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Abstract

Polarization makes it difficult to form positive relationships across existing groups. Decreasing polariza-
tion may improve political discourse around the world. Polarization can be modeled on a social network
as structural balance, where the network is composed of groups with positive links between all individuals
in the group and negative links with all others. Previous work shows that incorporating attributes of indi-
viduals usually makes structural balance, and hence polarization, harder to achieve. That work examines
only a limited number and types of attributes. We present a generalized model and a simulation frame-
work to analyze the effect of any type of attribute, including analytically as long as an expected value can
be written for the type of attribute. As attributes, we consider people’s (approximately) immutable char-
acteristics (e.g., race, wealth) and such opinions that change more slowly than relationships (e.g., political
preferences). We detail and analyze five classes of attributes, recapitulating the results of previous work
in this framework and extending it. While it is easier to prevent than to destabilize polarization, we find
that usually the most effective at both are continuous attributes, followed by ordered attributes and, finally,
binary attributes. The effectiveness of unordered attributes varies depending on the magnitude of nega-
tive impact of having differing attributes but is smaller than of continuous ones. Testing the framework on
network structures containing communities revealed that destroying polarization may require introducing
local tensions. This model could be used by policymakers, among others, to prevent and design effective
interventions to counteract polarization.

Keywords: Polarization; structural balance; attributes; agent-based model

1. Introduction

Heider (1946, 1958) proposed that people feel social tension when there are inconsistencies
between their relationships with others and the relationships those others have among themselves.
This tension would arise, for instance, if an individual is friends with two people who are enemies
with each other. He proposed that people are motivated to reduce this social tension by changing
their relationships to achieve structural balance. This was formalized in graph theory, and hence
in social networks, in the context of a triad in which links between individuals can take +1 and
a triad is considered to be balanced when the multiplication of the three links in the triad results
in a positive number (Cartwright and Harary, 1956). In another approach the definition of struc-
tural balance is relaxed, treating triads with three negative links as balanced. This definition is
sometimes noted as a weak version of balance theory (Leskovec et al., 2010b).
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Models of structural balance show that networks tend to go to balanced states (Kulakowski
etal., 2005; Antal et al., 2005). But real-world networks that have been examined show features that
are fundamentally at odds with structural balance (Leskovec et al., 2010b). One of the suggestions
for why real-world networks do not tend to be in balanced states is because people do not make
decisions about relationships merely based on the relationships they and others already have, but
people also decide to have a relationship with someone based on attributes those individuals share
(Doreian, 2002; Rivera et al., 2010; Yap and Harrigan, 2015; Bahulkar et al., 2016).

Most of the literature interprets structural balance as an optimal state of a network because
unbalanced structures are considered unstable (Marvel et al., 2009; Singh et al., 2014; Du et al,,
2016; Belaza et al., 2017; Saeedian et al., 2017; Rabbani et al., 2019; Pham et al., 2020, 2022; Malarz
and Hotyst, 2022). But it is also possible to see balanced states as nonoptimal (Du et al., 2018),
especially when advantages for the society are considered. A network in structural balance will
be composed of two groups [or more than two with the weak definition; Doreian (2002); Davis
(1967); Leskovec et al., (2010b)], where all members of a group have positive relationships with all
other members of that group and negative relationships with all members of the other group. Such
structurally balanced groups, therefore, are perfectly polarized (Srinivasan, 2011). A different case
of abalanced network is a system without negative connections. This state is called paradise (Antal
et al.,, 2005; Krawczyk et al., 2017).

The establishment of these antagonistic groups in models of Kutakowski et al. (2005) and Antal
et al. (2005) is completely arbitrary, based on the random link weights assigned initially. This can
be seen as a type of unprincipled polarization: there is no intrinsic reason individuals should be in
one group instead of another. Such a situation could occur when the network is mature, or when
network affiliation is only based on claims of similarity—sometimes called “echo chambers” in
social media (Baumann et al., 2020; Gajewski et al., 2022). All members of the echo chamber have
similar opinions, which are additionally strengthened through mutual interactions. This can be a
bad thing from the perspective of the larger group. If a large group, such as a society, is attempting
to accomplish some goals, such as democratically electing representatives to solve problems facing
the society, then the rise of arbitrary antagonistic groups within the larger group may prevent
achieving those goals. Such a situation occurs in the case of a polarized political scene divided
into two camps [e.g., in a two-party system; Altafini (2012)]. See Du et al. (2018) for a thorough
discussion of issues arising from polarization in this context.

