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APPROXIMATING APPROXIMATE FIBRATIONS 
BY FIBRATIONS 

L. S. HUSCH 

1. Introduction. A map p: E —> B between metric spaces has the approxi­
mate homotopy lifting property with respect to the space X if given a cover 0 of 
B and maps g: X -> E and H: X X [0, 1] -> B such that H(x, 0) = pg(x) 
for all x G X, then there exists a map G: X X [0, 1] —» £ such that G(x, 0) = 
g(x) and ^Gj and Ht are £7-close for all x £ X and / £ [0, 1] ; i.e., given (x, t) Ç 
X X [0, 1], there exists Z7 Ç f7such that pG(x, t) and H(x, i) are elements of U. 
p: E —» 5 is an approximate fibration if >̂ has the approximate homotopy lifting 
property with respect to all spaces X. Coram and Duvall [13] introduced these 
concepts as a generalization of UVœ maps and showed that approximate fibra-
tions have many properties in common with Hurewicz fibrations if one uses 
shape theoretic concepts in place of their homotopy theoretic analogues (see, 
for example, Propositions 1 and 2). Hence, an approximate fibration may be 
regarded as the shape theoretic analogue of Hurewicz fibrations. They also 
showed that the uniform limit of a sequence of Hurewicz fibrations between 
two compact ANR's is an approximate fibration. 

In [25], Lâcher showed that a cell-like mapping between ANR's has the 
approximate homotopy lifting property with respect to polyhedra. By [14] 
(see Proposition 4), this implies that cell-like mappings are approximate 
fibrations. Armentrout [2], Siebenmann [30] and Finney [17] showed that cell­
like mappings between manifolds of dimension 9e 4 are precisely those map­
pings which can be approximated by homeomorphisms. Hence, the natural 
question arises whether the approximate fibrations between manifolds are pre­
cisely those mappings which can be approximated by Hurewicz fibrations. 

Recall that a map F: E —> B is a locally trivial fiber map if for each x Ç B 
there exists a neighborhood U of x in B and a homeomorphism h of F_1(x) X 
U onto F~l{U) such that Fh(y, z) = z for all (y, z) G F~l(x) X U. If B is 
paracompact and if F is a locally trivial fiber map, then F is a Hurewicz fibra­
tion [31; p. 96]. In this note the following results are proved. 

THEOREM A. Let E be a closed connected 3-manifold such that each inessential 
tame 2-sphere in E bounds a 3-cell and let B be a connected n-manifold, n = 1,2. 
Let f: E —> B be an approximate fibration and let e > 0 be given. If n = 1, then 
assume that ïïi(F) ^ Z2 where F is a fiber of f. Then there exists a locally trivial 
fiber map g: E —> B such that d(f, g) < e. 
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The condition on inessential 2-spheres is related to the Poincaré conjecture 
and the condition on TTI(F) is related to the conjecture that an /z-cobordism 
bounded by projective planes is a product cobordism. A counterexample to 
either of these two conjectures would provide a counterexample to Theorem A 
if the corresponding hypothesis were removed. 

THEOREM B. Let f: M —> 5 1 be an approximate fibration such that either i) 
M is a closed connected m-dimensional manifold, m ^ 6, or ii) M is a compact 
connected Hilbert cube manifold, f can be approximated arbitrarily close by a 
locally trivial fiber map if and only if f is homotopic to a Hurewicz fibration. 

THEOREM C. There exists a closed connected manifold M and an approximate 
fibration f: M —> S1 such that f cannot be approximated arbitrarily close by a 
Hurewicz fibration. Let Q denote the Hilbert cube and let TT: MX Q —> M denote 
the projection on the first factor. The map fir: M X Q —> S1 is an approximate 
fibration of a Hilbert cube manifold which cannot be approximated arbitrarily 
close by a Hurewicz fibration. 

Combining Theorem B with a result of R. D. Edwards [16], we have the 
following result for arbitrary compact ANRs. 

COROLLARY D. Let f: M —> S1 be an approximate fibration of a compact ANR 
M onto S1, f can be stably approximated arbitrarily close by a Hurewicz fibration 
if and only if f is stably homotopic to a Hurewicz fibration; i.e., fir: MX Q —> S1 

can be approximated arbitrarily close by a Hurewicz fibration if and only if f is 
homotopic to a Hurewicz fibration. 

THEOREM E. Let f: M —> R1 be a proper approximate fibration onto the real 
numbers and suppose that either i) M is a connected m-dimensional manifold, 
m ^ 6, or ii) M is a connected Hilbert cube manifold, f can be approximated 
arbitrarily close by a proper locally trivial fiber map if and only if f is properly 
homotopic to a Hurewicz fibration. 

Siebenmann [29] has determined necessary and sufficient conditions that a 
mapping of a closed connected m-dimensional manifold onto 51, m ^ 6, be 
homotopic to a locally trivial fiber map. 

COROLLARY F. Letf: M —* S1 be an approximate fibration and suppose that M 
is a closed connected m-dimensional manifold, m ^ 6. / can be approximated 
arbitrarily close by a locally trivial fiber map if and only if Siebenmann1 s obstruc­
tion F(M) in the Whitehead group of TT\M vanishes. 

R. Goad [18] has obtained a higher-dimensional analogue of Theorem A for 
approximate fibrations between manifolds whose fibers have the shape of Sl. 
T. Chapman has informed the author that he and S. Ferry also have proved 
Theorem B in the case when M is a Hilbert cube manifold. The author expresses 
his gratitude to Z. Cerin and R. Daverman who read earlier versions of parts of 
this paper and pointed out errors and some improvements. 
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2. Preliminaries. We need the following four results from the work of 
Coram and Duvall [13; 14]. Suppose t h a t / : E —» B is a proper mapping be­
tween locally compact ANR's. 

PROPOSITION I. If f is an approximate fibration and if B is path-connected, 
then the fiber, F = /_1(x)> is well-defined up to shape equivalence; i.e., if x, y £ B, 
then f~l{x) and f~l{y) have the same shape. F is a fundamental absolute neighbor­
hood retract (FANR). 

