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Tensorially absorbing inclusions of
C*-algebras
Pawel Sarkowicz
Abstract. When D is strongly self-absorbing, we say an inclusion B ⊆ A of C*-algebras is
D-stable if it is isomorphic to the inclusion B ⊗D ⊆ A⊗D. We give ultrapower characterizations
and show that if a unital inclusion is D-stable, then D-stability can be exhibited for countably
many intermediate C*-algebras concurrently. We show that such unital embeddings between unital
D-stable C*-algebras are point-norm dense in the set of all unital embeddings, and that every
unital embedding between D-stable C*-algebras is approximately unitarily equivalent to a D-stable
embedding. Examples are provided.

1 Introduction

The study of inclusions of C*-algebras has been of recent interest. There is no short
supply of research concerning inclusions relating to noncommutative dynamics [8,
18, 30, 42, 44], as well as inclusions of simple C*-algebras [51]. There has also been
work done regarding the passage of properties from a subalgebra to a larger algebra
using tracial approximations [38]. We discuss inclusions from the lens of tensorially
absorbing a strongly self-absorbing C*-algebra D [66].

When speaking of tensorial absorption with a strongly self-absorbing C*-algebra,
central sequences play a role akin to McDuff ’s characterization of when a II1 von
Neumann algebra absorbs the unique hyperfinite II1 factor R [40]. Central sequences
have been studied since the inception of operator algebras, being used by Murray
and von Neumann to exhibit non-isomorphic II1 factors by showing that L(F2) does
not have property Γ [41]. They were also used in Connes’ theorem concerning the
uniqueness of R [13], and the classification of automorphisms on hyperfinite factors
[11, 13]. In [2, 3], Bisch considered the central sequence algebra Nω ∩M′ associated
with an (irreducible) inclusion of II1 factors N ⊆M and characterized when there was
an isomorphism Φ ∶M ≃M⊗R such that Φ(N) = N⊗R in terms of the existence of
non-commuting sequences in N which asymptotically commute with the larger von
Neumann algebra M (in the ∥ ⋅ ∥2-norm). As pointed out by Izumi [31], there are
similar central characterizations for unital inclusions of separable C*-algebras which
tensorially absorb a strongly self-absorbing C*-algebra D (it was at least pointed out
for D being one of Mn∞ ,O2 ,O∞).
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1316 P. Sarkowicz

For a strongly self-absorbing C*-algebra D [66, Definition 1.3(iv)], we study
D-stable inclusions (see Section 4 for detailed definitions), analogous to Bisch’s notion
for an (irreducible) inclusion of II1 factors [2]. We say that an inclusion B ⊆ A is
D-stable if there is an isomorphism A ≃ A⊗D such that

A A⊗D

B B ⊗D

≃

≃

ι ι⊗idD
(1.1)

commutes.
We study such inclusions systematically, discussing central sequence characteriza-

tions, permanence properties, and giving examples toward the end. We list some key
findings here. The first is that unitalD-stable inclusions exist between unital, separable
D-stable C*-algebras if there is any unital inclusion, and that the set of unital D-
stable inclusions is quite large. Moreover, as far as classification of embeddings up
to approximate unitary equivalence (in particular by K-theory and traces), D-stable
embeddings are all that matter.

Theorem 1.1 (Proposition 4.11 and Corollary 4.12) Let A, B be unital, separable,
D-stable C*-algebras.
(1) The set of unital D-stable embeddings B ↪ A is point-norm dense in the set of all

unital embeddings B ↪ A.
(2) Every unital embedding B ↪ A is approximately unitarily equivalent to a unital

D-stable embedding.

We note that this set is however not everything. We provide examples of non-
D-stable inclusions of D-stable C*-algebras, namely by fitting a C*-algebra with
perforated Cuntz semigroup or with higher stable rank (in particular, non-Z-stable
C*-algebras) in between two D-stable C*-algebras. The second useful tool is that a
D-stable inclusion allows one to find an appropriate isomorphism witnessing D-
stability of countably many intermediate subalgebras at once.

Theorem 1.2 (Theorem 4.8) Let B ⊆ A be a unital, D-stable inclusion of separable C*-
algebras. If (Cn)n∈N is a sequence of C*-algebras such that B ⊆ Cn ⊆ A unitally for all n,
then there exists a unital *-isomorphism Φ ∶ A ≃ A⊗D such that:
(1) Φ(B) = B ⊗D and
(2) Φ(Cn) = Cn ⊗D for all n ∈ N.

This is not a trivial condition, as it is not true that any such isomorphism sends
every intermediate C*-algebra to its tensor product with D (see Example 4.6). In
fact, one can always find an intermediate C*-algebra C between B and A and an
isomorphism A ≃ A⊗D sending B to B ⊗D which does not send C to C ⊗D

(although, of course, we will still have C ≃ C ⊗D).
The above result, together with the Galois correspondence of Izumi [30], allows

us to get a result similar to the main theorem of [1]. There they prove that if G ↷α

A is an action of a finite group with the weak tracial Rokhlin property on a C*-
algebra A with sufficient regularity conditions, then every C*-algebra between Aα ⊆ A
and A ⊆ A⋊α G is Z-stable. Assuming we have a unital C*-algebra with the same
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Tensorially absorbing inclusions of C*-algebras 1317

regularity conditions, we show that we can witness Z-stability of all such intermediate
C*-algebras concurrently.

Theorem 1.3 (Corollary 5.6) Let A be a unital, simple, separable, nuclear Z-stable
C*-algebra and G ↷α A be an action of a finite group with the weak tracial Rokhlin
property. There exists an isomorphism Φ ∶ A⋊α G ≃ (A⋊α G) ⊗Z such that whenever
C is a unital C*-algebra satisfying either:

(1) Aα ⊆ C ⊆ A or
(2) A ⊆ C ⊆ A⋊α G,

we have Φ(C) = C ⊗Z.

This paper is structured as follows. We discuss various local properties in Section 3,
and then formalize the notion of aD-stable embedding in Section 4, examining several
properties and consequences. In Section 5, we show how several examples arising from
noncommutative dynamical systems fit into the framework ofD-stable inclusions. We
finish with several examples in Section 6.

2 Preliminaries

2.1 Notation

We use capital letters A, B, C , D to denote C*-algebras and usually a calli-
graphic D to denote a strongly self-absorbing C*-algebra. Generally, small letters
a, b, c, d , . . . , x , y, z will denote operators in C*-algebras. A+ will denote cone of
positive elements in a C*-algebra A. If ε > 0 and a, b are elements in a C*-algebra,
we will write

a ≈ε b(2.1)

to mean that ∥a − b∥ < ε. This will make some approximations more legible.
The symbol ⊗ will denote the minimal tensor product of C*-algebras, while ⊙ will

mean the algebraic tensor product. We use the minimal tensor product throughout,
and it is common for us to deal with nuclear C*-algebras so there should not be any
ambiguity. The symbol ⊗ will denote the von Neumann tensor product.

We will denote by Mn the C*-algebra of n × n matrices, and Mn∞ the uniformly
hyperfinite (UHF) C*-algebra associated with the supernatural number n∞. We will
write Q for the universal UHF algebra Q = ⊗n∈N Mn .

By G ↷α A, we will mean that the (discrete) group G acts on A by automorphisms,
i.e., α ∶ G → Aut(A) is a homomorphism. A⋊r ,α G will denote the reduced crossed
product, which we will just write as A⋊α G if it is clear from context that the group
is amenable and A is nuclear (e.g., if G is finite). We will denote by Aα the fixed point
subalgebra of the action (or AG if the action is clear from context).

For a map f ∶ X → Y between sets X and Y, we will write f ∶ X ↪ Y to mean that
f is injective and f ∶ X ↠ Y to mean that f is surjective. This will usually be done in
the context of *-homomorphisms.
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2.2 Ultrapowers, central sequences, and central sequence algebras

Fix a free ultrafilter ω ∈ βN. Throughout, we will use ultrapowers to describe asymp-
totic behavior. Alternatively, one can use sequence algebras, although this comes down
to a matter of taste and one can swap between the two if desired, as we will provide
local characterizations. This also means that all of what we do will be independent of
the specific ultrafilter ω.

For a C*-algebra A, the ultrapower of A is the C*-algebra

Aω ∶= �∞(A)/c0,ω(A),(2.2)

where c0,ω ∶= {(an)n∈N ∈ �∞(A) ∣ limn→ω ∥an∥ = 0} is the ideal of ω-null sequences.
We can embed A into Aω canonically by means of constant sequences: we identify
a ∈ A with the equivalence class of the constant sequence (a)n∈N.

To ease notation, we will usually write elements of Aω as sequences (an)n∈N,
keeping in mind that these are equivalence classes without explicitly stating it every
time. We note that the norm on Aω is given by ∥(an)n∈N∥ = limn→ω ∥an∥.

Kirchberg’s ε-test [35, Lemma A.1] is essentially the operator algebraists’ Łoś’
theorem without having to turn to (continuous) model theory. Heuristically, it says
that if certain things can be done approximately in an ultrapower, then certain things
can be done exactly in an ultrapower.

Lemma 2.1 (Kirchberg’s ε-test) Let (Xn)n be a sequence of sets and suppose that for
each n, there is a sequence ( f (k)n )k∈N of functions f (k)n ∶ Xn → [0,∞). For k ∈ N, let

f k
ω(s1 , s2 , . . . ) ∶= lim

n→ω
f (k)n (sn).(2.3)

Suppose that for every m ∈ N and ε > 0, there is s ∈ ∏n Xn with f (k)ω (s) < ε for
k = 1, . . . , m. Then there exists t ∈ ∏n Xn with f (k)ω (t) = 0 for all k ∈ N.

The above is useful, although if one so wishes, one can usually construct exact
objects from approximate objects by using standard diagonalization arguments (under
some separability assumptions). These sorts of arguments work in both the ultrapower
setting and the sequence algebra setting.

Finally, if α ∈ Aut(A) is an automorphism, there is an induced automorphism on
Aω , which we will denote by αω , given by

αω((an)n∈N) ∶= (α(an))n∈N .(2.4)

2.3 Central sequences and central sequence subalgebras

For a unital C*-algebra A, the C*-algebra of ω-central sequences is

Aω ∩ A′ = {x ∈ Aω ∣ [x , a] = 0 for all a ∈ A},(2.5)

where we are identifying A ⊆ Aω with the constant sequences. If B ⊆ A is a unital
C*-subalgebra and S ⊆ Aω is a subset, we can associate the relative commutant of S
in Bω :

Bω ∩ S′ = {b ∈ Bω ∣ [b, s] = 0 for all s ∈ S}.(2.6)
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Of particular interest will be when S = A, and B ⊆ A is a unital inclusion of separable
C*-algebras.