Recent models have shown that incorporating binary attributes can destabilize networks that
would otherwise reach structural balance, preventing polarization (Chen et al., 2014; Du et al,,
2016; He et al., 2018; Du et al., 2018; Pham et al., 2020). Even a small number of binary attributes
can disrupt structural balance/polarization (Gorski et al., 2020). Other models that considered
continuous attributes, however, show that incorporating attributes may make structural balance
an even more likely outcome (Flache and Macy, 2011; Parravano et al., 2016; Agbanusi and
Bronski, 2018; Gao and Wang, 2018; Gao et al., 2018; Schweighofer et al., 2020a, 2020b). Previous
work on the effect of attributes on polarization has been piecemeal, with no general framework
for considering the effect of different types of attributes, which could account for the apparent
inconsistencies when considering binary compared to continuous attributes.

Measures of polarization proposed in the literature depend on the system that is being inves-
tigated (Interian et al., 2023). Most analyses focus on political parties and parliaments. In such
cases, polarization can be measured either at the party level or at the level of MPs. In the former,
polarization is defined using information about party ideologies and party sizes (Maoz and Somer-
Topcu, 2010; Serensen, 2014). In the latter, voting data (Neal, 2020) (or other data related to MP’s
actions) is used to obtain similarities between politicians, and polarization is usually associated
with observed modularity (Porter et al., 2005; Moody and Mucha, 2013). In terms of other sys-
tems, there are a large number of papers studying the polarization of opinions, e.g. Gajewski et al.
(2022); Schweighofer et al. (2020b). In those proposed agent-based models, opinions evolve either
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toward consensus or polarized states. Here, we are interested in identity polarization (Rawlings,
2022) defined as individuals having positive and negative interactions toward in-group and out-
group members, respectively (Xiao et al., 2020; Huang et al., 2022). Polarization may be caused
by simply disdaining the other side and not just by having a disagreement about policies (Mason,
2018) thus we measure polarization using the relationships between people. Attributes affect those
relations but also other processes (like structural balance) are in play.

The goal of this paper is to present a general framework to analyze the effect of attributes
on signs in a network, specifically with an aim toward preventing or disrupting polarization.
We study polarization and counteracting it in small- or medium-sized communities which are
groups consisting of people that work together to achieve a common goal (e.g., business teams) or
just co-exist (e.g., a class of students, a local community of residents). In those scenarios, polar-
ization may appear, hampering the group’s performance or leading to negative effects, such as
antipathy or bullying behaviors. We present an analytical framework for analyzing the impact of
attributes on polarization. Considered attributes are those that change much more slowly than
do relationships—which may include people’s immutable characteristics (e.g., race, sex), approx-
imately immutable characteristics (e.g., wealth, religion, hobbies), and even characteristics that
are thought to change relatively rapidly though more slowly than newly forming relationships
(e.g., political opinions, etc.). Any attribute that can be described in a mathematical way as a dif-
ferential change in likelihood of forming a positive relationship with people who share or differ
on the attribute and for which an expected value can be found can be analyzed for its ability to
destabilize a polarized system. Destabilization is more amenable to analytical approaches because
the effect of an attribute can be linearized around the stable point. For the prevention of polar-
ization and the analysis of attributes for which an expected value cannot be found, we present a
numerical simulation framework that allows us to examine them. We then use the structure of
real-world networks to look at how the relaxation of some assumptions of our model and the
incorporation of attribute dynamics may alter the ties on those networks. From this we can draw
interesting conclusions about how efforts to depolarize a polarized community may impact local
communities. We do not claim to have detailed all possible attribute types—the ones we give serve
to highlight the approach—and the code referenced at the end of this paper can easily be adapted
to include any type of attribute one can think of. We do not claim a comprehensive treatment of
the problem of how attributes impact relationships in networks, but we present a framework that
researchers, policymakers, and managers can use to analyze attributes and make decisions about
how to use attributes to prevent or destabilize polarization in networks.

2. General framework
2.1 The general model

We assume a model of N agents with an underlying network structure. Connected pairs of agents
know each other, so form a relationship. We describe this relationship with a real-valued weight
x;j(t) given in range [ — 1, 1]. The sign of the weight signifies a friendly (+) or hostile () relation.
This setup resembles the small- and medium-sized communities that characterize much of our
modern interactions, and the vast majority of interactions throughout human history.

