i ż i corresponds to the so-called gyroscopic forces. For ex-
ample, the Coriolis force and the Lorentz force are gyroscopic.

he functions g i j , a i ,V depend on (t, z) and belong to C2(Rm+n+1); moreover, all
these functions are 2π-periodic in each variable φ j and ω-periodic in the variable t,
for ω > 0. For all (t, z) ∈ Rm+n+1 it follows that g i j = g ji .

We also assume that there are positive constants C ,M ,A,K such that for all (t, z)
and ξ ∈ Rm+n , we have
(2.2) ∣a i(t, z)∣ ≤ C +M∣z∣, V(t, z) ≤ A∣z∣2 , 1

2 g i j(t, z)ξ i ξ j
≥ K∣ξ∣2 .

System (2.1) obeys the following ideal constraints:

(2.3) f j(t, z) = 0, j = 1, . . . , l < m + n, f j ∈ C2
(Rm+n+1

).

he functions f j are also 2π−periodic in each variable φ j and ω-periodic in the vari-
able t.

Introduce a set
F = {(t, z) ∈ Rm+n+1

∣ f j(t, z) = 0, j = 1, . . . , l} .
Assume that

(2.4) rank (
∂ f j
∂zk (t, z)) = l

for all (t, z) ∈ F, so that F is a smooth manifold.
Assume also that all the functions f j are either odd,

(2.5) f j(−t,−z) = − f j(t, z),
or even,
(2.6) f j(−t,−z) = f j(t, z).

Remark 2.2 Actually, it is suõcient to say that all the functions are deûned and have
formulated the above properties in some open symmetric vicinity of the manifold F.
We believe that this generalization is unimportant andwill keep referring to the whole
space Rm+n+1 just for simplicity of exposition.

Deûnition 2.3 We say that a function z(t) ∈ C2(R,Rn+m) is a solution to system
(2.1), (2.3) if there exists a set of functions

{α1 , . . . , α l
} ⊂ C(R)

such that
d
dt

∂L
∂ż i (t, z(t), ż(t)) −

∂L
∂z i (t, z(t), ż(t)) = α j

(t)
∂ f j
∂z i (t, z(t)) ,(2.7)

(t, z(t)) ∈ F(2.8)
for all real t.
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244 O. Zubelevich

In the absence of constraint (2.3), the right-hand side of (2.7) is equal to zero, and
condition (2.8) is dropped.

he functions α i are deûned from equations (2.7) and (2.3) uniquely.

heorem 2.4 Assume that
(i) all the following functions are even:

g i j(−t,−z) = g i j(t, z), a i(−t,−z) = a i(t, z), V(−t,−z) = V(t, z);
(ii) the following inequality holds:

(2.9) K −
Mω
√

2
−
Aω2

2
> 0;

(iii) for some ν = (ν1 , . . . , νn) ∈ Zn , there is a function z̃(t) = (x̃(t), φ̃(t)) ∈ C1

(R,Rm+n) such that
z̃(−t) = −z̃(t), x̃(t + ω) = x̃(t), φ̃(t + ω) = φ̃(t) + 2πν

and
(2.10) (t, z̃(t)) ∈ F , t ∈ R.
hen system (2.1), (2.3) has a solution z(t) = (x(t), φ(t)) such that
(a) the function z is odd: z(−t) = −z(t);
(b) x(t + ω) = x(t), φ(t + ω) = φ(t) + 2πν;
(c) the functions {α i} are ω-periodic and odd provided the constraints are odd, and

the α j are even for even constraints.
his assertion remains valid in the absence of constraints (2.3).

Actually, the solution stated in this theorem is as smooth as is allowed by smooth-
ness of the Lagrangian L and the functions f j up to C∞.

Remark 2.5 (i) If all the functions do not depend on t, then we can choose ω
to be arbitrary small, and inequality (2.9) is satisûed. Taking a vanishing sequence of
ω, we obtain inûnitely many periodic solutions of the same homotopic type.