2.4 Strongly self-absorbing C*-algebras

A unital separable C*-algebra D is strongly self-absorbing if D /≃ C and there is
an isomorphism ϕ ∶D→D⊗D which is approximately unitarily equivalent to the
first factor embedding d ↦ d ⊗ 1D (see [66]). All known strongly self-absorbing C*-
algebras are: the Jiang–Su algebra Z [32], the Cuntz algebras O2 and O∞ [15], UHF
algebras of infinite type, and O∞ tensor a UHF algebra of infinite type. Strongly self-
absorbing C*-algebras have approximately inner flip and therefore have K-theoretic
restrictions (see [20, 61]). They are also nuclear, simple, and have at most one tracial
state [66],

Tensorial absorption with strongly self-absorbing C*-algebras gives rise to many
regular properties, for example, in terms of K-theory, traces, and the Cuntz semi-
group [32, 46, 47, 50]. Of paramount interest is the Jiang–Su algebra Z. An accu-
mulation of work has successfully classified all (unital) separable, simple, nuclear,
infinite-dimensional, Z-stable C*-algebras satisfying the Universal Coefficient The-
orem (UCT) of Rosenberg and Schochet [53] by means of K-theory and traces (see
[9] and the references therein). We describe how one might work with Z-stability in
terms of its standard building blocks. Recall that, for n, m ≥ 2, the dimension drop
algebras are

Zn ,m ∶= { f ∈ C([0, 1], Mn ⊗ Mm) ∣ f (0) ∈ Mn ⊗ 1Mm , f (1) ∈ 1Mn ⊗ Mm}.(2.7)

Such an algebra is a called a prime dimension drop algebra when n and m are
coprime. The Jiang–Su algebra Z is the unique separable simple C*-algebra with
unique tracial state which is an inductive limit of prime dimension drop algebras with
unital connecting maps [32] (in fact, the dimension drop algebras can be chosen to
have the form Zn ,n+1). It is KK-equivalent to C and Z-stability is a often necessary
condition for K-theoretic classification.

By [52, Proposition 5.1] (or [54, Proposition 2.1] for our desired formulation),
Zn ,n+1 is the universal C*-algebra generated by elements c1 , . . . , cn and s such that:
• c1 ≥ 0;
• c i c∗j = δ i jc2

1 ;
• s∗s +∑n

i=1 c∗i c i = 1;
• c1s = s.
If there are uniformly tracially large (in the sense of [65, Definition 2.2]) order zero1

c.p.c. maps Mn → Aω ∩ A′, these give rise to elements c1 , . . . , cn ∈ Aω ∩ A′ with c1 ≥ 0
and c i c∗j = δ i jc2

1 , along with certain tracial information. If A has strict comparison,
Matui and Sato used this tracial information to show that A has property (SI) [39],
from which one can get an element s ∈ Aω ∩ A′ such that s∗s +∑n

i=1 c∗i c i = 1 and
c1s = s. This gives a *-homomorphism Zn ,n+1 → Aω ∩ A′, which if can be done for
each n ∈ N, is enough to conclude that Z↪ Aω ∩ A′ unitally and hence A ≃ A⊗Z

1Order zero meaning orthogonality preserving: ϕ ∶ A→ B is c.p.c. order zero if it is c.p.c. and
ϕ(a)ϕ(b) = 0 whenever ab = 0.
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(see [67, 71]). In fact, it suffices to show thatZ2,3 ↪ Aω ∩ A′ (or Zn ,n+1 for some n ≥ 2)
(see [52, Theorem 3.4(ii)] and [56, Theorem 5.15]).

3 Approximately central approximate embeddings

Here, we formalize some results on approximate embeddings. When B ⊆ A is a unital
inclusion of separable C*-algebras, this will yield local characterizations of nuclear
subalgebras of Bω ∩ A′, as defined in (2.6). Recall that we write u.c.p. or c.p.c. to mean
that a map is unital and completely positive or completely positive and contractive,
respectively.

Definition 3.1 Let B ⊆ A be a unital inclusion of C*-algebras, and let D be a unital,
simple, nuclear C*-algebra. Let F ⊆ D,G ⊆ A be finite sets and ε > 0. We say that a
u.c.p. map ϕ ∶ D → B is an (F, ε)-approximate embedding if:
(1) ϕ(cd) ≈ε ϕ(c)ϕ(d) for all c, d ∈ F.
If ϕ additionally satisfies
2. [ϕ(c), a] ≈ε 0 for all c ∈ F and a ∈ G,
then we say that ϕ is an (F, ε,G)-approximately central approximate embedding.

We will usually write that ϕ is a (F, ε)-embedding or (F, ε,G)-embedding to
mean that ϕ is an (F, ε)-approximate embedding or (F, ε,G)-approximately central
approximate embedding, respectively.

Remark 3.1 One can make a similar definition to the above if D is not simple or
nuclear (or even unital). The aim is to discuss subalgebras of Bω ∩ A′, and if D ↪
Bω ∩ A′ is nuclear, then one can use the Choi–Effros lifting theorem [10, Theorem
3.10] (see also [6, Theorem C.3]) to lift the embedding to a sequence of u.c.p. maps
which are approximately isometric, approximately multiplicative, and approximately
commute with finite subsets of A. If D is simple, the approximate isometry condition
follows for free since the embedding D ↪ Bω ∩ A′ must be isometric.

If we loosen the simple and nuclear assumptions on D, we can still speak of
bounded linear maps ϕ ∶ D → B (no longer necessarily u.c.p.) which are approx-
imately isometric, approximately multiplicative, approximately adjoint-preserving,
and approximately commute with a finite prescribed subset of A. This will allow one
to discuss general subalgebras of Bω ∩ A′. As we will only be interested in strongly
self-absorbing subalgebras of Bω ∩ A′, which are unital, separable, simple, and nuclear
[66, Section 1.6], we restrict ourselves to u.c.p. maps from a unital, simple, nuclear
C*-algebras which are approximately multiplicative and approximately commute with
finite subsets of A.

Most of the work in this section can be done without assumptions of simplicity and
nuclearity.

Lemma 3.2 Suppose that A, B, D are unital C*-algebras with B separable and D simple,
separable and nuclear. Suppose that B ⊆ A is a unital inclusion and let S ⊆ A be a
separable subset. There are (F, ε,G)-approximately central approximate embeddings
D → B for all F ⊆ D,G ⊆ S and ε > 0 if and only if there is a unital embedding D ↪
Bω ∩ S′.
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Proof Let (Fn)n∈N be an increasing sequence of finite subsets of D with dense union,
and let (Gn)n∈N be an increasing sequence of finite subsets of S with dense union.
Let ϕn ∶ D → B be (Fn , 1

n , Gn)-approximately central approximate embeddings. Let
π ∶ �∞(B) → Bω denote the quotient map and set

ψ ∶= π ○ ((ϕn)n∈N) ∶ D → Bω ,(3.1)

which is a unital embedding such that [ψ(d), a] = 0 for all d ∈ D and a ∈ S.
Conversely, suppose that ψ ∶ D → Bω ∩ S′ is a unital embedding, F ⊆ D,G ⊆ S are

finite and ε > 0. By the Choi–Effros lifting theorem, there is a u.c.p. lift ψ̃ = (ψ̃n)n∈N ∶
D → �∞(B) such that:
• ∥ψ̃n(cd) − ψ̃n(c)ψ̃n(d)∥ →n→ω 0,
• ∥[ψ̃n(d), a]∥ →n→ω 0
for all c, d ∈ D and a ∈ A. Take n large enough and set ϕ = ψn , so that ϕ will be a
(F, ε,G)-approximately central approximate embedding. ∎
Corollary 3.3 Let A, B, D be unital C*-algebras with B, D separable, simple, and
nuclear and B ⊆ A be a unital inclusion. Suppose that there are unital embeddings
ϕ ∶ D → Bω and ψ ∶ B → Aω . Then there is a unital embedding ξ ∶ D ↪ Aω . If S ⊆ Aω is
a separable subset with ψ(B) ⊆ Aω ∩ S′, then ξ can be chosen with ξ(D) ⊆ Aω ∩ S′.

Proof Let F ⊆ D be finite and ε > 0. Let L ∶= max{maxd∈F ∥d∥, 1}. By the above
lemma, there is an (F, ε

2L )-approximate embedding ϕ ∶ D → B, so letF′ = ϕ(F). Now
there is an (F′ , ε

2L )-approximate embedding ψ ∶ B → A. An easy calculation shows
that ψ ○ ϕ ∶ D → A is an approximate (F, ε)-embedding.

Appending the condition that ψ ∶ B → Aω ∩ S′, then, for any finite subset G ⊆ S,
we can take ψ ∶ B → A to be a (F′ , ε

2L ,G)-approximately central approximate embed-
ding. This gives that ψ ○ ϕ ∶ D → A is a (F, ε,G)-approximately central approximate
embedding. ∎
Corollary 3.4 Let D be a C*-algebra and B ⊆ A be a unital inclusion of separable C*-
algebras such that B and D are unital, separable, simple, and nuclear. Suppose that there
is an embedding π ∶ A ↪ Aω ∩ A′ with π(B) ⊆ Bω ∩ A′. If D ↪ Bω unitally, then D ↪
Bω ∩ A′ unitally.

Proof As D ↪ Bω and B ↪ Bω ∩ A′ ⊆ Aω ∩ A′, the above yields D ↪ Bω ∩ A′. ∎
The following is useful for discussing D-stability for some inclusions of fixed point

subalgebras by certain automorphisms on UHF algebras. In particular, the following
will work for automorphisms on UHF algebras of product-type, as well as tensor
permutations (of finite tensor powers of UHF algebras).

Corollary 3.5 Let A = ⊗N B be an infinite tensor product of a unital, separable, nuclear
C*-algebra B, and let D be unital, separable, simple, and nuclear. Let λ ∈ End(A) be the
Bernoulli shift λ(a) = 1 ⊗ a. If σ ∈ Aut(A) is such that λ ○ σ = σ ○ λ, and D ↪ (Aσ)ω
unitally, then D ↪ (Aσ)ω ∩ A′ unitally.

Proof Note that π = (λn) induces an embedding A ↪ Aω ∩ A′. We just need to show
that π(Aσ) ⊆ (Aσ)ω ∩ A′, which is true since λn ○ σ = σ ○ λn for all n by hypothesis.
The result now follows from the above. ∎
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We note that if we have approximately central approximate embeddings D → B ⊆
A, then we can also find approximately central approximate embeddings D → u∗Bu ⊆
A for any u ∈ U(A). In the separable setting, this just means D ↪ Bω ∩ A′ implies that
D ↪ u∗Bωu ∩ A′ for any u ∈ U(A).

Lemma 3.6 Let B ⊆ A be a unital inclusion of C*-algebras, and let D be a unital,
separable, simple, nuclear C*-algebra. Let u ∈ U(A). If there are (F, ε,G)-approximately
central approximate embeddings D → B for all F ⊆ D,G ⊆ A finite subsets and ε > 0,
then there are (F, ε,G)-approximately central approximate embeddings D → u∗Bu ⊆ A
for all F, ε,G.

Proof Let F ⊆ D,G ⊆ A be finite and ε > 0. Let L = max{1, maxd∈F ∥d∥} and ϕ ∶
D → B be a (F, ε

3L ,G ∪ {u})-approximately central approximate embedding. Then
ψ = Adu ○ ϕ ∶ D → u∗Bu will be an (F, ε,G)-embedding. ∎

We can also discuss existence of approximately central approximate embeddings
in inductive limits (with injective connecting maps). This is an adaptation of [67,
Proposition 2.2] to our setting.

Proposition 3.7 Suppose that we have increasing sequences (Bn)n∈N and (An)n∈N
of C*-algebras such that Bn ⊆ An are unital inclusions. If B = ∪n Bn , A = ∪n An , and
D = ∪n Dn , where (Dn)n∈N is an increasing sequence of unital, separable, simple, nuclear
C*-algebras and there are (F, ε,G)-embeddings Dn → Bn ⊆ An whenever n ∈ N,F ⊆
Dn ,G ⊆ An are finite and ε > 0, then there are (F, ε,G)-embeddings D → B ⊆ A for all
F ⊆ D,G ⊆ A finite and ε > 0.