Moreover, each agent possesses a set of G attributes, which are aspects of the agent that change
on a much longer timescale than their relationships (their immutable, or approximately so, opin-
ions, characteristics, features, etc.). Let us introduce the following notation: A is a matrix of size
NxG of all agents’ attributes, A, is a vector of attributes of agent i, and AY is the g-th attribute of
agent i. These are the characteristics that can drive apart or bring together two agents.

Here, we present a general framework to examine the effect of attributes on polarization that
models the change in the relationships (link weights) between individuals. This is presented in
Equation (1) as a differential equation that changes in time:
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Xij = 7 Z XikXkj + v 8ij(A) (1—(x,-j)2>, (1
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where CNj; is the set of common neighbors of agents i and j and M;; is the number of such agents.
Let us also note that if agents i and j do not have a relation, then x;; does not exist and is not
changed.

The right-hand side of Equation (1) is composed of three main parts: the two terms of the
left factor and the right factor. On the left, we have the contribution of current relationships to
relationships in the next time step. Sum elements x;xx; lead the network to follow the principles
of structural balance theory. For instance, if pairs of agents i, k and j, k are enemies, then the
product x;jxxy; is positive moving the relationship x;; toward friendship. This is in agreement with
the “enemy of my enemy is my friend” principle. If this is the only term in the left factor, the
model will lead to paradise (everyone gets along with everyone else) or polarization in the form of
(approximately) strong structural balance (Kutakowski et al., 2005; Marvel et al., 2011).

The second part consists of y and g;i(A). g;(A) is a function (more thoroughly described in
Section 4.2) that relates the similarity between the attributes of two individuals to their relation-
ship. The sign of yg;j(A) corresponds to the positive or negative effect of similarity between
attributes on the relationship between agents. Extensive work has shown that there are some
traits for which similar individuals have more chances for positive interactions—homophily
(Mcpherson et al., 2001). Alternatively, the sign of this term may arise through a process such
as the repulsion hypothesis, where individuals who are different from one another tend to dislike
each other (Rosenbaum, 1986). The parameter y corresponds to the relative strength of consid-
ered attributes compared to the drive toward structural balance. If y =0, then only the triadic
balance matters. If y >> 1, then the attribute (dis)similarity is of significance. The last term in
Equation (1), that is, the second factor, is a normalization term that limits the relationship values
to their domain [ — 1, +1].

In effect, each pair of agents can be described by two types of connections: a link related to
the relationship (one is more likely to develop a positive relationship with someone who shares
similar positive and negative relationships) and a link related to the similarity of attributes (one
is more likely to develop a positive relationship with someone with whom they share attributes in
common). Thus, the structure of the network is a multiplex (Kiveld et al., 2014) with two layers:
the relation layer with weights x;(t) and the attribute layer with weights g;;(A). The diagram of
interactions in the model is presented in Figure 1. Importantly, the interlayer links connect not
the corresponding agents but the corresponding links. Such a structure is called a link multiplex
(Gérski et al., 2017).

When allowing the system to evolve, it will finally reach one of the stable points. In the stable
point, all or almost all relations become x;; = £1. This always happens except when the first fac-
tor of Equation (1) is 0, see section 4 in Supplementary Material (SM) for more details. Analysis
of the final state that was reached is performed in order to examine the effect of attributes on
polarization.

2.2 Attribute schema

We propose a nonexhaustive schema (partially inspired by Gower, 1971) for types of attributes
that relies on three parameters (Figure 2). As our attribute layer does not evolve, these attributes
are best described as traits that change on a much longer timescale than relationships. This clearly
includes some things that are typically thought of as opinions (e.g., political party preferences)
and excludes some (e.g., whether sanctions are an effective deterrent). Furthermore, this makes
the question of whether or not any given trait of a person could be conceptualized as an attribute
in this framework an empirical question: does the value for this trait for the average individual
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Figure 1. A diagram shows how the attribute layer affects the relationship layer. The structure of such a system is a link
multiplex. Each agent has a {a,-g} attribute set that allows us to specify the weights of gj; in the attribute layer. The measure
of the impact of one layer on another is the y coefficient. In the adopted model, the weights x;; of the relation layers do not
affect the attribute layer. In the figure, only one edge is labeled on each layer.