(ii) Suppose that M = 0 and V(t, z) ≤ A1∣x∣α , α < 2. Choose a small constant
A > 0 such that inequality (2.9) is satisûed. hen choose a constant c1 > 0 such that
for all ∣x∣, one has A1∣x∣α ≤ A∣x∣2 + c1. Now the second condition of the theorem is
satisûed for the new potential

V1 = V − c1 ≤ A∣x∣2 .

Remark 2.6 heorem 2.4(ii) is essential for a non-compact manifold F or when the
constraints are absent. Indeed, the system

L(t, x , ẋ) = 1
2 ẋ

2
− 1

2 (x − sin t)2

obeys all the conditions except inequality (2.9). It is easy to see that the corresponding
equation ẍ + x = sin t does not have periodic solutions.

When F is compact then condition (ii) can be dropped and the theorem follows
from the standard results.
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Figure 1: he tube and the ball.

Examples

Our ûrst example is as follows.
A thin tube can rotate freely in the vertical plane about a ûxed horizontal axis pass-

ing through its centre O. A moment of inertia of the tube about this axis is equal to J.
he mass of the tube is distributed symmetrically such that the tube’s centre of mass
is placed at the point O.

Inside the tube there is a small ball that can slide without friction. he mass of the
ball is m. he ball can pass by the point O and fall out of the ends of the tube.

he system undergoes the standard gravity ûeld g.
It seems evident that for typicalmotion, the ball reaches an end of the tube and falls

out of the tube. It is surprising, at least at ûrst glance, that this system has very many
periodic solutions such that the tube turns around several times during the period.

he sense of generalized coordinates ϕ, x is clear from Figure 1.
he Lagrangian of this system is

(2.11) L(x , ϕ, ẋ , ϕ̇) = 1
2 (mx2

+ J)ϕ̇2
+ 1

2mẋ2
−mgx sin ϕ.

From heorem 2.4, it follows that for any constant ω > 0, system (2.11) has a solution
ϕ(t), x(t), t ∈ R such that
(a) x(t) = −x(−t), ϕ(t) = −ϕ(−t);
(b) x(t + ω) = x(t), ϕ(t + ω) = ϕ(t) + 2π.
his result shows that for anyω > 0 the system has anω-periodicmotion such that the
tube turns around once during the period. he length of the tube should be chosen
properly.

Our second example is a counterexample. Let us show that the ûrst condition of
heorem 2.4 cannot be omitted.
Consider a mass point m that slides on a right circular cylinder of radius r. he

surface of the cylinder is perfectly smooth. he axis x of the cylinder is parallel to the
force of gravity g and directed upwards.

he Lagrangian of this system is

(2.12) L(x , φ, ẋ , φ̇) = m
2
(r2φ̇2

+ ẋ2
) −mgx .

https://doi.org/10.4153/S0008439519000456 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000456


246 O. Zubelevich

All the conditions except the evenness are satisûed, but it is clear this system does not
have periodic solutions.

3 Proof of Theorem 2.4

In this section, we use several standard facts from functional analysis and Sobolev
space theory [1, 3].

3.1 Recall that the Sobolev space H1
loc(R) consists of functions u(t), t ∈ R such that

u, u̇ ∈ L2
loc(R). he following embedding holds: H1

loc(R) ⊂ C(R).

Lemma 3.1 Let u ∈ H1
loc(R) and u(0) = 0. hen for any a > 0, we have

∥u∥2
L2(0,a) ≤

a2

2
∥u̇∥2

L2(0,a) , ∥u∥2
C[0,a] ≤ a∥u̇∥

2
L2(0,a) .

Here and below, the notation ∥u̇∥L2(0,a) implies that

∥u̇∣(0,a)∥ L2(0,a) ,

which also applies to ∥u∥C[0,a], etc.
his lemma is absolutely standard; nevertheless, for completeness of exposition,

we provide a sketch of its proof.

Proof of Lemma 3.1 From formula

(3.1) u(t) = ∫
t

0
u̇(s) ds,

it follows that

∫

a

0
u2

(s) ds = ∫
a

0
(∫

t

0
u̇(s) ds)

2
dt.