Proof Let F ⊆D and G ⊆ A be finite sets and ε > 0. Let

L ∶= max{1, max
d∈F

∥d∥, max
a∈G

∥a∥}(3.2)

and set δ ∶= ε
6L+5 . Without loss of generality, assume that ε < 1. Label F = {d1 , . . . , dp}

and G = {a1 , . . . , aq} and find N large enough so that there are d′1 , . . . , d′p ∈
DN and a′1 , . . . , a′q ∈ AN with d′i ≈δ d i , i = 1, . . . , p, and a′j ≈δ a j , j = 1, . . . , q. Let
F′ ∶= {d′1 , . . . , d′p},G′ ∶= {a′1 , . . . , a′q} and let ϕ ∶ DN → BN ⊆ AN be an (F′ , δ,G′)-
embedding. As DN is nuclear, there are k ∈ N and u.c.p. maps ρ ∶ DN → Mk and
η ∶ Mk → BN such that η ○ ρ(d′i) ≈δ ϕ(d′i) and η ○ ρ(d′i d′j) ≈δ ϕ(d′i d′j). By Arveson’s
extension theorem (see [6, Section 1.6]), we can extend ρ to a u.c.p. map ρ̃ ∶ D → Mk
and let ψ ∶= η ○ ρ̃ ∶ D → BN . As BN ⊆ B, we can think of ψ as a map ψ ∶ D → B. Now
for i , j = 1, . . . , p, we have

ψ(d i d j) ≈(2L+1)δ ψ(d′i d′j)
= η ○ ρ(d′i d′j)
≈δ ϕ(d′i d′j)
≈δ ϕ(d′i)ϕ(d′j)(3.3)
≈2Lδ η ○ ρ(d′i)η ○ ρ(d′j)
= ψ(d′i)ψ(d′j)
≈(2L+1)δ ψ(d i)ψ(d j).
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Thus ψ(d i d j) ≈(4+6L)δ ψ(d i)ψ(d j), and as (4 + 6L)δ ≤ (6L + 5)δ = ε, this implies
that ψ(d i d j) ≈ε ψ(d i)ψ(d j). For approximate commutation with G, we make use of
the following two approximations: for a, a′ , a′′ , b, b′ elements in a C*-algebra,

∥[a, b]∥ ≤ (∥a∥ + ∥a′∥)∥b − b′∥ + (∥b∥ + ∥b′∥)∥a − a′∥ + ∥[a′ , b′]∥,
∥[a′ , b′]∥ ≤ 2∥b′∥∥a′ − a′′∥ + ∥[a′′ , b′]∥.(3.4)

Note that for a = ψ(d i), a′ = ψ(d′i), a′′ = ϕ(d′i), b = a j , b′ = a′j , we have that
∥a∥, ∥b∥ ≤ L + 1 and ∥a′∥, ∥a′′∥, ∥b′∥ ≤ L. Therefore, from the above two inequalities,
we get

∥[ψ(d i), a j]∥ ≤ 2L∥ψ(d i) − ψ(c′i)∥ + 2(L + 1)∥a j − a′j∥ + ∥[ψ(d′i), a j]∥;
∥[ψ(d′i), a′j]∥ ≤ 2(L + 1)∥ψ(d′i) − ϕ(d′i)∥ + ∥[ϕ(d′i), a′j]∥(3.5)

whenever i = 1, . . . , p, j = 1, . . . , q. Using these approximations, we have

∥[ψ(d i), a j]∥ ≤ 2L∥ψ(d i) − ψ(d′i)∥ + 2(L + 1)∥a j − a′j∥ + ∥[ψ(d′i), a j]∥
< (4L + 2)δ + ∥[ψ(d′i), a j]∥
≤ (4L + 2)δ + 2(L + 1)∥ψ(d′i) − ϕ(d′i)∥ + ∥[ϕ(c′i), a′j]∥(3.6)
< (4L + 2)δ + 2(L + 1)δ + δ
= (6L + 5)δ = ε. ∎

The following will be useful to show that there are many D-stable embeddings.

Lemma 3.8 Let ϕ ∶ B0 ≃ B1 and ψ ∶ A0 ≃ A1 be *-isomorphisms between unital C*-
algebras, and let D be a unital, simple, nuclear C*-algebra. Suppose that there is a unital
*-homomorphism η ∶ B1 ↪ A1 such that there are (F, ε,G)-embeddings D → η(B1) ⊆
A1 for all finite subsets F ⊆ D,G ⊆ A1 and ε > 0. Let σ = ψ−1 ○ η ○ ϕ ∶ B0 → A0. Then
there are (F, ε,G)-embeddings D → σ(B0) ⊆ A0 for all F ⊆ D,G ⊆ A0 finite and ε > 0.

Proof The diagram

A0 A1

B0 B1

ψ

σ

ϕ

η(3.7)

commutes and so if F ⊆ D,G ⊆ A0 are finite, ε > 0 and ξ ∶ D → η(B1) ⊆ A1 is
an (F, ε, ψ(G))-embedding, then ψ−1 ○ ξ ∶ D → ψ−1(η(B1)) ⊆ ψ−1(A1) = A0 is an
(F, ε,G)-embedding. Moreover, from

ψ−1(η(B1)) = ψ−1(η(ϕ(B0))) = σ(B0),(3.8)

it is clear that ψ−1 ○ ξ is an (F, ε,G)-embedding D → σ(B0) ⊆ A0. ∎
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4 Relative intertwinings and D-stable embeddings

4.1 Relative intertwinings

It is well known that a strongly self-absorbing C*-algebra D embeds unitally into the
central sequence algebra (M(A))ω ∩ A′ of a separable C*-algebra A if and only if
A ≃ A⊗D, where M(A) is the multiplier algebra of A (see, for example, [49, Theorem
7.2.2(i)]). We alter the proof to keep track of a subalgebra in order to show that for a
unital inclusion B ⊆ A of separable C*-algebras, D↪ Bω ∩ A′ unitally if and only if
there is an isomorphism Φ ∶ A → A⊗D which is approximately unitarily equivalent
to the first factor embedding and satisfies Φ(B) = B ⊗D. This was initially done for
(irreducible) inclusions of II1 factors in [2] and commented on in [31] for D being
Mn∞ ,O2 ,O∞. The proof we alter is Elliott’s intertwining argument, which can be
found as a combination of Propositions 2.3.5 and 7.2.1 and Theorem 7.2.2 of [49].

Proposition 4.1 (Relative intertwining) Let A, B, C be unital, separable C*-algebras,
and let ϕ ∶ A ↪ C , θ ∶ B → A, ψ ∶ B → C be unital *-homomorphisms such that ϕ ○
θ(B) ⊆ ψ(B). Suppose there is a sequence (un)n∈N of unitaries in ψ(B)ω ∩ ϕ(A)′ such
that:
• dist(v∗n cvn , ϕ(A)ω) → 0 for all c ∈ C;
• dist(v∗nψ(b)vn , ϕ ○ θ(B)ω) → 0 for all b ∈ B.
Then ϕ is approximately unitarily equivalent to an isomorphism Φ ∶ A ≃ C such that
Φ ○ θ(B) = ψ(B).

Proof Apply the below proposition with Bm ∶= B, θm ∶= θ , ψm ∶= ψ for all m ∈ N. ∎

Proposition 4.2 (Countable relative intertwining) Let A, Bm , C be unital, separa-
ble C*-algebras, m ∈ N, and ϕ ∶ A ↪ C , θm ∶ Bm → A, ψm ∶ Bm → C be such that ϕ ○
θm(Bm) ⊆ ψm(Bm) and ψ1(B1) ⊆ ψm(Bm). Suppose there is a sequence (vn)n∈N ⊆
ψ1(B1)ω ∩ ϕ(A)′ of unitaries such that:
• dist(v∗n cvn , ϕ(A)ω) → 0 for all c ∈ C;
• dist(v∗nψm(b)vn , ϕ ○ θm(Bm)ω) → 0 for all b ∈ Bm .
Then ϕ is approximately unitarily equivalent to an isomorphism Φ ∶ A ≃ C such that
Φ ○ θm(Bm) = ψm(Bm) for all m ∈ N.

Proof We show that if there are unitaries (vn)n∈N ⊆ ψ1(B1) satisfying:
• [vn , ϕ(a)] → 0 for all a ∈ A;
• dist(v∗n cvn , ϕ(A)) → 0 for all c ∈ C;
• dist(v∗nψm(b)vn , ϕ ○ θm(Bm)) → 0 for all b ∈ Bm ,
then the conclusion holds. Such unitaries can be found using Kirchberg’s ε-test
(Lemma 2.1).

Let (an)n∈N , (b(m)n )n∈N , (cn)n∈N be dense sequences of A, Bm , C, respectively, m ∈
N. We can inductively choose vn , forming a subsequence (vn)n∈N of the unitaries
above (after re-indexing, we are still calling them vn), such that there are a jn ∈
A, b(m)jn ∈ Bm with:
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• v∗n . . . v∗1 c jv1 . . . vn ≈ 1
n

ϕ(a jn);
• v∗n . . . v∗1 ψ(b(m)j )v1 . . . vn ≈ 1

n
ϕ ○ θm(b(m)jn );

• [vn , ϕ(a j)] ≈ 1
2n

0;
• [vn , ϕ(a j l)] ≈ 1

2n
0;

• [vn , ϕ ○ θm(b(m)j )] ≈ 1
2n

0;
• [vn , ϕ ○ θm(b(m)j l )] ≈ 1

2n
0,

where j, m = 1, . . . , n and l = 1, . . . , n − 1. Define, for a ∈ {an ∣ n ∈ N},

Φ(a) = lim
n

v1 . . . vn ϕ(a)v∗n . . . v∗1(4.1)

which extends to a *-isomorphism Φ ∶ A ≃ C, as in [49, Proposition 2.3.5]. The proof
also yields the following useful approximation:

Φ ○ θm(b(m)jn ) ≈ 1
2n

v1 . . . vn ϕ ○ θm(b(m)jn )v∗n . . . v∗1(4.2)

for appropriate n ≥ j, m.
We now need to check that Φ ○ θm(Bm) = ψm(Bm). Approximate

ψm(b(m)j ) ≈ 1
n

v1 . . . vn ϕ ○ θm(b(m)jn )v∗n . . . v∗1 ≈ 1
2n

Φ ○ θm(b(m)jn ).(4.3)

As n ∈ N can be made arbitrarily large, this yields ψm(Bm) ⊆ Φ ○ θm(Bm) = Φ ○
θm(Bm). On the other hand, for any ε > 0 and b ∈ Bm , we can find n such that

Φ ○ θm(b) ≈ε v1 . . . vn ϕ ○ θm(b)v∗n . . . v∗1 ∈ ψm(Bm)(4.4)

since v i ∈ ψ1(B1) ⊆ ψm(Bm) and ϕ ○ θm(Bm) ⊆ ψm(Bm). Hence Φ ○ θm(Bm) ⊆
ψm(Bm) = ψm(Bm). ∎

4.2 D-stable embeddings

Definition 4.1 Let ι ∶ B ↪ A be an embedding and D be strongly self-absorbing. We
say that ι is D-stable (or D-absorbing) if there exists an isomorphism Φ ∶ A ≃ A⊗D

such that Φ ○ ι(B) = ι(B) ⊗D.

We will mostly have interest in the case where ι corresponds to the inclusion map
and B ⊆ A is a subalgebra. In this form, we will say B ⊆ A isD-stable (orD-absorbing).
Clearly, ι being D-stable is the same as ι(B) ⊆ A being D-stable. We note that we can
define the above for any *-homomorphism. Namely, a *-homomorphism ϕ ∶ B → A is
D-stable if ϕ(B) ⊆ A is.

Lemma 4.3 If ι ∶ B ↪ A is an embedding, then ι ⊗ idD ∶ B ⊗D↪ A⊗D is D-stable.