Attributes

Unordered

Ordered attributes

attributes

Negative Positive
unordered unordered
attributes attributes

Continuous Binary
attributes attributes

Figure 2. Classification of considered types of attributes. In the first split we consider ordered and unordered attributes
for which different categories can or cannot be arranged on the axis, respectively. Each attribute has v categories. An addi-
tional parameter « for unordered attributes differentiates attribute types by how much having different categories negatively
affects the relation. With @ = 1 we have negative unordered attributes for which positive and negative magnitudes of the
impact of the same and different attributes are equal. When v = 2, ordered attributes and negative unordered attributes are
indistinguishable and are called binary attributes. Thick borders surround five classes of attributes that were analyzed in
detail.
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in the system change at a much slower rate than the average strength of relationship changes?
From the perspective of the relationship strengths, these attributes can be thought of as (relatively)
immutable characteristics of a person.

Things defined as attributes in this way can be placed in a taxonomy based on how they
impact the relationships of individuals who share or differ on the attribute. First, we can divide
attributes into ordered and unordered attributes. Ordered attributes (OAs) are those for which
how close another person’s attributes are to your own influences how much the attributes affect
the sign of a link. An example of an ordered attribute is the number of children someone has.
Unordered attributes (UAs) are those where there is no natural ordering of categories, including
attributes such as race, (possibly) political affiliation, language, etc. Within both of the classes of
attributes, you can adjust how many categories there are (given as v in Figure 2). If there are only
two categories, this is a binary attribute (BA; many of these attributes may be things that put a
person in opposition to others—e.g., whether someone lives in the same or a different city than
me or supporting Manchester City or Manchester United when living in Manchester). If there
are infinitely many categories for an ordered attribute, this is a continuous attribute (CA e.g.,
income). Infinitely many categories for an unordered attribute would treat every individual as
unique, so we do not consider them here.

Ordered attributes follow both homophily and repulsion theories, that is, there is a tendency
for people to form (un)friendly relations with (dis)similar others. Within the class of unordered
attributes, we can consider whether individuals are drawn toward others in their same cate-
gory and/or pushed away from members in other categories. Thus, UAs also comply with the
homophily theory but we distinguish negative unordered attributes (NUAs) (e.g., religion, polit-
ical affiliation, which football club one supports) and positive unordered attributes (PUAs) (e.g.,
whether one plays chess or enjoys fishing) as such that follow or not repulsion theory, respectively.
For example, liking fishing may only cause similar people to have more positive interactions but
not cause dissimilar people to have more negative interactions (i.e., one does not typically dislike
someone for how much they like fishing). On the other hand, an attribute such as political affili-
ation may lead to an increase in the negative relationship with members in other categories than
one’s own similarly to the increase in positive relationship with members in one’s own category.
From the mathematical point of view, let us denote the ratio of strength of negative feelings toward
members of other categories to strength of positive feelings to members of one’s own category as
a (see Methods for mathematical details). Therefore, for « =0 we obtain a positive unordered
attribute with no negative influence and o =1 gives a negative unordered attribute with equal
negative and positive influence.

3. Research questions

We are interested in the effect of attributes on two parts of the network formation process: (A)
how attributes can destabilize a polarized network and (B) how attributes can prevent a polarized
network from forming. This leads to a set of research questions and specific methods to address
them.

A. How can a polarized state be destabilized? Let us imagine that a certain group (e.g., a class
of students) became divided. The reason why polarization appeared is irrelevant here. The aim
of the attributes would be to change the situation. Having a polarized state initially, it is feasible
to perform linearization of the effects of attributes on the relation layer. This allows us to make
claims about attributes in general. This analytical reasoning can be confirmed using simulations.
Numerical simulations are also used to draw conclusions about specific attribute types.

B. How can polarization be prevented? It could be the case that a social network is formed anew,
and preventing polarization could be a main initial goal. This could occur when new working
groups are formed in a company, for example. Addressing this question largely requires the use of
numerical simulations.
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Table 1. Description of considered datasets

Network Nodes Edges Triads Node meaning Edge meaning
Highschool13 class 2BIO1 36 402 2268 Student Face-to-face interaction
Zachary karate club 34 78 45 Club member Relation
Windsurfers 43 336 1096 Windsurfer Contact

References and a longer description are given in the text.

To investigate these issues, we will examine how the types of attributes and their associated
parameters differently impact destabilization and prevention of polarization. This will lead to us
investigating the number of attributes (G), the strength of the attribute layer (), the number of
categories in the attribute (v) and the number of agents in the system (N).

4. Methods

In this section, we first describe the network structures that will be further used to test the
model. Then, we discuss how we obtain the similarity gj; based on the attribute matrix A. The
Section 4.3 describes how to determine the polarization of a system. At the end of this methodol-
ogy, we explain the details of the numerical simulations.