Let fi(F, z) denote the ith shape homotopy group of F based at z G F. 

PROPOSITION 2. Let f be an approximate fibration; then there exists a long exact 
sequence 

. . . -> Tt(F, z)J^ Tt(E, z)f-*> rt(B,f(z)) -* f^F, * ) - > . . . 

where j * is the homomorphism (map when i = 0) induced by inclusion. 

Suppose t h a t / : E —> B is a map; let 0 be a cover of B and let g: X —> E 
and H: X X [0, 1] -> £ be maps such that H(x, 0) = fg(x), x € X. If there 
exists G: X X [0, 1] —> E such that G(x, 0) = g(x),fG and 77 are £7-close and 
whenever H(x, t) = fg(x) for all t, G(x, t) = fg(x) for all /, t h e n / is said to 
have the regular approximate homotopy lifting property with respect to X. 

PROPOSITION 3. If fis an approximate fibration, thenf has the regular approxi­
mate homotopy lifting property with respect to all spaces. 

PROPOSITION 4. / / / has the approximate homotopy lifting property for n-cells, 
w § 0 , then f is an approximate fibration. 

PROPOSITION 5. If f is an approximate fibration and if U Ç B is open, then 
/ | / _ 1 ( U) : f~l (U) —* U is an approximate fibration. 

Proof. It is easily seen that f\f~x(U) has the approximate homotopy lifting 
property with respect to w-cells for all n ^ 0. The result follows from Proposi­
tion 4. 

We use the theory of ends (see [28]). If/: E —» B is a proper monotone map­
ping between connected spaces, then / induces a bijection from the ends of E 
to the ends of B. 

PROPOSITION 6. Letf: E—^Bbea proper map of connected ANR's which is an 
approximate fibration with connected fiber. Let { Ut} be a sequence of path-con­
nected neighborhoods of the end e of B such that 

6.1. Ui+i C Uf for alii. 
6.2. The inclusion induced homomorphism TiUi+i —» wiUi is an isomorphism 

for all i. 
6.3. D Ui = 0. 
6.4. iriUi is trivial for all i. 
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Then, \f~l(Ui)} is a sequence of neighborhoods of the end of E which corresponds 
to e by the above-mentioned bisection such that 

6.5. f-l(Ui+1) Qtl{Ui) for alii. 
6.6. The inclusion induced homomorphism 7Ti/_1([/<+i) —> TT\f~l(Ui) is an iso­

morphism for all i. 
6.7. nf'KUt) =0. 

Proof. Fix i and let b Ç Ui+i. By Proposition 2, we have the following com­
mutative diagram 

i -> TT!(r\b)) -> iriir'iUi)) h iniUt) -* i 

a* * 
1 -> ^(r\b)) -> Ti(f-\Ui+1))j+ TniUi+i) -> 1 

where a* and 0* are induced by inclusions and the rows are exact. The proposi­
tion follows by the five lemma. 

PROPOSITION 7. Let f be an approximate fibration and let x £ B. Then 
iTi(f~l(x), z) is finitely presented. 

Proof. By Proposition 1, f~l(x) is an FANR and, hence, (f~l(x), z) is funda­
mentally dominated by a finite polyhedron (P, p) [3]. By [3], 7fi(/-1(x), z) is 
isomorphic to a retract of 7ri(P, p) and the conclusion follows from Lemma 1.3 
of [33]. 

PROPOSITION 8. If Theorems A and B are true for approximate fibrations with 
connected fibers, then Theorems A and B are true for arbitrary approximate 
fibrations. 

Proof. Le t / : E —» B be an approximate fibration whose fiber F is not neces­
sarily connected. Since F \s fundamentally dominated by a finite polyhedron 
(see the proof of the previous proposition), F has a finite number of compo­
nents. Let m: E —> F and /: Y —> B be the monotone-light factorization of/. 

We will now show that / is a covering map. Let x 6 B and let U C B be a 
closed n-ce\\ which is a neighborhood of x. Let F be a component of l~l(U). 
From the exact sequence 

ri(U, b) -> ro(f-l(b), e) -» TOV-W), e) 

we see that each component of / - 1 (^ ) hes in precisely one component of f~l(U). 
Hence l\ V is 1 — 1 and, thus, is a homeomorphism. Therefore / is a covering 
map and F is a n-manifold. Note that it is possible to put a metric d on F so 
that / is a local isometry; i.e., there exists eo > 0 such that if d(x, y) < eo, 
then ^(x, y) = d(l(x), l(y)). 

We now claim that m: E —» F is an approximate fibration. Let e > 0, 
g: X —> £ and if: X X [0, 1] —» F be given such that H(x, 0) = mg(x) for 
all x Ç X. We may assume that e < eo. Let G: X X [0, 1] —> £ be a map such 
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tha t G(x, 0) = g(x) and d(fG(x, t), lH(x, /)) < e for all x 6 X and / £ [0, 1]. 
We now claim tha t d(mG{x, t), H(x, /)) < e; let Ax = {t G [0, 1]|d(mG(x} t), 
H(x} t)) < e}. By using the facts t ha t / is a covering map and a local isometry, 
it is straightforward to check tha t Ax is both open and closed in [0, 1]. T h u s 
m: E —> F i s an approximate fibration and the fiber of m is connected. 

If we assume the hypotheses of Theorem A and assume tha t Theorem A is 
true for connected fibers, then we can find a locally trivial fiber map <£:£—> Y 
which approximates m. Then 1$ : E —> B is a locally trivial fiber map which 
approximates / . 

Now, suppose tha t Theorem B is true for approximate fibrations with con­
nected fibers. By hypothesis, / is homotopic to a Hurewicz fibration / 0 . Since I 
is a covering map, this homotopy can be lifted to a homotopy between m and 
Wo where lmQ = / 0 . By [31], m0 is also a Hurewicz fibration. Now we can apply 
Theorem B and proceed as above. 

3. Proof of T h e o r e m A. Suppose t h a t / : E —» B is an approximate fibration 
where E is a. closed connected 3-manifold such tha t each inessential tame 2-
sphere in E bounds a 3-cell and B is a connected w-manifold, n = 1, 2. By 
Proposition 8, it suffices to consider the case tha t F = / _ 1 ( ^ ) is connected for 
some b G B. 