Proof Let ϕ ∶ D ≃ D ⊗D be an isomorphism. Then

Φ ∶= idA ⊗ ϕ ∶ A⊗D→ A⊗D⊗D(4.5)

is an isomorphism with

Φ(ι ⊗ idD(B ⊗D)) = (ι ⊗ idD(B ⊗D)) ⊗D.(4.6) ∎
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We note that this is a strengthening of the notion of D-stability for C*-algebras
because if ι ∶= idA ∶ A → A, then ι isD-stable if and only if A isD-stable. This condition
is different from the notion of O2 or O∞-absorbing morphisms discussed in [4, 21,
22] – they require sequences from a larger algebra to commute with a smaller algebra,
while we require sequences from a smaller algebra to commute with the larger algebra.
In the former, neither of the algebras are required to be D-stable, while the latter
necessitates both to be D-stable.

The following adapts [49, Theorem 7.2.2].

Theorem 4.4 Suppose that B ⊆ A is a unital inclusion of separable C*-algebras. If D is
strongly self-absorbing, then B ⊆ A is D-stable if and only if there is a unital inclusion
D↪ Bω ∩ A′.

Proof Let ϕ ∶ A → A⊗D be the first factor embedding ϕ(a) ∶= a ⊗ 1D. First,
suppose that ξ ∶D↪ Bω ∩ A′ ≃ (B ⊗ 1D)ω ∩ (A⊗ 1D)′ is an embedding (so that
ϕ(a)ξ(d) ∈ ϕ(A)ω and ϕ(b)ξ(d) ∈ ϕ(B)ω). Let η ∶D↪ (B ⊗D)ω ∩ (A⊗ 1D)′ be
given by η(d) ∶= (1 ⊗ d)n and notice that ξ, η have commuting ranges. As all endo-
morphisms of D are approximately unitarily equivalent by [66, Corollary 1.12], let
(vn)n∈N ⊆ C∗(ξ(D), η(D)) ≃D⊗D be such that v∗n η(d)vn → ξ(d) for d ∈D. For
b ∈ B and d ∈D, we have

v∗n(b ⊗ d)vn = v∗n(b ⊗ 1D)(1A ⊗ d)v∗n
= v∗n ϕ(b)η(d)vn(4.7)
= ϕ(b)v∗n η(d)vn

→ ϕ(b)ξ(d) ∈ ϕ(B)ω .

Moreover, the same argument shows that, for a ∈ A, we have

v∗n(a ⊗ d)vn → ϕ(a)ξ(d) ∈ ϕ(A)ω .(4.8)

Now (vn)n∈N satisfy the hypothesis of Proposition 4.1 with C ∶= A⊗ D, ϕ being the
first factor embedding, θ ∶ B → A being the inclusion and ψ ∶ B ≃ B ⊗D ⊆ A⊗D =
C (where this isomorphism exists since if D↪ Bω ∩ A′, then clearly D↪ Bω ∩ B′).
From this, we see that ϕ is approximately unitarily equivalent to an isomorphism Φ ∶
A ≃ A⊗D such that Φ(B) = B ⊗D.

Conversely, if B ⊆ A is D-stable, let Φ ∶ A ≃ A⊗D be an isomorphism such that
Φ(B) = B ⊗D. By [66, Proposition 1.10(iv)], we can identify D ≃D⊗∞ and take ξ ∶
D↪ Bω ∩ A′ to be given by

ξ(d) = (Φ−1(1A ⊗ 1⊗n−1
D ⊗ d ⊗ 1⊗∞D ))n .(4.9)

∎
Corollary 4.5 Let ι ∶ B ↪ A be a unital embedding between separable C*-algebras. IfD
is strongly self-absorbing and ι is D-stable, then for every intermediate unital C*-algebra
C with ι(B) ⊆ C ⊆ A, we have that ι(B) ⊆ C and C ⊆ A are D-stable. In particular, C ≃
C ⊗D for all such C.

Proof We have

D↪ Bω ∩ A′ ⊆ Bω ∩ C′(4.10)
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and

D↪ Bω ∩ A′ ⊆ Cω ∩ A′ .(4.11)

Now apply Theorem 4.4. ∎

It is not, however, the case that any isomorphism Φ ∶ A ≃ A⊗D with Φ(B) = B ⊗
D maps C to C ⊗D.

Example 4.6 Let D be strongly self-absorbing and consider

A ∶=D⊗D⊗D,
C1 ∶=D⊗ 1D ⊗D,(4.12)
C2 ∶= 1D ⊗D⊗D,

B ∶= 1D ⊗ 1D ⊗D.

If f ∶D⊗D→D⊗D is the tensor flip and ϕ ∶D ≃D⊗D is an isomorphism, let

Φ ∶= f ⊗ ϕ ∶ A ≃ A⊗D(4.13)

which satisfies Φ(B) = B ⊗D (in particular, B ⊆ A is D-stable). However,

Φ(C1) = C2 ⊗D and Φ(C2) = C1 ⊗D.(4.14)

In fact, the above example can be generalized to show that for any D-stable
inclusion B ⊆ A, there are an isomorphism Φ ∶ A ≃ A⊗D such that Φ(B) = B ⊗D

and an intermediate algebra B ⊆ C ⊆ A with Φ(C) ≠ C ⊗D (obviously, we may still
have that Φ(C) ≃ C ⊗D, but equality may not happen).

Corollary 4.7 Let B ⊆ A be a D-stable inclusion. There exist a C*-algebra C
with B ⊆ C ⊆ A and an isomorphism Φ ∶ A ≃ A⊗D such that Φ(B) = B ⊗D but
Φ(C) ≠ C ⊗D.

Proof We first claim that if B ⊆ A is D-stable, then we can identify B ⊆ A with
B ⊗ 1D ⊆ A⊗D. If Ψ ∶ A ≃ A⊗D is such that Ψ(B) = B ⊗D and f ∶D⊗D ≃D⊗D

is the tensor flip, we have

Ξ ∶= (idA ⊗ f ) ○ (Ψ ⊗ idD) ∶ A⊗D ≃ A⊗D⊗D(4.15)

is such that Ξ(B ⊗ 1D) = B ⊗ 1D ⊗D. This proves the claim.
Now, by applying the claim twice, we can identify B ⊆ A with the inclusion

B ⊗ 1D ⊗ 1D ⊗D ⊆ A⊗D⊗D⊗D.(4.16)

If ϕ ∶D ≃D⊗D is any *-isomorphism,

Φ ∶= idA ⊗ f ⊗ ϕ ∶ A⊗D⊗D⊗D ≃ A⊗D⊗D⊗D⊗D(4.17)

is such that

Φ(B ⊗ 1D ⊗ 1D ⊗D) = B ⊗ 1D ⊗ 1D ⊗D⊗D.(4.18)

Taking C1 and C2 as in Example 4.6, we have that

Φ(B ⊗ C1) = B ⊗ C2 ⊗D and Φ(B ⊗ C2) = B ⊗ C1 ⊗D.(4.19) ∎
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However, we can always realize D-stability for countably many intermediate
C*-algebras at once using some isomorphism A ≃ A⊗D.

Theorem 4.8 Suppose that B1 ⊆ Bm ⊆ A are unital inclusions of separable C*-algebras
(note that we are not asking for (Bm) to form a chain). If D is strongly self-absorbing
and D↪ (B1)ω ∩ A′ unitally, there exists an isomorphism Φ ∶ A ≃ A⊗D such that
Φ(Bm) = Bm ⊗D for all m ∈ N.

Proof This is essentially the same proof as Theorem 4.4, except we use the countable
relative intertwining (Proposition 4.2) in place of Proposition 4.1. Let ξ, η be as before,
and let (vn)n∈N ⊆ C∗(ξ(D), η(D)) ≃D⊗D be such that v∗n η(d)vn → ξ(d) for
d ∈D.
• If a ∈ A, d ∈D, v∗n(a ⊗ d)vn → ϕ(a)ξ(d) ∈ ϕ(A)ω ;
• if b ∈ Bm , v∗n(b ⊗ d)vn → ϕ(b)ξ(d) ∈ ϕ(Bm)ω .
Now with ϕ ∶ A → A⊗D, the first factor embedding, θm ∶ Bm → A the inclusion
maps, and ψm ∶ Bm ≃ Bm ⊗D (these exist since D↪ (B1)ω ∩ A′ implies that D↪
(Bm)ω ∩ B′m), our unitaries satisfy the hypothesis of Proposition 4.2 and therefore
ϕ is approximately unitarily equivalent to a *-isomorphism Φ ∶ A ≃ A⊗D such that
Φ(Bm) = Bm ⊗D for all m. ∎

The above works since norm ultrapowers have the property that unitaries lift to
sequences of unitaries.2 Tracial ultrapowers of II1 von Neumann algebras also have
this property.3 Consequently, if we work with the 2-norm ∥x∥2 = τ(x∗x) 1

2 , where τ is
the unique trace on a II1 factor, all of the above arguments with the C*-norm replaced
by ∥ ⋅ ∥2 will allow us to recover Bisch’s result [2, Theorem 3.1], provided we have the
appropriate separability conditions.

Theorem 4.9 Let N ⊆M be an inclusion of II1 factors with separable preduals. Then
R↪ Nω ∩M′ if and only if there exists an isomorphism Φ ∶M→M⊗R such that
Φ(N) = N⊗R.

4.3 Existence of D-stable embeddings

We move to discuss the existence of D-stable embeddings. First, we show that each
unital embedding of unital, separable D-stable C*-algebras is approximately unitarily
equivalent to a D-stable embedding. From this, it will follow that there are many
D-stable embeddings.

Lemma 4.10 Let D be strongly self-absorbing. If ι ∶ B ↪ A is a unital, D-stable inclu-
sion of separable C*-algebras and u ∈ U(A), then Adu ○ ι ∶ B ↪ A is D-stable.

Proof Apply Lemma 3.6. ∎

2If u = (un)n∈N ∈ Aω is unitary, then {n ∈ N ∣ ∥u∗n un − 1∥, ∥unu∗n − 1∥ < 1} ∈ ω. If n is in the set,
replace un with the unitary part of its polar decomposition, and replace un with 1 otherwise.