4.1 Considered network structures

To test our model in various settings, we employed four different network topologies: a complete
graph and three network structures that are based on real data. A complete graph is a topol-
ogy simulating a situation where relations exist between all pairs of agents. It is in most cases an
unrealistic scenario. However, it is a valid approximation of a small community where every-
body knows each other. Such an approach is also often used for relatively large communities
(Gorski et al., 2020) to facilitate analytical computations and because it allows one to observe
the effects of dynamics abstracting away from the topology. Similarly, our analytics shown in
Section 5.1 are based on complete graphs. However, further numerical results let us extend the
obtained conclusions for other network structures.

For a complete graph, each pair of agents has M;j =N —2 common neighbors and the
Equation (1) becomes

LN
Xij = <m > xaxig + Vgij(A)) (1 - (Xij)2>. )

k=1

Following Andres et al. (2022), we considered three network structures based on real datasets.
The details of the networks are presented in Table 1. Network visualizations are shown in Figure 2
in SM. From these datasets, we take realistic social structures of relations. As signs of edges are
not given, we either infer the polarities from the known division into communities or assign
them randomly in order to investigate destabilizing and preventing polarization scenarios (see also
Section 4.4 for more details). Even if a dataset contains the numbers of contacts between agents,
we did not use this information. This allows us to obtain more general results and not have results
rely on the applied method of obtaining relation weights x;; from the given interactions’ intensi-
ties. The untested method could lead to incomplete or misleading conclusions. The first dataset
consists of recorded face-to-face interactions in the period of 7 weekdays between high school stu-
dents belonging to nine classes (Mastrandrea et al., 2015). A class setting is a small community of
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which a complete network is a good approximate structure. Therefore, we extracted contact data
related to one chosen class coded as 2BIO1. The second dataset is a well-known Zachary karate
club (ZKC) network (Zachary, 1977). The network was obtained just before the club breakdown
into two separate clubs following the conflict between the club president and one of the instruc-
tors. The third dataset comprises contacts in the windsurfers’ community (Freeman et al., 1988).
The network consists of two groups: old members and newcomers. No conflict was registered but
it was observed that windsurfers preferred to spend time with the members of their group.

The chosen set of real network structures allows us to test our simulation assumptions and con-
sider the effect of attributes on polarization in more realistic situations. First, the most detailed
simulations were performed for complete graphs and Highschool dataset allows us to check
whether similar results are also obtained when not all relations exist. Moreover, this network
contains only a single community, thus there are not any reasons for assigning particular signs
of relations to agents. Therefore, this dataset is also a good structure for testing scenario B
(i.e., preventing polarization from forming). Of course, the destabilization scenario may also be
analyzed. Second, trying to destabilize a system is particularly interesting in the case of networks
where separate groups can be distinguished. This is the case for ZKC and Windsurfers datasets.
For these networks, one can test the destabilization scenario assuming that agents belonging to
the same group have positive relations and agents belonging to different groups are connected via
negative links.

4.2 Attributes, distances and similarity between agents

In general, the weight in the attribute layer between agent i and agent j is a function that
depends on the attributes of all agents: g;;(A). However, we make several assumptions that make
approximations possible:

+ No direct influence of node k’s attributes on the similarity g;; if k # i and k # j. Thus,

gi(A) = gij (Ai, A)) , 3)
where A; = [al

Freees aiG]. This approximation treats all nodes homogeneously, as com-
pared to the opposite scenario where attributes of some agents play a significant role
(Kacperski and Holyst, 1999; Holyst et al., 2000). In the real world, this assumption signifies
that there are no, for example, leaders in the network.

» No correlations between the attributes, so that they are independent. Attributes are clearly
not independent in the real world (e.g., hunting and baseball co-occur at higher than
expected rates), but this does not violate that assumption. Specifically, it would be possible
to do something like a principle components analysis on those traits and extract a smaller
number of orthogonal (i.e., independent) dimensions. This assumption leads to weighted
average across attributes:

8ij(Ais Aj) Egij< (“z’l’“}) R (“fG’“JG) ) - Zglcg 2 Cehi (a«f, af) ’ @
g

where a function h;; defines the similarity between individual attributes and Cg is a con-

stant related to the strength of the attribute g. For all types considered, it is assumed that
h,-j(a‘fr , a}g) is maximal when a‘ig = a}g . Assuming attribute homogeneity (Cg = 1), we obtain
a simple average. The consequences of this assumption is that only those attributes that
have the same relative impact on relationships should be included jointly in the analysis.
It would, therefore, be possible to break a set of real-world attributes into such groups and

analyze them as such. This assumption could be relaxed in the specific case we know that
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one attribute is more important than another (e.g., political affiliation is more important
than liking baseball), then one can use varying strengths C,.