LEMMA 9. If n = 2, then fi(F, e) is infinite. 

Proof. Suppose tha t fi(F, e) is finite. Let U be an open 2-cell in B and let 
b Ç U; by Proposition 5, flf^iU): / - 1 ( ^ ) —> f/ is an approximate fibration. 
I t follows from Proposition 2 tha t 7ri(/_ 1(C/), e) is isomorphic to TVI(F, e). 
If f~l(U) is not orientable, then let p : l̂ F —•> f~l(U) be the oriented double 
covering. Note tha t , by covering space theory and Proposition 4, p = fp : W—> 
U is an approximate fibration whose fiber F' double covers F. I t is straight­
forward to check tha t f\{F', e') is also finite. Thus , it suffices to consider the 
case when f~l ( U) is orientable. 

Let V ^ b be an element of U. Again, f\f~l{U — b') is an approximate 
fibration and it follows from Proposition 2 tha t -Ki(f~l(U — V, e) is infinite. 
vSince the integers is a homomorphic image of TTI ( / _ 1 ( U — b' ) ), Hx ( / - 1 (U — bf)) 
is also infinite. From the exact homology sequence of the pair ( / - 1 (^7) , 
f'^U - b')), we see tha t H2(f-

1(U), f~l(U - V)) is infinite. But, by duali ty, 
H2(f~

1(U), f~l(Ur b')) is isomorphic to Hl(f-l(b')) = Hl(F) ; however, since 
fi(F, e) is finite, H1(F) is also finite, a contradiction. 

LEMMA 10. / / U C f> w aw 0/>e?z subset with a finite number of ends, then 
f~l ( U) is homeomorphic to the interior of a compact 3-manifold provided ïïi(F) ^ 
Z2 , the cyclic group of order 2. 

Proof. Fix an end e of U and let i be the end of f~l ( [/) which h corresponds 
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to e. Let { Ui) be a sequence of connected open sets in U such that each Ut is 
a neighborhood of the end e, Ut 3 Ui+i for each i and Pi Ut = 0. If n = 2, 
we may assume that Î7* is an open annulus for each i. It follows from Proposi­
tion 6 that {iri(f-l(Ui))} is essentially constant [28] or, in the terminology of 
[22], Tri is stable at the end i of f-l(U). The conclusion follows from [22]. 

Now, let n = 2. 

LEMMA 11. TTI(F) is isomorphic to the integers. 

Proof. Let U C J3 be an open 2-cell and letp ^ q be points of [/. By Lemmas 
9 and 10, f~l(U — {/>, #}) is homeomorphic to the interior of a compact 
3-manifold R. By Proposition 2, we have the exact sequence 

l ^ ï l { F ) ^ T l f - i { U - {ptÇ})->Tl{U- ip,q})-+l. 

Since TT\R is isomorphic to ir\f~l(U — {p, q})} the conclusion follows from [19] 
and Proposition 7. 

LEMMA 12. If U Q B is an open 2-cell, then f~l(U) is homeomorphic to 
Sl X R2. 

Proof. By Lemma 10, f~l{U) is homeomorphic to the interior of a compact 
3-manifold R. Let { Ut}%i be open annuli in U as in the proof of Lemma 10. 
Since 7n(bdry R) is isomorphic to the inverse limit of {7ri(/-1 (£/*))}, it follows 
from the previous lemma and the exact sequence 

1 _> #1(/T) _> * ! ( / - ! ( [ / , ) ) - * ITl(tff) -> 1 

that bdry i? is a torus or a Klein bottle. We will now show that the latter cannot 
occur; hence, to obtain a contradiction, suppose that bdry R is a Klein bottle. 
Let a and r denote generators of ïïi(F) and 7Ti([/*), respectively. Since 
TTi{f~l(Ui)) is isomorphic to 7Ti(bdry J?), a presentation for iri(f~l{Ui)) is 
|o-', r ': T W _ 1 = a'~l\ where a' is the image of a and r' is some preimage of r. 
Consider the commutative diagram 

i -* #!(F) -> TiCf-Htf)) -> *i(tf) -> i 

where the vertical maps are induced by inclusion. Note that iri(f~l(U)) is 
generated by y*(a') and note that Y*(T') = 1. From the presentation of 
n\U~l(Ui)), it follows that 7ri(/_1(f/)) is either trivial or cyclic of order 2; 
this contradicts the exactness of the last row and Lemma 11. Hence bdry R 
is a torus; since ir\{f~l{U)) is infinite cyclic, R is homeomorphic to a solid 
torus [27] and the lemma is proved. 
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LEMMA 13. Let U C B be an open 2-cell and let L Q U be either a point or a 
closed 2-cell; then f~l{U — L) is homeomorphic to S1 X S1 X R. 

Proof. Since U — L has two ends, f~l{U — L) is homeomorphic to the 
interior of a compact 3-manifold R and, as in the proof of Lemma 12, bdry R 
is homeomorphic to the union of two tori. Since 7ri/-1(£/ — L) is isomorphic 
to Z ® Z and the inclusion of each end induces an isomorphism on fundamental 
groups, it follows from [15] that R is homeomorphic to S1 X S1 X [0, 1]. 

LEMMA 14. Let U be an open 2-cell in B and let {Ui, U2, . . . , Ur}> r ^ 2, 
be a collection of pairwise disjoint open 2-cells in U. Then there exists an embed­
ding </>: S1 X A2 —> f~l(U) [A2 is a closed 2-cell] and points xi, x2, . . . , xr 6 bdry 
A2 such that 

( i ) 0 ( 5 1 X {*<}) Qf-KUt); 
(ii) Repair (f-^U), ^(S1 X {xt})) is homeomorphic to (S1 X R2, S1 X {0}); 
(hi) /or m d i, 0(bdry (S1 X A2)) H /^(É/O £ *(S ! X W<) wAere W^ is an 

open connected subset of bdry A2 such that if i 9e j , then Wi C\ Wj = <t>. 