It remains to observe that by the Cauchy inequality,

∣∫

t

0
u̇(s) ds∣ ≤ ∫

t

0
∣u̇(s)∣ ds ≤ ∥u̇∥L2(0,a)(∫

t

0
ds)

1/2
, t ∈ [0, a].

his implies the ûrst inequality of the lemma. he second inequality also follows from
formula (3.1) and the Cauchy inequality.

he lemma is proved. ∎

3.2 Here we collect several spaces that are needed in the sequel.

Deûnition 3.2 By X denote a space of functions u ∈ H1
loc(R) such that for all t ∈ R,

the following conditions hold:

u(−t) = −u(t), u(t + ω) = u(t).

By virtue of Lemma 3.1, the mapping u ↦ ∥u̇∥L2(0,ω) determines a norm in X. his
norm is denoted by ∥u∥. he norm ∥ ⋅ ∥ is equivalent to the standard normofH1[0,ω].
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he space (X , ∥ ⋅ ∥) is a Banach space. Since the norm ∥ ⋅ ∥ is generated by an inner
product

(u, v)X = ∫

ω

0
u̇(t)v̇(t) dt,

the space X is also a real Hilbert space; in particular, this implies that X is a re�exive
Banach space.

Deûnition 3.3 Let Φ stand for the space {ct + u(t) ∣ c ∈ R, u ∈ X}.

By the same argument, (Φ, ∥ ⋅ ∥) is a re�exive Banach space. Observe also that
Φ = R⊕ X, and by direct calculation, we get

∥ψ∥2
= ωc2 + ∥u∥2 , ψ(t) = ct + u(t) ∈ Φ.

Observe that X ⊂ Φ.

Deûnition 3.4 Let E stand for the space

Xm
×Φn

= {z(t) = (x 1 , . . . , xm , φ1 , . . . , φn
)(t) ∣ x i

∈ X , φ j
∈ Φ}.

he space E is also a real Hilbert space with an inner product deûned as

(z, y)E = ∫
ω

0

m+n

∑
i=1

ẋ i
(t) ẏ i

(t) dt,

where z = (zk), y = (yk) ∈ E for k = 1, . . . ,m + n.
We denote the corresponding norm in E by the same symbol and write

∥z∥2
= ∥∣z∣∥ 2

=
m+n

∑
k=1

∥zk
∥
2 .

he space E is also a re�exive Banach space.
We introduce the set

E0 = {(x , φ) ∈ E ∣ φ j
=

2πν j

ω
t + u j , ∀x ∈ X , ∀u j ∈ X , j = 1, . . . , n} .

his set is a closed plane of codimension n in E.
If (x , φ) ∈ E0, then φ(t + ω) = φ(t) + 2πν.

Deûnition 3.5 Let Y stand for the space

{u ∈ L2
loc(R) ∣ u(t) = u(−t), u(t + ω) = u(t) almost everywhere in R} .

he space Ym+n is a Hilbert space with respect to the inner product

(z, y)Y = ∫

ω

0

m+n

∑
i=1

x i
(t)y i

(t) dt,

where z = (zk), y = (yk) ∈ Ym+n , k = 1, . . . ,m + n.

Deûnition 3.6 Let W stand for the set

{z( ⋅ ) ∈ E0 ∣ (t, z(t)) ∈ F , t ∈ R}.

https://doi.org/10.4153/S0008439519000456 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000456


248 O. Zubelevich

3.3 By formula (2.10), the set W is non-void.
We introduce the Action Functional S ∶ W → R,

S(z) = ∫
ω

0
L(t, z, ż) dt.

Our next goal is to prove that this functional attains its minimum.
Observe that ∣x∣ ≤ ∣z∣; then by using estimates (2.2), we get

S(z) ≥ ∫
ω

0
(K∣ż∣2 − ∣ż∣(C +M∣z∣) − A∣z∣2) dt.