+ Specifying the maximum (minimum) similarity value: |h;;| < 1, which leads to |g;;| < 1.

The above approximations lead to a measure related to the Gower similarity coefficient (Gower,
1971). Importantly, the resultant matrices are amenable to statistical analysis. The approximations
also mean that the attributes are independent, and the similarity between the set of attributes is
the average of the similarities between the individual attributes. In our analysis, we assume that
each agent has G attributes of the same type in a given simulation. The form of the h;; function
depends on the given type of attribute. Each attribute type has a certain set of permissible values
(the so-called categories) 24, that is, a‘? € Q4. The v=|Q4| parameter specifies the number of
allowed, different categories, so that Q4 ={0,1,...,v—1}.

The following similarity function describes binary attributes (which are, equivalently, ordered
or unordered attributes with two categories, i.e., v=2):

hy (o) =2 (5 (of. af) - 05). 5)
The similarity function was selected to meet the conditions mentioned above. For the same value
for the attribute, it takes the value of +1, and for different values, —1.

The similarity function for ordered attributes is as follows [a different form can be found in
Schweighofer et al. (2020b)]:

hi (afa]g) —2fos-1 1

y—1

& — |
©)

What differentiates ordered from unordered attributes is the existence of a majority/minority rela-
tionship between categories, for instance category 3 is closer to category 2 than it is to category 1
while category 2 is equally close to categories 1 and 3.

Unordered attributes can be generalized into categorical attributes with an additional o param-
eter. This parameter denotes relative strength of attribute influence on relations when the attribute
values are different as compared to the case when the attribute values are the same, that is,
|h,j (a‘lg # a}g ) | = oc|h,-j (a‘lgr = a}g ) | Here, we do not examine many possible values of & but we limit
our analysis to two extreme cases. Negative unordered attributes are attributes whose similarity
function is also given by Equation (5) with any number of possible values (v > 2). The key for
negative unordered attributes is that having different values on the attributes negatively impacts
the relationship between agents, and this influence is as strong (in an absolute sense) as the effect of
agents sharing a value for the attribute, that is, @ = 1 and |h;;(a$ = a}g )| = |hij(af # a}g )|- Another
special case is when there is no effect of having different values for an attribute (i.e., « =0). We
call these positive unordered attributes. They are described by the following similarity function:

hy (af.af) =5 (o af). (7)

4.3 Measures of polarization

A single numerical simulation, described further in the next section, for specified coupling y con-
sists of choosing initial values of relations, choosing the attribute values, and allowing the system
to evolve according to Equations (1-2) until the stable point is reached. Such a stable point is the
final state of the system and this state is used to evaluate the influence of attributes. We identify
a triad as having 0, 1, 2, or 3 negative links by taking the signs of its relations in the final state
sgn(x;j).
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As it was described in the Introduction, a polarized state (i.e., a state with mutually hostile
groups) is a balanced state. The reverse statement is not true. A balanced state is not always a
polarized one because a paradise state (which is balanced) is not considered polarized. Moreover,
from a societal point of view an unbalanced state with all links negative (i.e., a “hell” state) is
not advantageous. Therefore, taking into account the above notions and in order to determine
the effect of attributes on reaching a polarized state, we introduce the following two measures of
polarization:

+ Global polarization: A system is globally polarized when it is weakly balanced but not
in a paradise state. In other words, when a system can be split into K > 1 antagonistic,
nonempty groups, it is considered polarized.

« Local polarization: A triad is polarized when it has two or three negative links, because in
such triads two or three hostile groups can be distinguished, respectively. The structurally
unbalanced triad with one negative link is not polarized because a mediator-agent (Doreian
and Mrvar, 2009) mediates between the enemy agents. Thus, the measure of local polar-
ization Prp in the whole system is the sum of the densities of the triangles with two () or
three (n3) negative links.

Prp=ny+mn3 (8)

Summing up, due to the fact that we consider a paradise state as nonpolarized and a triad
with three negative links as polarized, our measures differ from the standard degree of structural
balance (Aref and Wilson, 2018) which is the density of balanced triangles (i.e., without or with
two negative links). This is also considered to be a measure of strong polarization by Neal (2020).
In the system Neal studies, U.S. Congress, one can expect polarization to appear as a clear division
between Democrats and Republicans, but in the general case, one cannot assume that, for instance,
a paradise or a weakly balanced state is unlikely.