Proof. Let pt £ Ut. Since TI(U — {£1, p2, . . . , pr\) is isomorphic to 7%-, the 
free group with r generators, iri(f~l(U — {pi, p2, . . . , pr\)) is isomorphic to 
the semi-direct product Z Xa Fr for some action a of Fr on Z. By considering 
the following commutative diagram for each i, 

1 -* Vl{F) -> rtf-KU ~ {pi, pt,..., PA)) -> *i(U - \pu p„...,pr\)^l 

1 - ri(F) - • »,(/•-'(t/ - {/>«})) -> *i(tf - IP.}) - I-

and using Lemma 13, one can show that the action a of Fr on Z is trivial and, 
hence, -Ki(f~l(U — [pi, p2, . . . , pr})) is isomorphic to the direct product of Z 
and 7v By Lemma 10, there exists a compact manifold R whose interior is 
homeomorphic to f~l(U — {pi, p2, . . . , pr})\ we can assume that R C 
/ - K t f ~ {Pu P2, • • • , £r}) and bdry i? C U",-i / " H ^ ) . 

By [19], there exists a fibration R—> S with the 1-sphere as fiber and which 
base 5 is a compact 2-manifold with in(S) ~ Fr. Since TTI(R) = Z X Fr, R is 
an orientable ^-bundle over 5, i.e., the structural group which is the homeo-
morphisms of S1 reduces to the group of orientation preserving homeomor-
phisms of S1 [21]. Since S1 is a deformation retract of the latter group, the 
classifying space for this group is simply-connected. Hence R is the trivial 
bundle over S, i.e., R is homeomorphic to S1 X S. Since bdry R has (r + 1)-
components, bdry 5 also has r + 1 components and thus 5 is a punctured disk. 
Let A' be a closed 2-cell in S which meets each component of bdry 5 in a con­
nected set. The restriction of the inverse of the above-mentioned homeomor-
phism from R to S1 X S is the desired homeomorphism. 

LEMMA 15. Let U, V be open 2-cells in B, U Q V and let 2 be a 1-sphere in 
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tl(U). The pair (f-^U), S) is homeomorphic to the pair (S1 X R2, S1 X {0}) if 
and only if the pair (f~l(V)> 2) is homeomorphic to the pair (S1 X R2,S* X {0}), 

Proof. Let D Ç [/ be a closed 2-cell such t h a t / ( 2 ) C D. By Lemma 13, 
there exist homeomorphisms hi: S1 X S1 X R —» f~l(U — D) and fe2: S1 X 
S1 X R -» / _ 1 ( ^ - -D); by [15], we may assume that hi(x, t) = h2(xy t) for 
x 6 S1 X S1 and £ ̂  0. The conclusion of the lemma follows from another 
application of [15]. 

LEMMA 16. Let Uu U2) V be open 2-cells in B, Ui U U2 Q V, Ui C\ U2 = </>; 
let S* be a l-sphere in f~l(Ui), i = 1, 2, such that the pair (f~l(Ui), 2*) is 
homeomorphic to the pair (S1 X R2, S1 X {0}). Then the triple \tl\v), Si, S2) 
is homeomorphic to the triple (S1 X R2, S1 X {£>}, S1 X {q}). 

Proof. Let ^ f Ui — /(2<), i = 1, 2, . As in the proof of Lemma 14, there 
exists a compact genus zero surface 5 with three boundary components and a 
homeomorphism k of the interior of S1 X S onto / " x ( ^ ~~ iPh Pi))- Let S0 be 
a component of bdry S such that the interior of some collar neighborhood of 
S1 X So in S1 X 5 is mapped onto a neighborhood of the end of f~l(V— \pi,pi)) 
which is determined by f~l(pi). Let Si be a l-sphere in the interior of 5 such 
that there exists an annulus A Q S with bdry A = S0 U SI and Si C 
k(Sl X int 4 ) C ^(S1 X (Si W int 4 ) ) C f-'iUi). 

Let x £ S1 and consider 7 = &({x} X Si). Note that 7 is homotopically 
trivial in f~l(V) and hence in / - 1 (£ / i ) . Since (f~l(Ui), Si) is homeomorphic to 
(S1 X R2, S1 X {0}), by using [15], one can show that the triple (f~l(Ui)} 

k(Sl X Si), Si) is homeomorphic to (S1 X R2, S1 X S1, S1 X {0}). Hence, 
the closure of the component of / _ 1 ( ^ ) — ̂ (S1 X Si) which contains Si is a 
solid torus in which 7 is homotopically trivial. Hence 7 bounds a disk in the 
latter solid torus which meets Si in precisely one point. Let S be the union of 
S — int A and the cone over Si; it is straightforward to extend k\S — int A to 
S. The lemma is proved by preforming a similar construction on the boundary 
component of S which corresponds to p2. 

LEMMA 17. Let K be a triangulation of B. Then there exists a locally trivial fiber 
map g: E —* B such that if x £ E and r £ K such that fix) £ r, then g(x) £ 
N(T, K), the simplicial neighborhood of r in K. 

Proof. Let v be a vertex of K, let N be the star of v in K", the second bary-
centric subdivision of K and let 

{vh i/2, . . . , ur} = (bdry N) P\ U *, 

where i£i is the 1-skeleton of X. Let TV*0 be the star of vt in K(iv) and let Nt = 
TV*0 P\ TV. By Lemma 14, there exists an embedding 0: S1 X A2 -> f~l(int N) 
and points Xi, x2, . . . , xr £ bdry A2 such that ^(S1 X {#<}) £ / - 1 ( i n t Nt). 
Choose a homeomorphism X: A2 —> TV so that X(x^) = vx. Define gi\ image 
</> —» TV by gi(<£(x, ;y)) = X(^) where x £ S1, y £ A2. If we repeat this con-
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struction for each vertex v of K, we get a fiber map gi over a neighborhood of 
the 0-skeleton of K. 