3The tracial ultrapower of a II1 von Neumann algebra is again a II1 von Neumann algebra. Therefore,
if u ∈Mω is unitary, it is of the form e ia for some a = a∗ ∈Mω . Lift a to a sequence (an)n∈N of self-
adjoints in M and note that u = (e ian ), so that u has a unitary lift.
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Proposition 4.11 Let D be strongly self-absorbing, A, B be unital separable D-stable
C*-algebras, and let ι ∶ B ↪ A be a unital embedding. Then ι is approximately unitarily
equivalent to a unital D-stable embedding B ↪ A.
Proof As A, B are D-stable, there are isomorphisms

ϕ ∶ B ≃ B ⊗D and ψ ∶ A ≃ A⊗D,(4.20)

which are approximately unitarily equivalent to the first factor embeddings b ↦ b ⊗
1D , b ∈ B and a ↦ a ⊗ 1D , a ∈ A, respectively. As ι ⊗ idD ∶ B ⊗D↪ A⊗D isD-stable
by Lemma 4.3,

σ ∶= ψ−1 ○ (ι ⊗ idD) ○ ϕ ∶ B ↪ A(4.21)

isD-stable by Lemma 3.8. Now we show that σ is approximately unitarily equivalent to
ι. Let F ⊆ B be finite and ε > 0. Let u ∈ U(B ⊗D) be such that u∗(b ⊗ 1D)u ≈ ε

2
ϕ(b)

for b ∈ F and v ∈ U(A⊗D) be such that v∗(ι(b) ⊗ 1D)v ≈ ε
2

ψ ○ ι(b) for b ∈ F. Set
w = ψ−1(ι ⊗ idD(u))∗ψ−1(v) ∈ U(A). Then for b ∈ F,

w∗σ(b)w = ψ−1(v)∗ψ−1(ι ⊗ idD(uϕ(b)u∗))ψ−1(v)
≈ ε

2
ψ−1(v)∗ψ−1(ι ⊗ idD(b ⊗ 1D))ψ−1(v)(4.22)

= ψ−1(v)∗ψ−1(ι(b) ⊗ 1D)ψ−1(v)
≈ ε

2
ψ−1(ψ(ι(b)))

= ι(b). ∎
Corollary 4.12 Let D be strongly self-absorbing. The set of unital D-stable embeddings
B ↪ A of unital, separable, D-stable C*-algebras is point-norm dense in the set of unital
embeddings B ↪ A.
Proof Every embedding is approximately unitarily equivalent to a D-stable embed-
ding. AsD-stability of an embedding is preserved if one composes with Adu , it follows
that every embedding is the point-norm limit of D-stable embeddings. ∎
Remark 4.13 We note that it is not actually necessary that ι is an embedding. If
π ∶ B → A is any unital *-homomorphism between unital, separable, D-stable C*-
algebras, then π is approximately unitarily equivalent to a *-homomorphism π′ ∶ B →
A such that π′(B) ⊆ A is D-stable. Consequently, the set of unital *-homomorphisms
π ∶ B → A with π(B) ⊆ A being D-stable is in fact dense in the set of unital
*-homomorphisms B → A.

Later on, there will be some examples of non-D-stable embeddings between
D-stable C*-algebras. Consequently, despite the fact D-stable embeddings are point-
norm dense, the set of unital D-stable embeddings need not coincide with the set of
all unital embeddings B ↪ A. Another clear consequence is that despite D-stability
of an embedding being closed under conjugation by a unitary, it is not true that it is
preserved under approximate unitary equivalence (in fact, the examples in question
show that D-stability is not even preserved under asymptotic unitary equivalence).
We finish with a corollary about embeddings into the Cuntz algebra O2 [15].
Corollary 4.14 Let B be a unital, separable, exact D-stable C*-algebra, where D is
strongly self-absorbing. Then there is a D-stable embedding B ↪ O2.
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Proof As D is unital, simple, separable, and nuclear by [66, Section 1.6], O2 ≃ O2 ⊗
D and B ↪ O2 unitally by Theorems 3.7 and 2.8 of [36], respectively. The above results
then yield a D-stable embedding B ↪ O2. ∎

We include this last result about the classification of morphisms via functors.

Theorem 4.15 Let D be strongly self-absorbing, and let F be a functor from a class of
unital, separable, D-stable C*-algebras satisfying the following.
(E) If there exists a morphism Φ ∶ F(B) → F(A), then there exists a unital

*-homomorphism ϕ ∶ B → A such that F(ϕ) = Φ.
(U) If ϕ, ψ ∶ B → A are unital *-homomorphisms which are approximately unitarily

equivalent, then

F(ϕ) = F(ψ).(4.23)

Then whenever there is a morphism Φ ∶ F(B) → F(A), there exists a unital
*-homomorphism ϕ ∶ B → A such that F(ϕ) = Φ and ϕ(B) ⊆ A is D-stable. Moreover,
ϕ is unique up to approximate unitary equivalence.

Proof By the existence (E), there exists a *-homomorphism ϕ ∶ B → A. Now by
Proposition 4.11 (Remark 4.13 allows us to work with general *-homomorphisms),
there exists a *-homomorphism ϕ′ ∶ B → A which is approximately unitarily equiv-
alent to ϕ and ϕ′(B) ⊆ A is D-stable. Uniqueness (U) gives that this is unique up to
approximate unitary equivalence. ∎

4.4 Permanence properties

We now discuss some permanence properties.

Lemma 4.16 Let D be strongly self-absorbing. Suppose that ι j ∶ B j ↪ A j , j = 1, 2 are
D-stable inclusions. Then ι1 ⊕ ι2 ∶ B1 ⊕ B2 ↪ A1 ⊕ A2 is D-stable.

Proof Let Φ j ∶ A j ≃ A j ⊗D be isomorphisms such that Φ j ○ ι j(B j) = ι j(B j) ⊗D

and consider

Φ ∶ A1 ⊕ A2 ≃ (A1 ⊕ A2) ⊗D(4.24)

given by the composition

A1 ⊕ A2 (A1 ⊗D) ⊕ (A2 ⊗D) (A1 ⊕ A2) ⊗D,Φ1⊕Φ2 ≃(4.25)

where the last isomorphism follows from (finite) distributivity of the min-tensor. Then
we see that

Φ(ι1(B1) ⊕ ι2(B2)) = (ι1(B1) ⊕ ι2(B2)) ⊗D.(4.26) ∎

Lemma 4.17 Let D be strongly self-absorbing. Suppose that ι j ∶ B j ↪ A j , j = 1, 2 are
inclusions and that at least one of ι1 or ι2 is D-stable. Then ι1 ⊗ ι2 ∶ B1 ⊗ B2 ↪ A1 ⊗ A2
is D-stable.
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Proof We prove this if ι2 is D-stable, and a symmetric argument will yield the result
if ι1 is. Let Φ2 ∶ A2 ≃ A2 ⊗D be such that Φ2 ○ ι2(B2) = ι(B2) ⊗D. Taking

Φ ∶= idA1 ⊗ Φ2 ∶ A1 ⊗ A2 ≃ A1 ⊗ A2 ⊗D,(4.27)

we have that

Φ(ι1(B1) ⊗ ι2(B2)) = ι1(B1) ⊗ ι2(B2) ⊗D.(4.28) ∎
Proposition 4.18 Let D be strongly self-absorbing. Suppose that we have increasing
sequences of unital separable C*-algebras (Bn)n∈N and (An)n∈N such that Bn ⊆ An
unitally. Let B = ∪n Bn and A = ∪n An . If Bn ⊆ An is D-stable for all n, then B ⊆ A is
D-stable.

Proof This follows from Proposition 3.7, together with Lemma 3.2 and Theorem
4.4. ∎

Lastly, we discuss unital inclusions B ⊆ A of C(X) algebras, where X is a compact
Hausdorff space. We show that if X has finite covering dimension, then such an
inclusion is D-stable if and only if the inclusion Bx ⊆ Ax along each fiber is D-stable.

Lemma 4.19 Let D be strongly self-absorbing. Suppose that B i ⊆ A i are unital inclu-
sions, for i = 1, 2, and ψ ∶ A1 → A2 is a surjective *-homomorphism such that ψ(B1) =
B2. If B1 ⊆ A1 is D-stable, then so is B2 ⊆ A2.

Proof We note that ψ induces a *-homomorphism

ψ̃ ∶ (B1)ω ∩ A′1 → (B2)ω ∩ A′2(4.29)

and consequently if ξ ∶D↪ (B1)ω ∩ A′1, we have a unital *-homomorphism

η ∶= ψ̃ ○ ξ ∶D→ (B2)ω ∩ A′2 .(4.30)

The homomorphism η is automatically injective since D is simple. ∎
Rephrasing the above in terms of commutative diagrams, it says that if we have a

commutative diagram

A1 A2

B1 B2

(4.31)

where the left inclusion is D-stable, then the right inclusion is D-stable as well.
Now we consider many of the results discussed in [27, Section 4], except for

inclusions of C*-algebras.

Definition 4.2 Let X be a compact Hausdorff space. A C(X)-algebra is a C*-algebra
A endowed with a unital *-homomorphism C(X) → Z(M(A)), whereZ(M(A) is the
center of the multiplier algebra M(A) of A.

If Y ⊆ X is a closed subset, we set IY ∶= C0(X/Y)A, which is a closed two-sided
ideal in A. We denote AY ∶= A/IY and the quotient map A → AY by πY . For an element
a ∈ A, we write aY ∶= πY(a) and if Y consists of a single point x, we write Ax , Ix , πx
and ax . We say that Ax is the fiber of A at x. We note that AX = A.
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If B ⊆ A is a unital inclusion and θA ∶ C(X) → A, θB ∶ C(X) → B are morphisms
which witness A and B as C(X)-algebras, respectively, we say that B ⊆ A is an inclusion
of C(X)-algebras if

B A

C(X)

θB θ A
(4.32)

commutes. Note that θB(C(X)) ⊆ Z(A), and when discussion an inclusion of fibers
BY ⊆ AY we are considering BY ∶= πA

Y(B) ⊆ πA
Y(A) =∶ AY , where πA

Y ∶ A → AY is the
associated quotient map.

Remark 4.20 (Upper semi-continuity) In [27, Section 1.3], it was pointed out that the
norm on a C(X)-algebra A is upper semi-continuous. This means that, fixing some a ∈
A, the function x ↦ ∥ax∥ from X to R is upper semi-continuous (as it is the infimum
of a family of continuous functions), and consequently the set {x ∈ X ∣ ∥ax∥ < ε} ⊆ X
is open for all a ∈ A and ε > 0.

We note that Lemma 4.19 gives that if B ⊆ A is D-stable and Y ⊆ X is closed, then
BY ⊆ AY is automatically D-stable as well since we have the commuting diagram

A AY

B BY .

πY

πY ∣B

(4.33)

The converse needs a bit of work. This is the embedding analog of the beginning of
[27, Section 4]. We discuss how the proofs can be adapted and often omit approxima-
tions that were otherwise done there. We want a version of [27, Lemma 4.5], which
is a result about gluing c.c.p. maps together along fibers. In our setting, we are only
interested in u.c.p. maps, and we want to show that if we glue two u.c.p. maps together
whose images are contained in some C(X)-subalgebra B, then the glued map also has
image contained in B. We borrow their Definition 4.2.

Definition 4.3 Let A be a unital C(X)-algebra, for a compact Hausdorff space X, and
let D be a unital C*-algebra. Let ϕ ∶ D → A be a u.c.p. map and Y ⊆ X a closed subset.
If F ⊆ D,G ⊆ A are finite and ε > 0, we say that ϕ is (F, ε,G)-good for Y if:

(1) ([ϕ(d), a])Y ≈ε 0 and
(2) ϕ(dd′)Y ≈ε ϕ(d)Y ϕ(d′)Y

whenever d , d′ ∈ F and a ∈ G. If X = [0, 1], Y ⊆ X is a closed interval,F′ ⊇ F is another
finite set and 0 < ε′ < ε, we say that ϕ is (F, ε,G;F′ , ε′)-good for Y if ϕ is (F, ε,G)-
good for Y and there exists some closed neighborhood V of the endpoints of Y such
that ϕ is (F′ , ε′ ,G)-good for V.

First, we need a lemma that follows as a consequence of D-stability. It is the
embedding analog of [27, Proposition 4.1].
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Lemma 4.21 Let D be strongly self-absorbing, and B ⊆ A be a unital, D-stable inclu-
sion of separable C*-algebras. Then for any G ⊆ A finite and ε > 0, there exist unital
*-homomorphisms κ ∶ A → A and μ ∶D→ B such that:
(1) κ(B) ⊆ B,
(2) [κ(A), μ(D)] = 0,
(3) κ(a) ≈ε a for all a ∈ G.