It is worth noting that for our measures, the necessary and sufficient condition for the state
not to be globally polarized is that at least one triad with one negative link exists. In the anal-
yses presented below, polarization is investigated only in the relation layer for the weights x;;
(not in the static attribute layer). Here we focus mostly on the local polarization results, because
the necessary and sufficient condition means that the changes in global polarization probability
are usually similar (see section 3 in SM for global polarization).

4.4 Details of the numerical simulations

We assume uniform distributions everywhere we draw random variables, that is: discrete, uniform
distributions for attribute values in scenarios A and B and continuous uniform distributions for
the relation layer weights in scenario B (x;; € [ — 1, +1]). In scenario A, we divide agents into two
hostile groups because it is assumed that the relation layer is initially very close to the balanced
state [weights x;; are set to £0.99 and the product of weights x;jxjxxy; is positive in all triads (ijk)].
This makes the relations follow in- and outgroup identifications and the obtained initial network
is usually polarized. For complete graphs and for the high school dataset, agents are divided into
the groups with equal probability, which makes the obtained results averaged over the group sizes
and distributions. For ZKC and Windsurfers datasets, initial group participation was predefined.

In each simulation, agents only have attributes of the same type. Moreover, it is assumed that
the significance of each attribute is the same: C; = 1 (this assumption is described above). The
coupling strength y can theoretically take any value. However, taking into account the theory
of homophily, in further analyses, the strength of the attribute layer influence was limited to
the nonnegative numbers y > 0. The obtained results for y > 0 will allow straightforward model
interpretation also for the negative influence y < 0.
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In the Results, analytical considerations and numerical results for the destabilization problem A
and numerical results for problem B of inhibiting the appearance of a polarized state are presented.
Each point in the plots was obtained due to averaging the results for at least 1000 different initial
conditions. If given, error bars are standard deviations. The results for continuous attributes were
obtained for ordered attributes with v = 1000. Figure 3 in SM shows this is a valid approximation.

5. Results

5.1 Analytical results for destabilization

Because the network configuration is stable, we can linearize the differential equations and ask
if stability is maintained in the face of small perturbations. We do this by analyzing the Jacobian
matrix of this system of equations (see section 4.1 in SM for details). The conditions for destabi-
lization of the link connecting the nodes i and j are both the sign inequality of weights x;; and gj;,
respectively, in the relation and attribute layers, and a greater influence of the attribute layer than
of the edges in the relation layer:

{sgn(xij) # sgn(gij) )

lygijl =1
A single destabilized edge in relation layer may induce further edge changes which may lead to
a different but still polarized state. The sufficient condition for the end state of a single triad not
to be polarized is that the similarities in the attribute layer form a triad with either 0 or 1 negative

links and a sufficiently large value of the strength y, so that the following inequalities are fulfilled
for this triad:

sgn(gi2) + sgn(gz3) + sgn(g13) € {1, 3}
lygial > 1
lygsl >1
lygizl >1

(10)

From the perspective of the measure of global polarization, the existence of at least one unbalanced
triad with one negative link in attribute layer and a sufficiently large value of the strength y is
enough for the network not to be polarized. For local polarization, the more triads that fulfill
Equation (10) there are, the larger decrease of polarization is expected.

Adopting a specific type of attribute enables a statistical analysis of its properties, allowing
the approximate probability of meeting these conditions to be determined. In order to accurately
analyze destabilization, numerical simulations are necessary to test whether the destabilization of
a certain number of links will lead to an unpolarized state.

5.2 Statistical analysis of attributes in the context of destabilization

Now we are interested in asking which types of attributes lead to a lower chance of polarization.
To do this, we need the probability density function of each similarity measure h;;, which allows us
to calculate the expected value E[h] and the variance Var[h]. For a small number of attributes, the
destabilization phenomenon is strongly dependent on the distribution h;j, but for larger G values,
the probability distribution of gj; begins to resemble a normal distribution with the mean and

Var[h

variance of E[h] and ] , respectively. For the value of G > 5 for considered types of attributes,

the distribution of gj; is unimodal, and then the following reasoning can be made.
The destabilization will certainly not happen if |y gjj| < 1 occurs for all edges (i.e., |y| < | g,-j|’1;
the influence of the relation layer is stronger than the influence of the attribute layer). Assuming
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|gijl < 1, destabilization is never observed when y < 1. For any y > 1, destabilization theoretically
becomes possible. The important question is from which value of the strength the probability of
destabilization is not negligible.