Let a be a 1-simplex in K; bdry a- = {z>, z/}. Let N and iV7 be the stars of v 
and v', respectively, in K" and let a C\ bdry iV = {vi} and o- P\ bdry N' = 
{vi\. Let o-' be the subarc of <r such tha t bdry a' = {vi, Vi}. Let 0 and 0' be 
the embeddings of S1 X A2 into /^(N) and /-^(iV7) , respectively. Let F be 
the fourth derived simplicial neighborhood of o7. Note tha t V does not meet 
the star (in K(iv)) of y*, i > 1 and the corresponding v/, i > 2. 

Let S = 0 (S 1 X {xi}) and 2 ' = 0CS1 X {xi}) where Xi, x\ are chosen as 
above. By Lemmas 15 and 16, the triple ( / _ 1 ( in t V), 2 , 2 ' ) is homeomorphic 
to the triple (S1 X R2, Sl X {p}, S1 X {g}). In particular, there exists an 
annulus A C J - 1 (int F) such tha t bdry i = 2 U 2 ' , Isotope yl, keeping 
2 U 2 ' fixed, into general position in / _ 1 ( i n t V) with respect to T U T' where 
r = J" 1 (int V) C\ bdry image </> and r ' = / - 1 ( i n t V) C\ bdry image 0. Hence 
we may assume tha t int A C\ (TU V) is a finite number of simple closed 
curves and arcs. Note t ha t these arcs must have their boundary in a component 
of bdry A. 

Suppose tha t there exists a simple closed curve y Ç i P i ( T U V) such 
t ha t 7 bounds a disk D on A. By choosing a . "min ima l " curve having this 
property, we may assume tha t D contains no points of T U V in its interior. 
Suppose tha t y Ç r . Since 7 Pi 2 = </>, 7 has to be homotopically trivial and, 
hence, bounds a disk D' on bdry image (/>. Note tha t D \J Df bounds a 3-cell 
C in f~l{N U V) and hence we can find an ambient isotopy ht whose support 
lies in a small neighborhood of C in f~l(N \J V) so tha t /h(bdry image <j>) C\ 
A C\ C = cf). If we choose the neighborhood of C sufficiently small, then the 
isotopy will keep ^ ( S 1 X {%i}) fixed for all i. In order to avoid a plethora of 
notat ion, we will replace the symbols /h</> and gihi by <j> and gi, respectively. 
By induction, we may assume tha t A C\ (Y U r ; ) contain no simple closed 
curves which are homotopically trivial in A. 

Suppose tha t int i P i ( r U f ) contains a simple closed curve 7; then 7 
and S bound an annulus in A. We can find simple closed curves 71 and 72 in 
i H ( r U r ' ) such tha t 71 C r , y2 C Tr and the interior of the annulus 
AQ Q A which is bounded by 71 U 72 does not meet any simple closed curve 
in A r\ ( r U r r ) . We will replace 4̂ by Ao and we need to make corresponding 
changes in gi and 0. If 71 ^ 2 , note tha t 71 and S are homotopic in bdry image 
0; by condition (iii) of Lemma 14, 71 and 2 bound an annulus in bdry image 0 
which misses 0(5X X {x*}), i > 1. Hence we can find an isotopy which takes 2 
to 71 and whose support lies in a small neighborhood of this annulus which also 
misses 0 ( 5 1 X {x*}), i > 1. Similarly, if 7 / F^ 2 ' , then we make the cor­
responding adjustments . Hence, we may assume tha t int A C\ (T VJ r ; ) con­
sists of a t most arcs; this could occur if, for example, 71 = 2 . 

Let r0 be an " innermost" arc which meets 2 ; i.e., there exists an arc n on 2 
such tha t bdry r0 = bdry n and r0 U n is a simple closed curve on A which 
bounds a disk <5i on A whose interior contains no point of int A C\ ( r U Tf) 
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bounds a disk ô2 on bdry image <£. By using the three cell bounded by <5i W <52 

we make alterations similar to above and replace A by c\(A — 81). By induc­
tion, we may assume that i n t i n ( r U r ' ) = </>. Note that f{Ax) C int 
(N U N' U V). It is easy to extend gi\ 2 U S ' - ) bdry a' to a locally trivial 
fiber map g2: A -* v' .We repeat this construction for each 1-simplex of K. 

Let X be a 2-simplex in K and let W be the union of the stars of the vertices of 
X in K" and the derived neighborhoods V of the 1-cells used in the above con­
struction. Let X' be the boundary of the 2-cells X0 in X which is the closure of the 
complement of the union of the stars of the vertices of X. Note that g2

_1(^') is 
a torus in f~l(W) and there exists a homeomorphism £: Sl X X' —>g2

_1(X) 
such that g2%(x, y) = x and £(x X X') is homotopically trivial in f~~l(W). It 
follows from Lemma 13 and [4] that g2-1(X) is the boundary of a solid torus T 
in / _ 1 ( I^ ) - It is easy to extend J to a homeomorphism of Sl X X0 to T and then 
to extend g2 to a locally trivial fibre map g: T —> Xo. We repeat this construc­
tion for each 2-simplex of K to get the desired fiber map g. 

Now, let n = 1. 

LEMMA 18. / / T^T 7 ) ^ Z2 and U Q B is a proper connected open subset of B, 
then f~x(U) is homeomorphic to T X Rfor some 2-manifold T. 

Proof. By Lemma 10, f~l(U) is homeomorphic to the interior of a compact 
manifold 7? with two boundary components R\ and R2. Note that from the 
proof of Lemma 10, iri(Ri) is isomorphic to ïïi(F), ^ = 1,2, and the inclusion 
induced map iri(Ri) —> 7ri(i£) is an isomorphism. By [4], i? is homeomorphic to 
Ri X [0, 1]. 

LEMMA 19. Let K be a triangulation of B and suppose that TTI(F) 9^ Z2. Then 
there exists a locally trivial fiber map g: E —» B such that if x £ E and r Ç K such 
thatf{x) Ç j,theng(x) 6 N(T,K). 

Proof. Let ^ be a vertex of i£ and let U be the open star of v in i£". By the 
previous lemma f~l(U) is homeomorphic to T X R; let Tv be the image of 
T X {0}. Suppose that this construction is performed for each vertex of K. 
Let a be a 1-simplex of K, bdry a- = {v, w}, and let F be the open simplicial 
neighborhood of a in K"'. By the previous lemma and [4], the connected sub-
manifold W of /"HI7) whose boundary is Tv U Tw is homeomorphic to T X 
[0, 1]. Define g(Tv) = v, g(Tw) = w and extend naturally over W to a so that 
g is a locally trivial fiber map. 