Proof The proof is essentially the same as the proof of (a) ⇒ (c) in [27, Proposition
4.1]. As B ⊆ A is D-stable, let us identify B ⊆ A with B ⊗D ⊆ A⊗D. As D is strongly
self-absorbing, [66, Theorem 2.3] gives a sequence (ϕn)n∈N of *-homomorphisms
ϕn ∶D⊗D→D such that

ϕn(d ⊗ 1D) → d for all d ∈D.(4.34)

Define κn ∶ A⊗D→ A⊗D by

κn ∶= (idA ⊗ ϕ) ○ (idA ⊗ idD ⊗ 1D),(4.35)

and μn ∶D→ B ⊗D by

μn ∶= (idB ⊗ ϕn) ○ (1A ⊗ 1D ⊗ idD).(4.36)

Then taking n large enough and letting κ and μ be κn and μn , respectively, its clear
that κ(B ⊗D) ⊆ B ⊗D, [κ(A), μ(D)] = 0 and that κ(a) ≈ε a whenever a is in some
prescribed finite subset G ⊆ A and ε > 0 is some prescribed error. ∎

Lemma 4.22 Let D be strongly self-absorbing and A be a unital, separable C([0, 1])-
algebra. SupposeF ⊆D,G ⊆ A are finite self-adjoint subsets of contractions with 1D ∈ F.
Suppose that we have points 0 ≤ r < s < t ≤ 1 and two u.c.p. maps ρ, σ ∶D→ A which
are (F, ε,G)-good for [r, s], [s, t], respectively. Suppose that As is D-stable.

Then there are u.c.p. maps ρ′ , σ ′ ∶D→ A which are (F, ε,G)-good for [r, s], [s, t],
respectively, and u.c.p. maps νρ′ , νσ ′ ∶D→ A, μρ′ , μσ ′ ∶D⊗D→ A such that νρ′ , νσ ′

are (F, 3ε,G)-good for some interval I ⊆ (r, t) containing s in its interior, and such that
for any a ∈ G, d , d′ ∈ F, we have:
(1) ([ρ′(d), νρ′(d′)])I ≈2ε 0,
(2) ([σ ′(d), νσ ′(d′)])I ≈2ε 0,
(3) ρ′(d)Iνρ′(d′)I ≈ε μρ′(d ⊗ d′)I ,
(4) σ ′(d)Iνσ ′(d′)I ≈ε μσ ′(d ⊗ d′)I ,
(5) νρ′(d)I ≈2ε νσ ′(d)I .
If ρ, σ are (F, ε,G;F′ , ε)-good for [r, s], [s, t], respectively, for some finite F′ ⊇ F set
of contractions and for some 0 < ε′ < ε, then we can arrange so that ρ′ , σ ′ , νρ′ , νσ ′ are
(F′ , 3ε′ ,G)-good for the interval I, and that the above five conditions hold with ε′ in
place of ε and F′ in place of F.

Moreover, if B ⊆ A is a unital inclusion of C([0, 1])-algebras such that ρ(D) ⊆
B, σ(D) ⊆ B and Bs ⊆ As isD-stable, then the images of all ρ′ , σ ′ , μρ′ , μσ ′ are contained
in B (as are the images of νρ′ and νσ ′).

Proof This is [27, Lemma 4.4], except we have replaced c.c.p. maps with u.c.p. maps.
One can easily check that the resulting maps are u.c.p. maps.
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As for the “moreover” part, which is the only addition besides the unitality, we
outline the definitions of these maps to show that the images of ρ′ , σ ′ , μρ′ , μσ ′ are
contained in B. As Bs ⊆ As is D-stable, we can find κ ∶ As → As and μ ∶D→ Bs as
in Lemma 4.21, where κ(as) ≈ as for an appropriate error whenever a ∈ G. We use
Choi–Effros to find u.c.p. lifts ρ̃, σ̃ ∶D→ B for the maps κ ○ πs ○ ρ and κ ○ πs ○ σ ,
respectively (note that κ ○ πs ○ ρ and κ ○ πs ○ σ lie in Bs , which is a *-homomorphic
image of B). One then defines piece-wise linear functions f , g ∶ [0, 1] → [0, 1] which
attain both values 0 and 1 at the end points (their definition is not important to show
the “moreover” part). Then ρ′ , σ ′ are defined as

ρ′(d) ∶= (1 − f ) ⋅ ρ(d) + f ⋅ ρ̃(d) and σ ′(d) ∶= (1 − g) ⋅ σ(d) + g ⋅ σ̃(d).(4.37)

Clearly, ρ′ , σ ′ take values in B as ρ, ρ̃, σ , σ̃ all do and (1 − f ), f , (1 − g), g are in B. Now
we define u.c.p. maps μ̃ρ′ , μ̃σ ′ ∶D⊗D→ Bs by

μ̃ρ′(d ⊗ d′) ∶= ρ′(d)s μ(d′) and μ̃σ ′(d ⊗ d′) ∶= σ ′(d)s μ(d′).(4.38)

Now by Choi–Effros, we can take u.c.p. lifts μρ′ and μσ ′ of μ̃ρ′ and μσ ′ , respectively.
As the images of μ̃ρ′ and μσ ′ lie in Bs , the images of μρ′ and μσ ′ will lie in B. ∎

Lemma 4.23 Let A be a unital, separable C([0, 1])-algebra. Suppose F ⊆D,G ⊆ A are
finite self-adjoint subsets with 1D ∈ F and ε > 0. There exists 0 < ε′ < ε and a finite subset
F′ ⊇ F such that if ρ, σ ∶D→ A are u.p.c. maps and 0 ≤ r < s < t ≤ 1 are points such that
ρ is (F, ε,G;F′ , ε′)-good for [r, s], σ is (F, ε,G;F′ , ε′)-good for [s, t] and As isD-stable,
then there is a u.c.p. map ψ ∶D→ A which is (F, ε,G;F′ , ε′)-good for [r, t].

Moreover, if B ⊆ A is a unital inclusion of C([0, 1])-algebras such that ρ(D) ⊆ B,
σ(D) ⊆ B and Bs ⊆ As is D-stable, then ψ(D) ⊆ B.

Proof The first part is [27, Lemma 4.5], except we have replaced c.c.p. maps with
u.c.p. maps. One has to check that the resulting ψ is unital, but this follows easily if ρ
and σ are.

We outline the construction of ψ to show unitality, as it will also be useful to show
the “moreover” part, which is the only real addition. Let u ∈ C([0, 1],D⊗D) be a
path of unitaries such that u0 = 1D⊗D and

u1(d ⊗ 1D)u∗1 ≈ ε
4

1D ⊗ d .(4.39)

We replace ρ, σ with ρ′ , σ ′ as in the above lemma and this yields u.c.p. maps μρ , μσ
satisfying the hypotheses above for some interval I ⊆ (r, t)with s in its interior. Define

ϕρ , ϕσ ∶ C([0, 1]) ⊗D⊗D→ A(4.40)

by

ϕρ( f ⊗ d ⊗ d′) ∶= f ⋅ μρ(d ⊗ d′),
ϕσ( f ⊗ d ⊗ d′) ∶= f ⋅ μσ(d ⊗ d′).(4.41)

Note that these maps are unital. Take nonzero piece-wise linear functions

h1 , h2 , h3 , h4 ∶ [0, 1] → [0, 1](4.42)
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which sum to 1 (their specific form does not matter to show unitality of ψ nor the
“moreover” part) and gρ , gσ ∶ [0, 1] → [0, 1] which sum to 1 (again, their specific form
does not matter to show unitality of ψ nor the “moreover” part). Define unitaries
uρ , uσ ∈ C([0, 1]) ⊗D⊗D ≃ C([0, 1],D⊗D) by

uρx ∶= ugρ(x) and uσ x ∶= ugσ(x) .(4.43)

Now define ζρ , ζσ ∶D→ A by

ζρ(d) ∶= ϕρ(uρ(1C([0,1]) ⊗ d ⊗ 1D)u∗ρ),(4.44)
ζσ(d) ∶= ϕσ(uσ(1C([0,1]) ⊗ d ⊗ 1D)u∗σ),

which are clearly unital. Finally, the map ψ ∶D→ A is defined by

ψ(d) ∶= h1 ⋅ ρ(d) + h2 ⋅ ζρ(d) + h3 ⋅ ζσ(d) + h4 ⋅ σ(d).(4.45)

Clearly, ψ is unital.
Now for the “moreover” part. If ρ(D) ⊆ B and σ(D) ⊆ B, clearly the first and fourth

terms in the definition of ψ will lie in B. So it suffices to show that ζρ(D) ⊆ B and
ζσ(D) ⊆ B, and for this it suffices to show that μρ(D⊗D) ⊆ B and μσ(D⊗D) ⊆ B
(since h1 , h2 , h3 , h4 all lie in B). But this follows from the “moreover” part of the
previous lemma. ∎

With this, we get the analog of [28, Theorem 4.6], the proof being essentially the
same as well, except we insist that the our u.c.p. maps commute with a prescribed finite
subset of A.

Proposition 4.24 Let D be strongly self-absorbing, and X be a compact Hausdorff
space with finite covering dimension. Suppose that B ⊆ A is a unital inclusion of C(X)-
algebras. Then Bx ⊆ Ax is D-stable for all x ∈ X if and only if B ⊆ A is D-stable.

Proof As previously mentioned, if B ⊆ A is D-stable, then Bx ⊆ Ax is D-stable for
all x.

For the converse, the proof is essentially the same as [27, Theorem 4.6]. Using the
arguments there, one can simplify to the case where we can argue this for C([0, 1])-
algebras (by using [29, Theorem V.3], which says that a compact space of dimension ≤
n is homeomorphic to a subset of [0, 1]2n+1, and then working component-wise). Now
for F ⊆D,G ⊆ A and ε > 0, let Gx ∶= {ax ∣ a ∈ G}. Without loss of generality suppose
that F∗ = F,G∗ = G and that 1D ∈ F. Let F′ , ε′ be as in Lemma 4.23.

By D-stability of the inclusion Bx ⊆ Ax there are u.c.p. (F′ , ε′ ,Gx)-embeddings
ψx ∶D→ Bx ⊆ Ax which lift by Choi–Effros to u.c.p. maps ψ′x ∶D→ B. The norm is
upper semi-continuous (Remark 4.20), and this yields intervals Ix ⊆ [0, 1] such that
ψ′x is (F′ , ε′ ,G)-good for Ix . Note that ψ′x being (F′ , ε′ ,G)-good for the whole of Ix
implies that it is (F, ε,G;F′ , ε′)-good for Ix . Compactness then allows us to split the
interval as

0 = t0 < t1 < ⋅ ⋅ ⋅ < tn = 1(4.46)

and to take ψ i ∶D→ B u.c.p. which are (F, ε,G;F′ , ε′)-good for [t i−1 , t i] for i =
1, . . . , n (ψ i = ψ′x for some x ∈ [0, 1]). Now by repeatedly using the gluing lemma
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(Lemma 4.23) to glue these maps together, we can find a u.c.p. map ψ ∶D→ B which
is an (F, ε,G)-embedding. ∎

5 Crossed products

In this section, we discuss how inclusions coming from noncommutative dynamics fit
into the framework of tensorially absorbing inclusions. We will briefly discuss group
actions G ↷α A with Rokhlin properties and consider the inclusion of a C*-algebra in
its crossed product A ⊆ A⋊α G, as well as the inclusion of the fixed point subalgebra
of the action in the C*-algebra Aα ⊆ A. We then discuss diagonal inclusions associated
with certain group actions.