From the Cauchy inequality and Lemma 3.1, it follows that

∫

ω

0
∣ż∣∣z∣ dt ≤ ω

√
2
∥z∥2 , ∫

ω

0
∣z∣2 dt ≤ ω2

2
∥z∥2 , ∫

ω

0
∣ż∣ dt ≤

√
ω∥z∥.

We ûnally obtain

(3.2) S(z) ≥ (K −
Mω
√

2
−
Aω2

2
)∥z∥2

− C
√

ω∥z∥.

Taking into accountRemark 2.6, we proceedwith the assumption that themanifold
F is not compact.
By formula (2.9), the functional S is coercive:

(3.3) S(z) Ô⇒∞,

as ∥z∥ → ∞.
Note that the Action Functional that corresponds to system (2.12) is also coercive,

but, as we see above, property (3.3) by itself does not imply existence results.

3.4 Let {zk} ⊂W be a minimizing sequence,

S(zk) → inf
z∈W

S(z),

as k →∞.
By formula (3.3), the sequence {zk} is bounded: supk ∥zk∥ < ∞. Since the space

E is re�exive, this sequence contains a weakly convergent subsequence. Denote this
subsequence in the same way: zk → z∗ weakly in E.

Moreover, the space H1[0,ω] is compactly embedded in C[0,ω]. hus, extracting
a subsequence from the subsequence and keeping the same notation, we also have

(3.4) max
t∈[0,ω]

∣zk(t) − z∗(t)∣ → 0,

as k →∞.
he set E0 is convex and strongly closed; therefore, it is weakly closed: z∗ ∈ E0. By

continuity (3.4), one also gets z∗ ∈W .
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3.5 Let us show that inf z∈W S(z) = S(z∗).

Lemma 3.7 Let a sequence {uk} ⊂ Φ weakly converge to u ∈ Φ (or uk , u ∈ X and
uk → u weakly in X), and also maxt∈[0,ω] ∣uk(t) − u(t)∣ → 0 as k →∞.

hen for any f ∈ C(R) and for any v ∈ L2(0,ω), it follows that

∫

ω

0
f (uk)u̇kv dt → ∫

ω

0
f (u)u̇v dt, as k →∞.

Indeed,

∫

ω

0
f (uk)u̇kv dt = ∫

ω

0
( f (uk) − f (u)) u̇kv dt + ∫

ω

0
f (u)u̇kv dt.

he function f is uniformly continuous in a compact set
[ min
t∈[0,ω]

{u(t)} − c, max
t∈[0,ω]

{u(t)} + c]

with some constant c > 0. Consequently, we obtain

max
t∈[0,ω]

∣ f (uk(t)) − f (u(t))∣ Ð→ 0.

Since the sequence {uk} is weakly convergent, it is bounded:
sup
k

∥uk∥ < ∞.

In particular, we get
∥u̇k∥L2(0,ω) < ∞,

so that as k →∞,

∣∫

ω

0
( f (uk) − f (u)) u̇kv dt∣ ≤

∥v( f (uk) − f (u))∥ L2(0,ω) ⋅ ∥u̇k∥L2(0,ω) Ð→ 0.

To ûnish the proof, it remains to observe that a function

w z→ ∫
ω

0
f (u)ẇv dt

belongs to Φ′ (or to X′). Indeed,

∣∫

ω

0
f (u)ẇv dt∣ ≤ max

t∈[0,ω]
∣ f (u(t))∣ ⋅ ∥v∥L2(0,ω)∥w∥.

3.6 he following lemma is proved similarly.

Lemma 3.8 Let a sequence {uk} ⊂ Φ (or {uk} ⊂ X) be such that
max
t∈[0,ω]

∣uk(t) − u(t)∣ Ð→ 0,

as k →∞.
hen for any f ∈ C(R) and for any v ∈ L1(0,ω), it follows that

∫

ω

0
f (uk)v dt Ð→ ∫

ω

0
f (u)v dt,

as k →∞.
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3.7 Introduce a function pk(t, ξ) = L(t, zk , ż∗ + ξ). he function pk is a quadratic poly-
nomial of ξ ∈ Rm+n , so that

pk(t, ξ) = L(t, zk , ż∗) +
∂L
∂ż i (t, zk , ż∗)ξ

i
+

1
2

∂2L
∂ż j∂ż i (t, zk , ż∗)ξ

i ξ j .

he last term in this formula is non-negative:

∂2L
∂ż j∂ż i (t, zk , ż∗)ξ

i ξ j
= g i j(t, zk)ξ i ξ j

≥ 0.