Theorem A now follows from Lemmas 17 and 19. 

4. Proof of Theorem B. Suppose t ha t / : M —> S1 is an approximate fibration 
satisfying the hypotheses of Theorem B. Let F denote the fiber of/; by Propo­
sition 1, F is an FANR and, hence, has a finite number of components. By 
Proposition 2, the induced map/* : -KXM —» -/riS1 is nontrivial. By Proposition 8, 
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it suffices to consider the case when F is connected and, hence, / * is assumed 
onto. 

Suppose tha t / is homotopic to the Hurewicz fibration g and let e > 0 be 
given. Let p: R —>51 be the universal covering map and let q: M —> M be 
the pullback of p using the map g. Let g: M —> R be the natural map such tha t 
Pg = g<l' From covering space theory, there exists a m a p / : M —> R such tha t 
# / = fq and / is homotopic to g. 

Let ?r: il? X Q-+ M and TT': Af X Q -> M denote the projection along the 
first factor. Let qG = q X identi ty: f x Ç ^ ^ X Ç and let g0 = g7r, go = 
gir'»/o = / 7 r a n d / o = /TT'. 

By Chapman and Ferry [11], g0 and go are locally trivial fibre maps whose 
fibres are compact Ç-manifolds. Hence, if F is a fiber of g, then there exists 
a homeomorphism X: F X <2 X R —> M X Q such tha t go\ = p where p: F X 
(2 X R —» R is the projection along the last factor. By Chapman [9], F X Q 
has the homotopy type of a finite polyhedron P and, hence, J0T has the homo-
topy type of P. 

Let U be a proper connected open subset of S1. By Proposition 5, f\f~l(U) 
is an approximate fibration. By Proposition 2 it follows tha t the inclusion of F 
into f~l(U) induces isomorphism iv^F) —» ^i}~l{U) for all ^. Let F be an open 
subset of R such tha t £>|F is a homeomorphism of F onto U\ then ç | / _ 1 ( F ) : 
/ - 1 ( F ) —> f~l(U) is a homeomorphism. Note t h a t / and, h e n c e , / | / _ 1 ( F ) have 
the approximate homotopy lifting property for w-cells for all n. Again, by 
Propositions 2 and 4, the inclusion induced homomorphisms7fj(.F) —>7r î(/~1(F)) 
and iri(F) —» 7r?:(M) are isomorphisms for all i. Thus , the inclusion o f / _ 1 ( F ) 
into M also induces isomorphisms on all homotopy groups; since these spaces 
are homotopy equivalent to CW complexes [9] [16], this inclusion is a homo­
topy equivalence [31]. Thus we have the following. 

LEMMA 20. If U is a proper open connected subset of S1, then f~l(U) is homo­
topy equivalent to the finite polyhedron P. If UQ C U is a connected open subset, 
then the inclusion of / - 1 ( U 0 ) into f~l(U) is a homotopy equivalence. 

L E M M A 21. Let U be a proper open connected subset of S1. Then there exists a 
compact connected Q-manifold Z0 ^ / o - 1 ( ^ ) such that the inclusion is a homo­
topy equivalence, Z0 separates the two ends of fo~1(U) and Z0 is collared in the 
closure of each component of f<rl{U) — Z0 . 

Proof. The proof is essentially contained in [5] ; we shall sketch a proof indi­
cating the necessary changes. Let V be an open subset of R such tha t p\ V is 
a homeomorphism of F onto U. 

By using [5] and [6], we can find a compact connected (J-manifold Z1 C 
/ o - 1 ( F ) such tha t Zx separates the ends of / o _ 1 ( F ) and Zi is collared in the 
closure of each of the two components, A and B, of / o - 1 ( F ) — Z\. Let A* and 
B* be the closure of the components of (M X Q) — Zx such tha t A C A* and 
B Ç B*. Since M X Q is homeomorphic to Y X Q X R, it is easy to show tha t 
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A* and B* have compact Q-submanifolds which are deformation retracts; 
hence A* and 5* have the homotopy type of finite complexes [9]. 

We need the following proposition whose proof will be given at the end of the 
proof of Lemma 21. 

LEMMA 22. The inclusions A <^> A* and B <=+ B* are homotopy equivalences. 

Thus A and B have the homotopy type of finite complex. Let a\\ K —> A be 
a homotopy equivalence of a finite complex with A ; a\ may be assumed to be 
a Z-embedding and can be extended to an open embedding a2: K X Q X [0, 1] 
—> A[7]. Using Z-set unknotting [1], it may be assumed thata2( i£ X Q X {0}) 
contains Zx. Let Z2 = a2(K XQX {1/2}) and let Ai* and Bi* be the closure of 
the complements of M X Q - Z2 such that A* - A C Ax*. Let ^ i = Ai* H 
/ o - H H and let £ i be the closure OI/Q-^V) - Bx. 

As before, B\* has the homotopy type of a finite complex and the inclusion 
Bi £-> Bi* (see Lemma 22) is a homotopy equivalence. We now perform the 
same construction in B i to get a compact Q-manifold Z3 as we did for finding 
Z2 in A. Z3 is the desired submanifold. 

Proof of Lemma 22. Since A and A* have the homotopy type of a d e ­
complex [9; 16], it suffices to show that the inclusion induced homomorphism 
i*\ irk(A, Xo) —> 7r̂ (̂ 4*, XQ) is an isomorphism for all k ^ 0. 