This first result says that if we have an isomorphism A ≃ A⊗D which is G-
equivariant with respect to an action point-wise fixing the right tensor factor, up to
a 1-cocycle, then the corresponding inclusion A ⊆ A⋊r ,α G is D-stable. Recall that if
β ∶ G ↷ B is an action of a countable discrete group on a unital C*-algebra B, then a
β-1-cocycle is a map u ∶ G → U(B) satisfying the cocycle identify:

ugh = ug βg(uh).(5.1)

If (A, α), (B, β) are G-C*-algebras, we say that they are cocycle conjugate, denoted
(A, α) ≃c.c. (B, β), if there are an isomorphism ϕ ∶ A ≃ B and a β-1-cocycle u ∶ G →
U(B) such that

A B

A B

ϕ

αg Ad(ug)○βg

ϕ

(5.2)

commutes for all g ∈ G. Conjugacy is usually too strong a notion of equivalence,
whereas cocycle conjugacy has allowed for quite deep classification of automorphisms.
For example, this notion has been used for classifying automorphisms of von Neu-
mann factors [11, 12, 14, 33, 57].

Proposition 5.1 Let G ↷α A be an action of a countable discrete group on a unital
separable C*-algebra. Suppose that α ≃c.c. α ⊗ idD. That is, there is an α ⊗ idD-1-cocycle
u ∶ G → U(A⊗D) and an isomorphism Φ ∶ A ≃ A⊗D such that

A A⊗D

A A⊗D

αg

Φ

Ad(ug)○(αg⊗idD)

Φ

(5.3)

commutes for all g ∈ G. Then A ⊆ A⋊r ,α G is D-stable.

Proof Let ψ ∶D ≃D⊗∞, and let ϕn ∶D→D⊗∞ be the nth factor embedding:

ϕn(d) ∶= 1⊗n−1
D ⊗ d ⊗ 1⊗∞D .(5.4)

We claim that ξ(d) ∶= (Φ−1(1A ⊗ ψ−1 ○ ϕn(d)))n ∶D→ Aω is an embedding such
that ξ(D) ⊆ Aω ∩ A′ and (αg)ω ○ ξ = ξ for all g ∈ G – that is, ξ is an embedding
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D↪ Aω ∩ (A⋊r ,α G)′. The first part of the claim is obvious, so we prove the second.
We have

∥αg(Φ−1(1A ⊗ ψ−1(ϕn(d)))) − Φ−1(1A ⊗ ψ−1(ϕn(d)))∥
= ∥Φ ○ αg(Φ−1(1A ⊗ ψ−1(ϕn(d)))) − Φ(Φ−1(1A ⊗ ψ−1(ϕn(d))))∥
= ∥Ad(ug) ○ (αg ⊗ idD)(1A ⊗ ψ−1(ϕn(d))) − 1A ⊗ ψ−1(ϕn(d)))∥
= ∥Ad(ug)(1A ⊗ ψ−1(ϕn(d))) − 1A ⊗ ψ−1(ϕn(d)))∥
= ∥u∗g (1A ⊗ ψ−1(ϕn(d)))ug − 1A ⊗ ψ−1(ϕn(d)))∥
→ 0(5.5)

since (1A ⊗ ψ−1(ϕn(d)))n is asymptotically central in A⊗D. ∎

Actions satisfying the hypotheses of Proposition 5.1 are said to be equivariantly D-
absorbing, up to cocycle conjugacy. These actions are fairly common and there are a
wide range of positive results (see, for example, [58, 59]).

The next lemma of note is the following.

Lemma 5.2 Suppose that G ↷α A is an action of a finite group on a unital separable
C*-algebra A such that A ⊆ A⋊α G is D-stable. Then Aα ⊆ A⋊α G is D-stable. In
particular, if A ⊆ A⋊α G is D-stable, then C ≃ C ⊗D whenever Aα ⊆ C ⊆ A⋊α D.

Proof For an element (xn)n∈N ∈ Aω ∩ (A⋊α G)′, an easy averaging argument shows
that

(xn)n∈N =
⎛
⎝

1
∣G∣ ∑g∈G

αg(xn)
⎞
⎠

n∈N

(5.6)

in Aω , and the right is clearly point-wise fixed by αg for all g ∈ G. So Aω ∩ (A⋊α G)′
is actually equal to (Aα)ω ∩ (A⋊α G)′, and the existence of a unital embedding of D
in Aω ∩ (A⋊α G)′ is in fact equivalent to the existence of a unital embedding of D
into (Aα)ω ∩ (A⋊α G)′. The result follows. ∎

The Galois correspondence of Izumi [30] yields the following.

Theorem 5.3 Let A be a unital, simple, separable C*-algebra, and let G ↷α A be an
action of a finite group by outer automorphisms. If A ⊆ A⋊α D is D-stable, then there
exists an isomorphism Φ ∶ A⋊α G ≃ (A⋊α G) ⊗D such that whenever C is a unital
C*-algebra satisfying either:
(1) Aα ⊆ C ⊆ A or
(2) A ⊆ C ⊆ A⋊α G,
we have Φ(C) = C ⊗D.

Proof Applying [30, Corollary 6.6] gives the following two correspondences:
(1) there is a one-to-one correspondence between subgroups of G with intermediate

C*-algebras Aα ⊆ C ⊆ A given by

H ↔ AαH ;(5.7)
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(2) there is a one-to-one correspondence between subgroups of G and intermediate
C*-algebras A ⊆ C ⊆ A⋊α G given by

H ↔ A⋊α∣H H.(5.8)

In particular, there are only finitely many C*-algebras C between either Aα ⊆ A or
A ⊆ A⋊α G. As all such lie between the D-stable inclusion Aα ⊆ A⋊ G, Theorem 4.8
yields the desired isomorphism. ∎

5.1 (Tracial) Rokhlin properties

Here, we will restrict ourselves to finite groups for simplicity, although many results
hold more generally (see [23, 26, 28]).

Definition 5.1 Let A be a unital, separable C*-algebra. We say that a finite group
action G ↷α A has the Rokhlin property if there are pairwise orthogonal projections
(pg)g∈G ⊆ Aω ∩ A′ summing to 1Aω such that (αg)ω(ph) = pgh for g , h ∈ G.

Proposition 5.4 Let A be a unital, separable D-stable C*-algebra. If G ↷α A is an
action of a finite group with the Rokhlin property, then Aα ⊆ A⋊α G is D-stable.

Proof This follows from [28, Theorem 3.3], together with Lemma 5.2. ∎
Definition 5.2 Let A be a unital, separable C*-algebra. We say that a finite group
action G ↷α A has the weak tracial Rokhlin property if for all F ⊆ A finite, ε > 0 and
0 ≠ a ∈ A+, there are pairwise orthogonal normalized positive contractions (eg)g∈G ⊆
A such that:
(1) 1 −∑g eg ≾ a;4
(2) [eg , x] ≈ε 0 for all x ∈ F, g ∈ G;
(3) αg(eh) ≈ε egh for all g , h ∈ G.

It is easy to see that a Rokhlin action is outer, since the central projections must
commute with any unitary. The fact that weak tracial Rokhlin actions are outer is [26,
Proposition 5.3].

Proposition 5.5 Let A be a unital, simple, separable, nuclear, Z-stable C*-algebra. If
G ↷α A is an action of a finite group with the weak tracial Rokhlin property, then Aα ⊆
A⋊α G is Z-stable.

Proof Let k ∈ N. By [26, Theorem 5.6] A⋊α G is tracially Z-absorbing, meaning
there are tracially large (in the sense of [65]) c.p.c. order zero maps ϕ ∶ Mk → (A⋊α
G)ω ∩ (A⋊α G)′, which can be chosen to be c.p.c. order zero maps ϕ ∶ Mk → Aω ∩
(A⋊α G)′ by the proof of [26, Lemma 5.5]. These tracially large c.p.c. order zero maps
yield sequences of positive contractions c1 = (c1n), . . . , ck = (ckn) ∈ Aω ∩ (A⋊α G)′
such that if (en)n∈N = e ∶= 1 −∑i c∗i c i , we have

lim
n→ω

max
τ∈T(A)

τ(en) = 0, inf
m

lim
n→ω

min
τ∈T(A)

τ(cm
1n) > 0(5.9)

4For two positive elements x , y in a C*-algebra, we write x ≾ y to mean that x is Cuntz-subequivalent
to y. That is, there are (rn)n∈N in the C*-algebra such that r∗n yrn → x (see [26, Section 2]).
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and c i c∗j = δ i jc2
1 . By [23, Proposition 4.11] (which is much more general, applicable

to all countable amenable groups), A ⊆ A⋊α G has equivariant property (SI) since A
has property (SI).5 Consequently, there exists s ∈ Aω ∩ (A⋊α G)′ such that s∗s = 1 −
∑i c∗i c i and c1s = s. Altogether,
• c1 ≥ 0;
• c i c∗j = δ i jc2

1 ;
• s∗s +∑i c∗i c i = 1;
• c1s = s.
As mentioned in the proof of (iv) ⇒ (i) of [39], Zn ,n+1 is the universal C*-algebra
generated by n + 1 elements satisfying the above four relations (see [52, Proposition
5.1] and [54, Proposition 2.1]), and consequently we have a unital *-homomorphism
Zn ,n+1 → Aω ∩ (A⋊α G)′. Therefore Z↪ Aω ∩ (A⋊α G)′, giving that the desired
inclusion is Z-stable by Lemma 5.2. ∎
Corollary 5.6 Let A be a unital, simple, separable, nuclear, Z-stable C*-algebra, and
let G ↷α A be an action of a finite group with the weak tracial Rokhlin property. There
exists an isomorphism Φ ∶ A⋊α G ≃ (A⋊α G) ⊗Z such that whenever C is a unital C*-
algebra satisfying either:
(1) Aα ⊆ C ⊆ A or
(2) A ⊆ C ⊆ A⋊α G,
we have Φ(C) = C ⊗Z.

Proof This results from combining Proposition 5.5 together with Theorem 5.3,
making note that this is an outer action. ∎

5.2 The diagonal inclusion associated with a group action

In the von Neumann setting, a certain diagonal inclusion associated with several
automorphisms was considered in [7, 34, 43], and they play a role in subfactor theory.
Here, we consider a unital C*-algebraic inclusion of the same form.

Definition 5.3 Let A be a C*-algebra, α1 , . . . , αn ∈ Aut(A). The diagonal inclusion
associated with α1 , . . . , αn is

B(α1 , . . . , αn) = {
n
⊕
i=1

α i(a) ∣ a ∈ A} ⊆ Mn(A).(5.10)

If G ↷α A is an action of a finite group, we write

B(α) =
⎧⎪⎪⎨⎪⎪⎩
⊕
g∈G

αg(a) ∣ a ∈ A
⎫⎪⎪⎬⎪⎪⎭
⊆ M∣G∣(A).(5.11)

We note that a diagonal B(α) ⊆ M∣G∣(A) is unique up to unitary conjugation (by
permutation unitaries). As D-stability of an inclusion is preserved under unitary
conjugation, there is no ambiguity in speaking of D-stability of the inclusion B(α) ⊆
M∣G∣(A).

5A unital, separable, simple, nuclear, Z-stable C*-algebra has property (SI) as in [39].
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Proposition 5.7 Let G ↷α A be an action of a countable discrete group on a unital,
separable C*-algebra. If G = ⟨g1 , . . . , gn⟩, then A ⊆ A⋊α G is D-stable if and only if

B(idA, αg1 , . . . , αgn) ⊆ Mn+1(A)(5.12)

is D-stable.