We consequently obtain

pk(t, ξ) ≥ L(t, zk , ż∗) +
∂L
∂ż i (t, zk , ż∗)ξ

i .

It follows that

S(zk) = ∫
ω

0
pk(t, żk − ż∗) dt(3.5)

≥ ∫

ω

0
L(t, zk , ż∗) dt + ∫

ω

0

∂L
∂ż i (t, zk , ż∗)(ż

i
k − ż i

∗) dt.

From Lemmas 3.7 and 3.8, it follows that

∫

ω

0
L(t, zk , ż∗) dt Ð→ ∫

ω

0
L(t, z∗ , ż∗) dt, as k →∞,

and

∫

ω

0

∂L
∂ż i (t, zk , ż∗)(ż

i
k − ż i

∗) dt Ð→ 0, as k →∞.

Passing to the limit as k →∞ in (3.5), we ûnally yield

inf
z∈W

S(z) ≥ S(z∗) Ô⇒ inf
z∈W

S(z) = S(z∗).

Remark 3.9 Based on these formulas, one can estimate the norm ∥z∗∥. Indeed,
take a function ẑ ∈W ; then due to formula (3.2), one obtains

S(ẑ) ≥ S(z∗) ≥ (K −
Mω
√

2
−
Aω2

2
)∥z∗∥2

− C
√

ω∥z∗∥,

here S(ẑ) is an explicitly calculable number.

3.8 From this point, we begin proving the theorem under the assumption that the con-
straints are odd (2.5).

hus, for any v ∈ Xm+n such that
∂ f j
∂zk (t, z∗)v

k
(t) = 0,

it follows that
d
dε

∣
ε=0

S(z∗ + εv) = 0.

Introduce a linear functional

b ∶ Xm+n
Ð→ R, b(v) = d

dε
∣
ε=0

S(z∗ + εv),
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and a linear operator

A ∶ Xm+n
Ð→ X l , (Av) j =

∂ f j
∂zk (t, z∗)v

k .

It is clear that both these mappings are bounded and kerA ⊂ ker b.

Lemma 3.10 he operator A maps Xm+n onto X l that is

A(Xm+n
) = X l .

Proof Let Ã(t) denote the matrix

∂ f j
∂zk (t, z∗(t)) .

It is convenient to consider our functions to be deûned on the circle t ∈ S = R/(ωZ).
Fix an element w ∈ X l . Let us cover the circle S with open intervals U i , i =

1, . . . ,N , such that there exists a set of functions

v i ∈ H1
(U i), Ã(t)v i(t) = w(t), t ∈ U i , i = 1, . . . ,N .

And let ψ i be a smooth partition of unity subordinated to the covering {U i}. A
function ṽ(t) = ∑

N
i=1 ψ i(t)v i(t) belongs to H1(S), and for each t it follows that

Ã(t)ṽ(t) = w(t). But the function ṽ is not obliged to be odd.
Since Ã(−t) = Ã(t), we have

Ã(t)v(t) = w(t), v(t) = ṽ(t) − ṽ(−t)
2

∈ Xm+n .

he lemma is proved. ∎

3.9 Recall a lemma from functional analysis [5].

Lemma 3.11 Let E ,H,G be Banach spaces and let

A ∶ E → H and B ∶ E → G

be bounded linear operators; kerA ⊆ kerB.
If the operator A is onto, then there exists a bounded operator Γ ∶ H → G such that

B = ΓA.

hus, there is a linear function Γ ∈ (X l)′ such that

b(v) = ΓA(v) and v ∈ Xm+n .