Suppose that 0: (5fc, ^0) —* (̂ 4, XQ) represents an element 7r̂ (̂ 4, X0) whose 
image under i* is zero; thus /5 can be extended to a map (3: (Dk+1, y0) —> (̂ 4*, x0) 
where D*+1 denotes the (k + l)-cell. Let z 6 R be the limit point of F such that 
z (£ V and/o - 1 ( s ) £ A*; let us assume that z is an upper bound of V. Then 
there exists y £ V such that fo~1((y, z)) Q A — (3(Sk). Let ^ be a strong 
deformation retraction of R onto ( — oo , (z -\- y)/2] with h0 = identity and 
ht((z + 3O/2, +oo)) = [(z + y)/2, +oo) for all * Ç [0, 1]. Since/0 has the 
approximate homotopy lifting property, there exists a homotopy @t: Dk+1 —> 
M X Q such that /30 = 0 and/ojS* and /&*/0/3 are (z — y)/2-close for all /. Since 
htfoPW =foP(x) for x e r y o - K C - o o , (* + y)/2]) f / G [0, 1], 0,(*) = p(x) 
for x G a - 1 /0

_ 1(( — °° , (z + 30/2]) for all / by Proposition 3. In particular, 
Pt(x) = @(x) for all x g Sk. Since f0fit and /̂ /ojff are (z — v)/2 close, the image 
of (3t lies in A* for all / and image of fii is contained in A. 

The proof for showing that i* is onto is similar. 

LEMMA 23. Suppose that M is a Q-manifold and let U be a proper open con-
nected subset of Sl. Then there exists a compact connected Q-manifold Z0 Ç! f~l{U) 
such that the inclusion is a homotopy equivalence, Z0 separates the two ends of 
f~l(U) and Z0 is collared in the closure of each component of f~l(U) — Zo. 

Proof. This lemma follows from the previous lemma and the fact that ir': 
MX Q —» M is a near homeomorphism [8]. 
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LEMMA 24. Suppose that M is finite-dimensional and let U be a proper open 
connected subset of S1. Then there exists a closed connected codimension one locally 
flat submanifold Z0 C /_1(C7) such that the inclusion map is a homotopy equi­
valence. 

Proof. In order to prove this lemma, we will need the topological analogue 
of the proof of the main result of Siebenmann's thesis [23; 28] ; we shall assume 
familiarity with the definitions of [28]. Let E be an end of f~l{U)\ by using 
Proposition 6, it is easily shown tha t wi is stable a t E. Let W be a 1-neighbor­
hood of E. As in the proof of Lemma 21, we can show tha t W X Q has the 
homotopy type of a finite complex (W X Q corresponds to A in the proof). 
Thus W has the homotopy type of a finite complex and Siebenmann's obstruc­
tion for put t ing a boundary on f~l(U) vanishes. The boundary of the (n — 2)-
neighborhood is the desired submanifold. 

Choose a triangulation K of Sl such tha t the mesh of K is e/2. Let the 
vertices {fl*}7=i of K be indexed so tha t vt and vi+i form the boundary of a 
1-simplex in K, i = 1, 2, . . . , n — 1. Let Ut be the open star of vt in the first 
barycentric subdivision K' of K\ let Wf be the open star in K' of the 1-simplex 
whose boundary is [vu vi+i} for i ^ n and {vm Vi) for i = n. 

Let Ni be the submanifold of f~l(Ui) given by Lemmas 23 and 24. Since the 
inclusion of f~l(U\) and f~l(U2) into f~l(W\) are homotopy equivalences by 
Lemma 20, the inclusions of N\ and N2 into C\ are also homotopy equivalences 
where G is the compact submanifold of f~l(W\) whose frontier in f~l(W\) is 
Ni U iV2. In general, d is not homeomorphic to iVi X [0, 1]; the vanishing 
of the Whitehead torsion [10] of the inclusion map N1 <^ G is a necessary and 
sufficient condition for the existence of such a homeomorphism. We will re­
place N2 by iVY which will satisfy this condition; first, we need the following 
result from [12]. 

PROPOSITION 25. If N is a Q-manifold and n Ç Wh wi(N), then there is a 
decomposition N X [0, 1] = N1 \J N2 such that 

(1) the Nvs are compact Q-manifolds and N1 H N2 is a bicollared Q-mani­
fold; 

(2) N X {0} C int N1 and N X {1} C int TV2; 
(3) N X {0} E> TV1 is a homotopy equivalence and /x is the Whitehead torsion of 

this inclusion. 

LEMMA 26. The submanifold N2
f of f~l{U2) given by Lemmas 23 and 24 can be 

chosen such that there exists a homeomorphism J of N± X [0,1] onto C\ such that 
É(# i X {0}) - N.and^N, X {1}) = N2'. 

Proof. If M is finite-dimensional, then G — iV2 is homeomorphic to iVi X 
[0, 1) by [32] and the result follows by choosing the image of Ni X {/} for t 
sufficiently close to 1. 

Suppose tha t M is a Ç-manifold. Let £0; N2 X [0, 1] -> f-l{U2) be an 
embedding such tha t £0^2 X [0, 1) is an open embedding, %0(x, 0) = x for 

https://doi.org/10.4153/CJM-1977-091-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-091-2


910 L. S. HUSCH 

x 6 N2 and image £0 H d = N2. Let Nl KJ N2 = image £0 be the decomposi­
tion of image £0 given by Proposition 25 such that \x = i2*~1(~"r(^i)) where 
ir. iVi —> Ci and i2: ^2 -» G are inclusions. Let W = G VJ TV1 and consider 
the following diagram where all maps are inclusion maps. 

H 

By construction, T{U) = iz*(n). By excision [10], 

T(U) = 6̂*7" (^3) = ^6*^3* (M) = ^4*^2* (M) = ^4*( — r ( i i ) ) . 

By the composition formula, T(H) = r{i\i\) = r(^4) + ^4*r(ii) = 0. Hence the 
inclusion of Ni into W is a simple homotopy equivalence; by [6], there exists a 
homeomorphism £1 from iVi X [0, 1] onto W. By using the Z-set unknotting 
theorem [1], we may assume that £i(x, 0) = x for x £ -A/V If j : W7 —> Nl r\ N2 

denotes the homotopy inverse of ^I^V1 C\ N2, then it is easily seen that ji$\ 
Ni —> N1 C\ N2 is also a simple homotopy equivalence. By using [1] and [6], 
we again may assume that £i(iVi X {1}) = iV1 H iV2. N2' = N1 (^ N2 is our 
desired submanifold. 