Proof First, suppose that A ⊆ A⋊α G is D-stable. Let F ⊆D,G ⊆ Mn+1(A) be finite
and ε > 0. Let G′ ⊆ A be the set of matrix coefficients of elements of G, together
with the identity of A, and let L ∶= max{1, maxa∈G′ ∥a∥}. Relabel idA, αg1 , . . . , αgn as
α1 , . . . , αn+1. Let

δ ∶= ε
(4L + 1)(n + 1)2 ,(5.13)

and let ψ ∶D→ A be a u.c.p. (F, δ,G′ ∪ {ug i}n
i=1)-embedding, where (ug) are the

implementing unitaries for α. Let ϕ ∶ D → B(α) ⊆ M∣G∣(A) be given by

ϕ(d) ∶=
n+1
⊕
i=1
(α i ○ ψ)(d).(5.14)

Clearly, ϕ will be (F, δ)-multiplicative since each component is the composition of a
*-homomorphism (which are contractive) with a map which is (F, δ)-multiplicative.
Now for d ∈ F and a = (a i j) ∈ G, we have

∥[ϕ(d), (a i j)]∥ ≤
n+1
∑

i , j=1
∥α i(ψ(d))a i j − a i jα j(ψ(d))∥

≤
n+1
∑

i , j=1
∥α i(ψ(d))a i j − ψ(d)a i j∥

+ ∥ψ(d)a i j − a i jψ(d)∥ + ∥a i jψ(d) − a i jα j(ψ(d))∥(5.15)

≤
n+1
∑

i , j=1
∥a i j∥ (∥α i(ψ(d)) − ψ(d)∥ + ∥ψ(d) − α j(ψ(d))∥)

+ ∥[ψ(d), a i , j]∥
< (n + 1)2(2L(δ + δ) + δ)
= (n + 1)2(4L + 1)δ = ε.

Conversely, if the associated diagonal inclusion is D-stable, we note that if (xk) ⊆
B(idA, αg1 , . . . , αgn) is central for Mn+1(A), writing

xk =
n+1
⊕
i=1

α i(ak)(5.16)

yields that (ak) ⊆ A is central for A and is asymptotically fixed by αg i , i = 1, . . . , n.
In particular, ifD↪ B(idA, αg1 , . . . , αgn)ω ∩ (Mn+1(A))′, thenD↪ Aω ∩ (A⋊α G)′.

∎
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Corollary 5.8 Let G ↷α A be an action of a finite group on a unital, separable
C*-algebra. Then A ⊆ A⋊α G is D-stable if and only if

B(α) ⊆ M∣G∣(A)(5.17)

is D-stable.

6 Examples

6.1 Non-examples

We first start with some non-examples. Villadsen’s C*-algebras with perforation will
be useful (see [68] for good exposition). Let Q = ⊗n Mn denote the universal UHF
C*-algebra.

Theorem 6.1 ([64, 69]) There exists a unital, simple, separable, nuclear C*-algebra
C satisfying the UCT such that C /≃ C ⊗Z and C contains the universal UHF algebra
unitally. Moreover, C is tracial and can be chosen to be AH with

(K0(C), K0(C)+, [1]0 , K1(C)) = (Q,Q+ , 1, 0).(6.1)

Corollary 6.2 There exists an embedding Q↪ Q which is not Z-stable. In particular,
it is not Q-stable.

Proof Let C be as above. Note that Q ⊆ C so we must find an embedding C ↪ Q.
As C is unital, separable, exact, satisfies the UCT and has a faithful amenable trace (it
has traces, and every such trace will be faithful and amenable since C is nuclear and
simple) and there is clearly a morphism between K0-groups, [55, Theorem D] gives
an embedding C ↪ Q. Consequently, there is an embedding

Q↪ C ↪ Q(6.2)

which is not Q-stable since there is an intermediate C*-algebra C with C /≃ C ⊗Z. ∎

Corollary 6.3 There is an embedding Z↪ Q which is not Z-stable.

Proof Take C as above and take the chain of embeddings (noting that Q is Z-stable)

Z↪ Q⊗Z ≃ Q↪ C ↪ Q.(6.3)

∎

Corollary 6.4 There is an embedding Z↪ O2 which is not Z-stable.

Proof Just take the same embedding as above together with an embedding Q↪ O2.
∎

Remark 6.5 All *-homomorphisms between strongly self-absorbing C*-algebras are
approximately unitarily equivalent by [66, Corollary 1.12], or even asymptotically
unitarily equivalent by [16, Theorem 2.2]. Therefore, D-stability is not closed under
these equivalences (nor homotopy, see [16, Corollary 3.1]).
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The only method we have used to show that an inclusion is not D-stable is by
finding an intermediate algebra which is not D-stable. There are plenty of examples of
stably finite C*-algebras with perforation or higher-stable rank (in particular, non-Z-
stable C*-algebras [50]) [19, 27, 37, 60, 62–64, 68–70]. This gives rise to the following
two questions.
(1) Is there a unital inclusion B ⊆ A of separable C*-algebras such that whenever C is

such that B ⊆ C ⊆ A, we have C ≃ C ⊗D but B ⊆ A is not D-stable? Is D-stability
equivalent to every intermediate C*-algebra being D-stable?

(2) To get non-examples, we use stably finite C*-algebras with perforation in between
sufficiently regular C*-algebras. Is there a way to do this for purely infinite
C*-algebras, or is finiteness the only obstruction? Thus we can ask: if D is a purely
infinite strongly self-absorbing C*-algebra, is every embedding of D into itself
D-stable? More specifically, if B ⊆ A is a unital inclusion of simple, separable,
purely infinite C*-algebras, is the inclusion O∞-stable?

Our third question asks if we can get non-examples arising from dynamical
systems.
(3) Is there a unital, separableD-stable C*-algebra and a (finite) group action G ↷α A

such that A⋊α G is D-stable, but the inclusion is not? One would need A⋊α G to
be D-stable for non-dynamical reasons.

6.2 Cyclically permuting tensor powers

Here, we give a dynamical example to illustrate the discussion in Section 5. In
particular, we can look at a consequence of Corollary 3.5.

Example 6.6 Let p, q ∈ N be coprime and consider the qth tensor power of the UHF
algebra A = M⊗q

p∞ . Let us examine the action Zq ↷σ A given by cyclically permuting
the tensors:

σ(a1 ⊗ ⋅ ⋅ ⋅ ⊗ aq) = a2 ⊗ ⋅ ⋅ ⋅ ⊗ aq ⊗ a1 .(6.4)

One can prove directly or use [26] or [1] in order to conclude that this action has the
weak tracial Rokhlin property, or that this action is Z-equivariantly absorbing, and
consequently that Aσ ⊆ A⋊σ Zq is Z-stable.

Alternatively, one can use techniques similar to [24], [25], or [28] in order to
compute the K-theory of the fixed point algebra Aσ to be

K0((M⊗q
p∞)σ) ≃ lim

→

⎛
⎜⎜⎜⎜⎜
⎝

Zq ,

⎛
⎜⎜⎜⎜⎜
⎝

p + pq−p
q

pq−p
q ⋅ ⋅ ⋅ pq−p

q
pq−p

q p + pq−p
q ⋅ ⋅ ⋅ pq−p

q
⋮ ⋮ ⋱ ⋮

pq−p
q

pq−p
q ⋅ ⋅ ⋅ p + pq−p

q

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟
⎠

,(6.5)

from which one can show that K0(Aσ) is p-divisible. Then using the fact that K0(Aσ) is
p-divisible and Aσ is AF, it follows that Aσ is Mp∞-stable. Using Corollary 3.5, we then
see that Mp∞ ↪ (Aσ)ω ∩ A′. In particular, we have that Aσ ⊆ A⋊σ Zq is Mp∞-stable
(since clearly if this embedding is fixed by Zq , it will commute with the implementing
unitaries as well).
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Example 6.7 Following up on the previous example, if we consider the embedding

B ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

x
σ(x)

⋱
σ q−1(x)

⎞
⎟⎟⎟
⎠
∣ x ∈ M⊗q

p∞

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⊆ Mq(M⊗q
p∞) ∶= A,(6.6)

then B ⊆ A is Mp∞-stable by Proposition 5.7.

6.3 The canonical inclusion of the CAR algebra in O2

Example 6.8 Let O2 = C∗(s1 , s2) be the Cuntz algebra generated by two isometries
[15], and consider the inclusion

M2∞ ≃ span{sμs∗ν ∣ ∣μ∣ = ∣ν∣} ⊆ O2 ,(6.7)

where for a word μ = {i1 , . . . , ip} ∈ {1, 2}p , sμ = s i1 . . . s ip . This copy of the CAR
algebra is precisely the fixed point subalgebra of the gauge action (see [45]). Consider
the endomorphism λ ∶ O2 → O2 given by

λ(x) ∶= s1xs∗1 + s2xs∗2 .(6.8)

We note that a sequence (xn)n∈N is ω-asymptotically central for O2 if and only if it is
ω-asymptotically fixed by λ. Indeed, if (xn)n∈N is central, then ∥λ(xn) − xn∥ →n→ω 0
since [xn , s i] → 0 for i = 1, 2. On the other hand, if (xn)n∈N is asymptotically fixed by
λ, then the inequalities

∥s i xn − xns i∥ = ∥s1xns∗1 s i + s2xns∗2 s i − xns i∥ ≤ ∥λ(xn) − xn∥∥s i∥
∥s∗i xn − xns∗i ∥ = ∥s∗i xn − s∗i s1s∗1 − s∗i s2xns∗2 ∥ ≤ ∥s∗i ∥∥λ(xn) − xn∥(6.9)

imply that (xn)n∈N is asymptotically central.
We note that λ∣M2∞ is the forward tensor shift if we identify M2∞ = ⊗N M2 (see, for

example, [17, Section V.4]). Now [5] gives an embedding ξ ∶ M2 ↪ (M2∞)ω such that
λω ○ ξ = ξ. In particular, M2∞ ↪ (M2∞)ω ∩O′2 so that this inclusion is M2∞-stable.

Thinking ofO2 as the semigroup crossed productO2 ≃ M2∞ ⋊λ N (see [48, 51]), any
intermediate C*-algebra is automatically CAR stable. Consequently, each intermediate
subalgebra M2∞ ⋊ dN = C∗(M2∞ , sd

1 ) is M2∞-stable. We can do this all concurrently.

Corollary 6.9 There exists an isomorphism Φ ∶ O2 ≃ O2 ⊗ M2∞ such that

Φ(C∗(M2∞ , sd
1 )) ≃ C∗(M2∞ , sd

1 ) ⊗ M2∞(6.10)

for all d ∈ N. The same holds if we replace M2∞ by Z.

Now let us play with some diagonal inclusions associated with powers of the
Bernoulli shift λ on O2 above. This will be similar to what was discussed in Section
5.2, except we allow endomorphisms.
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Example 6.10 Consider, for n ∈ N, the diagonal inclusion

Bn ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

x
λ(x)

⋱
λn−1(x)

⎞
⎟⎟⎟
⎠
∣ x ∈ O2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⊆ Mn(O2) =∶ An .(6.11)

Note that both An and Bn are isomorphic to O2, and in fact, this gives a nontrivial
inclusion of O2 into itself which is O2-stable. This is O2-stable since a sequence is
asymptotically fixed by λ if and only if it asymptotically commutes with the algebra. A
similar argument to that of Proposition 5.7 will yield that this inclusion is O2-stable.

One can even restrict the diagonal to elements of the CAR algebra M2∞ ⊆ O2 sitting
as the fixed point subalgebra of the gauge action as above.
Example 6.11 Consider

B(2)n ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

x
λ(x)

⋱
λn−1(x)

⎞
⎟⎟⎟
⎠
∣ x ∈ M2∞

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⊆ Mn(O2) = An .(6.12)

This is M2∞-stable for the same reasons as above. This gives another inclusion M2∞ ≃
B(2)n ⊆ Mn(O2) ≃ O2 which is CAR-stable.
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