Or by virtue of the Riesz representation theorem, there exists a set of functions
{γ1 , . . . , γ l} ⊂ X such that

d
dε

∣
ε=0

S(z∗ + εv) = ∫
ω

0
γ̇ j

(t) d
dt

(
∂ f j
∂zk (t, z∗)v

k
(t))dt

for all v ∈ Xm+n .
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3.10 Every element v ∈ Xm+n is presented as follows:

v(t) = ∫
t

0
y(s) ds,

where y ∈ Ym+n is such that

∫

ω

0
y(s) ds = 0.

Introduce a linear operator h ∶ Ym+n → Rm+n by the formula

h(y) = ∫
ω

0
y(s) ds.

Deûne a linear functional q ∶ Ym+n → R by the formula

q(y) = (b − ΓA)v , v(t) = ∫
t

0
y(s) ds.

Now all our observations lead to ker h ⊆ ker q. herefore, there exists a linear func-
tional λ ∶ Rm+n → R such that q = λh.

Let us rewrite the last formula explicitly. here are real constants λk such that for
any yk ∈ Y , one has

∫

ω

0
(
∂L
∂żk (t, z∗ , ż∗)y

k
(t) + ∂L

∂zk (t, z∗ , ż∗)∫
t

0
yk

(s) ds)dt

= ∫

ω

0
γ̇ j

(t)
∂ f j
∂zk (t, z∗)y

k
(t) dt + ∫

ω

0
γ̇ j

(t) d
dt

(
∂ f j
∂zk (t, z∗)) ∫

t

0
yk

(s) dsdt

+ λk ∫

ω

0
yk

(s) ds.

3.11 By the Fubini theorem, we obtain

(3.6) ∫

ω

0

∂L
∂żk (t, z∗ , ż∗)y

k
(t) dt + ∫

ω

0
yk

(s)∫
ω

s

∂L
∂zk (t, z∗ , ż∗) dtds

= ∫

ω

0
γ̇ j

(t)
∂ f j
∂zk (t, z∗)y

k
(t) dt + ∫

ω

0
yk

(s)∫
ω

s
γ̇ j

(t) d
dt

(
∂ f j
∂zk (t, z∗)) dtds

+ λk ∫

ω

0
yk

(s) ds.

In this formula, the functions
∂L
∂żk (t, z∗ , ż∗), γ̇ j

(t)
∂ f j
∂zk (t, z∗)

are even and ω-periodic functions of t.
he functions

γ̇ j
(t) d
dt

(
∂ f j
∂zk (t, z∗)) ,

∂L
∂zk (t, z∗ , ż∗)

are odd and ω-periodic, so that the functions

∫

ω

s
γ̇ j

(t) d
dt

(
∂ f j
∂zk (t, z∗))ds and ∫

ω

s

∂L
∂zk (t, z∗ , ż∗)ds

are even and ω-periodic in s.
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herefore, equation (3.6) is rewritten as (y, q)Y = 0 for any y = (y1 , . . . ym+n) ∈

Ym+n , and q = (q1 , . . . , qm+n) stands for

qk =
∂L
∂żk (t, z∗ , ż∗) + ∫

ω

t

∂L
∂zk (s, z∗ , ż∗)ds

− γ̇ j
(t)

∂ f j
∂zk (t, z∗) − ∫

ω

t
γ̇ j

(s) d
ds

(
∂ f j
∂zk (s, z∗))ds − λk .

Consequently, we obtain the following system:

(3.7)
∂L
∂żk (t, z∗ , ż∗) + ∫

ω

t

∂L
∂zk (s, z∗ , ż∗)ds =

γ̇ j
(t)

∂ f j
∂zk (t, z∗) + ∫

ω

t
γ̇ j

(s) d
ds

(
∂ f j
∂zk (s, z∗))ds + λk .