By induction, we can replace 7V3, 7V4, . . . , Nn by NJ, AY, . . . , Nn
f respec­

tively so that there exists a homeomorphism £ of iVi X [1, n] into M such that 
f(iVi) X \i) = N/,i = 2, . . . ,»and£(iVi) X {1} = Nlt Let C0 be the closure 
of the complement of image £ in M; note that the frontier of C0 in M is 
£(7Vi X {1, n)) and the inclusion of each component of the latter set into G is 
a homotopy equivalence. 

LEMMA 27. / / there exists a homeomorphism p: Ni X [0, 1] —> G swcfe / t o 
/x(7V"i X {0, 1)) = ^(Ni X {1, n}), then there exists a locally trivial fiber map 
f: M —> S1 such that f and f are e-close and, hence Theorem B is proved. 

Proof. There is no loss of generality in assuming that n{N\ X {1}) = 
£(N1 X {1}) and the covering map p: R —> S1 is the epimorphism whose 
kernel is the integers. Define/: M -^ S1 by f(z) = p(t/n) where 2; = £(x, t) or 
M (#» 0 • / is the desired function. 

LEMMA 28. The homeomorphism [x exists if the inclusion of NQ = £(iVi X {1} ) 
iw/0 Co w a simple homotopy equivalence. 

Proof. If M is finite dimensional, then this lemma is a consequence of the 
5-cobordism theorem in the topological category [23]. If M is a Q-manifold, 
then this was essentially proved in the proof of Lemma 26. 

Consider G X Q C M X Q; let $: G X <2 -> M X Q be an embedding 
such that go$ = identity. Let 71 be the generator of the covering transforma­
tion group oi q0\ M X Q-+ M X Q such that X^TXiY X Q X {t}) = Y X 

W + 
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Q X {/ + 1}) for all / Ç R. (Recall tha t p: R —> S1 is the epimorphism whose 
kernel is the integers.) Pick integers x0 and x\ such tha t 

x~1[$(Co x <2) u r$(c0 x (2)] ç F x G x (xo + i, X! - i). 
Let W\ be the closure of the component of F X Q X [x0, Xi] — \~1(£(iVo X Q) 
which contains Y X Q X {xo} and let IF2 be the closure of the component of 
Y X Q X [x0, *i] - X ^ t W o X (?) U r $ ( i V 0 X (?)] which misses F X (? X 
{Xo, Xi}. 

For t e R, define 5 , : YXQ-^YXQ by \-1T\(y, t) = (S,(;y), t + 1) for 
y G F X (? and define 5 from F X Q X [x0, xi] onto itself by 

Î
(St(y), xo + 2(t - xo)) £ Ç [xo, xo + 1] 
(St(y),t+ 1) / 6 [x0 + 1,X! - 2] 
( 5 , ( y ) , i ( * i + 0 ) ^ [xi - 2 , x ! + 1]. 

Note t ha t 5 is a homeomorphism of F X Q X [x0, Xi] onto itself such tha t 
S(Wi) = PFi U IF2. 

LEMMA 29. TTzere exw/5 a homeomorphism K: N0 X Q X [0, 1] —> IF2 sz/c/^ 
tha t K(7V0 X Q X {0}) = X-1$(iVo X (?) awd *(iVo X Q X {1}) = X- ir \(7V0 x (?). 

Proo/. Let E be the closure of the component of F X Q X R - X-^fTVo X (?) 
which contains F X Q X {x0}. The inclusion of X_1$(iVo X (?) m t o £ is a 
homotopy equivalence. As in the proof of Lemma 26, there exists an embedding 
8: NQ X Q X [0, 1] - » £ such tha t 

5(iVo X Ç X {0}) = \-i*(No X (2) 

and 

YXQX {xoj Ç ô(iV0 X G X (0, 1)) . 

Let Wo be the closure of (image 8) — W\\ note tha t image 8 = Wo VJ W\. 
Since Wo C\ W\ is a Z-set in Wo, S\Wi can be extended to a homeomorphism 
of Wo W TVi onto WQ VJ WiVJ W2 [1]. Since TF0 W TFi is homeomorphic to 
No X Q X [0, 1] and (Wo U Wi) H 1F2 is a Z-set in W2, W* U Wi U W2 

is homeomorphic to W2 [7]. The composition of these three homeomorphisms 
gives the desired homeomorphism. 

LEMMA 30. The inclusion of 7V0 into Co is a simple homotopy equivalence. 

Proof. First, note by construction tha t the pair (Co X Q, No X (?) is homeo­
morphic to the pair (W2, X_1$(7V0 X (?)). By the previous proposition, the 
Whitehead torsion of the inclusion of iV0 X Q into C0 X Q is trivial; hence, 
the Whitehead torsion of the inclusion of N0 into Co is also trivial and, thus, 
this m a p is a simple homotopy equivalence. 

By Lemma 28, the proof of Theorem B is completed. 
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5. Proof of Theorem C. Let X be a nontrivial A-cobordism such that if 
bdry X = X0 U I i , then the component X0 is homeomorphic to Xi\ such 
A-cobordisms have been constructed by Milnor [26]. Let $: X0 X [0, 1) —» 
I - I i be a homeomorphism such that $(x, 0) = x for all x £ XQ [32]. 
Define / ' : Z -> [0, 1] by 

f , / x = U iiy = $(*, t), (x, t) e X0 X [0, 1) 
; W (1 i f y G Z x . 

Note that / ' is a continuous map. 
Let M be the decomposition space obtained from X by identifying X0 with 

X\ by means of some homeomorphism of X0 onto X\. f induces a map / : M —> 
S1 where 5 1 is obtained from [0, 1] by identifying 0 with 1. For each x Ç S1, 
/_ 1(x) is homeomorphic to X0; by [14], / is an approximate fibration. If/ were 
homotopic to a Hurewicz fibration, then it would follow as in the proof of 
Theorem B that the inclusion of X0 into X is a simple homotopy equivalence 
contradicting the fact that X is a non-trivial A-cobordism. 

We leave the proof of Theorem E to the reader. 
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