Here, k = 1, . . . ,m + n.
If we formally diòerentiate both sides of equations (3.7) in t, then we obtain the

Lagrange equations (2.7) with α j = γ̈ j .
Equations (3.7) hold for almost all t ∈ (0,ω) but all the functions contained in (3.7)

are deûned for all t ∈ R.
Now we employ the following trivial observation: if w ∈ L1

loc(R) is an ω-periodic
and odd function, then for any constant a ∈ R a function

t z→ ∫
t

a
w(s)ds

is also ω-periodic.
Hence the functions

∫

ω

t
γ̇ j

(s) d
ds

(
∂ f j
∂zk (s, z∗))ds, ∫

ω

t

∂L
∂zk (s, z∗ , ż∗)ds

are ω-periodic, and equation (3.7) holds for almost all t ∈ R.

3.12 Let g i j stand for the components of the matrix inverse to (g i j) ∶ g i j g i k = δ
j
k . Present

equation (3.7) in the form

ż j
∗(t) = gk j

(t, z∗(t))(3.8)

⋅ (λk + γ̇ i
(t) ∂ f i

∂zk (t, z∗(t)) + ∫
ω

t
γ̇ i
(s) d
ds

(
∂ f i
∂zk (s, z∗(s)))ds

− ∫

ω

t

∂L
∂zk (s, z∗(s), ż∗(s))ds − ak(t, z∗(t))) .

Together with equation (3.8), consider the follwing equations:

(3.9)
∂ f j
∂t

(t, z∗(t)) +
∂ f j
∂zk (t, z∗(t)) ż

k
∗(t) = 0.

hese equations follow from (2.3).
Recall that by the Sobolev embedding theorem, z∗ ∈ X ⊂ C(R).
Due to (2.4), we have

detB(t, z∗) ≠ 0, B(t, z∗) = (gk j
(t, z∗)

∂ f i
∂zk (t, z∗)

∂ f l
∂z j (t, z∗))

https://doi.org/10.4153/S0008439519000456 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000456


254 O. Zubelevich

for all t. Substituting ż∗ from (3.8) to (3.9), we can express γ̇ j and see γ̇ j ∈ C(R).
hus, from (3.8), it follows that ż∗ ∈ C(R).
Applying this argument again, we obtain γ̈ j , z̈∗ ∈ C(R).
his proves the theorem for the case of odd constraints.

3.13 Let us discuss the proof of the theorem under the assumption that the constraints are
even (2.6).

Deûnition 3.12 By Z denote a space of functions u ∈ H1
loc(R) such that for all t ∈ R,

u(−t) = u(t) and u(t + ω) = u(t).

he space Z l is a real Hilbert space with respect to an inner product

(u, v)Z =
l

∑
i=1
∫

ω

0
(u i(t)v i(t) + u̇ i(t)v̇ i(t))dt.

his is the standard inner product in H1[0,ω].
So what has changed now? he operator A takes the space Xm+n onto the space

Z l . he proof of this fact is the same as in Lemma 3.10.
By theRiesz representation theorem, there exists a set of functions {γ1 , . . . , γ l} ⊂ Z

such that

b(v) = ∫
ω

0
γ̇ j

(t) d
dt

(
∂ f j
∂zk (t, z∗)v

k
(t))dt

+ ∫

ω

0
γ j

(t)
∂ f j
∂zk (t, z∗)v

k
(t) dt

for all
v = ∫

t

0
y(s)ds, y ∈ Ym+n , ∫

ω

0
y(s)ds = 0,

so that equation (3.7) is replaced with the following one
∂L
∂żk (t, z∗ , ż∗) + ∫

ω

t

∂L
∂zk (s, z∗ , ż∗)ds

= γ̇ j
(t)

∂ f j
∂zk (t, z∗) + ∫

ω

t
γ̇ j

(s) d
ds

(
∂ f j
∂zk (s, z∗))ds

+ ∫

ω

t
γ j

(s)
∂ f j
∂zk (s, z∗)ds + λk .

Here, k = 1, . . . ,m + n. By the same argument, the functions

∫

ω

t
γ j

(s)
∂ f j
∂zk (s, z∗)ds and ∫

ω

t
γ̇ j

(s) d
ds

(
∂ f j
∂zk (s, z∗))ds

are ω-periodic, and one can put α j = γ̈ j − γ j .
he other argument is the same as above. he theorem is proved. ∎
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