A negative g;; can destabilize the positive relation, and a positive gj; can destabilize the negative
relation. Destabilization of the negative edge is more beneficial from the point of view of reducing
local polarization because the density of negative links decreases. (i) Let E[h] > 0. Then, as the
number of attributes increases, negative values of g;; become less and less likely due to decreasing
variance. For this reason, the local polarization decreases because if any link is destabilized, it is
usually the negative edge. However, as G continues to rise, the smallest strength y that allows
destabilization increases to about (E[A]) ™! for each link. For G — oo, the necessary and sufficient
condition for destabilization for any system is y > (E[k])~! = Py,. Below this threshold value,
no edge is destabilized. Above Py, all negative edges change their sign, which leads to the paradise
state. (ii) A similar reasoning can be made for the assumption E[h] < 0, with the difference that for
the large G and y > |E[h]|~! = py, all positive edges are destabilized and the “hell” state (i.e., with
all edges negative) is achieved. (iii) For E[h] = 0, both positive and negative edges are destabilized
with the same probability. As the number of attributes increases, the weight values from attribute
layer g;; are getting closer to 0, so edge destabilization requires larger strength |y|. As a result, for
the constant strength of y and the increasing number of attributes, the number of destabilized
links decreases to 0.

For very high strength y, many edges are destabilized (even all triads may be destabilized),
and weights x;; evolve to new values 31 whose signs correspond to the signs of similarities g;;. In
this case, the polarization of relation layer depends on the polarization observed in the attribute
layer. If the expected state of the attribute layer is nonpolarized, then the relation layer is also
nonpolarized. In this case, unbalanced triads with one negative link are present in the system, and
therefore both polarization measures should decrease with increasing strength y. Finally with
extremely large coupling, the nonzero signs of the attribute layer are copied to the relation layer.
Thus, approximate local polarization levels can be derived by calculating the average densities
of relevant triads for such attribute layers that have all weights nonzero (i.e., for CAs or when
number of attributes is odd for BAs, OAs and UNAs). In some cases, like for BAs, by applying
combinatorics we obtained an exact solution (see section 4.2 in SM). For other types, we used
Monte Carlo approach over the space of possible attribute values. These results are shown in
Figure 3 labeled as y — oo.

For an increasing number of nodes N, the number of random sets of attributes increases. This
also increases the probability of the occurrence of more extreme values of g;;, so (for the case of
E[h] > 0) the appearance of negative or large positive g;j is more frequent. This leads to a decrease
in the minimum strength of |y| needed, for which destabilization is observable. For larger N, the
conclusions from the previous paragraphs remain the same: the same type of system behavior is
expected to be observed but at higher G values.

Table 2 shows the expected values and variances of the similarity for the types of attributes
described in Section 4.2. For PUA and OA (v > 2), the expected value is positive, for NUA (v > 2)
it is negative and for BA E[h] = 0. These values allow calculation of threshold strength py,.

From the table, we can see that the number of categories v affects the expected value and the
variance of similarity and weights. For v — co we derived the following dependencies:

o OA becomes a continuous attribute E[h] = 1/3 and Var[h] = 2/9. Thus, an increase in v
leads to an increase in expected value and a decrease in variance, so fewer positive edges
are destabilized, which leads to the decrease of local polarization.

o for NUA: E[h] = — 1 and Var[h] = 0. Any y > 1 causes destabilization. The system reaches
the state of hell.

« for PUA: E[h] = 0 and Var[h] = 0. Similarly as BA with large number of attributes G, the
attribute layer has no influence on the relation layer. Destabilization never happens.
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Table 2. Expected values E[h] and variances Var[h] for the similarity function h and result-
ing threshold attribute layer strength p4, for attributes: binary (BA), ordered (OA), negative
unordered (NUA) and positive unordered (PUA)

Type of attribute E[h] Var[h] Ven(v=4) Pth (v — 00)
BA 0 1 — —
-2 2 1)(v? +2
0OA Y Z M 6 3
3v 9 (v—1)v2
v—1
NUA 2/v—1 4— 2 1
%
v—1
PUA v . 4 00
%

One can notice that the E£[h] equations for NUA and OA are the same as for BA when v = 2. The threshold yy, for
BA s only defined for v =2 and then it reaches co.

(A) Scenario A

(B) Scenario B

0 50 100 50 100 50 100 50 100 50 100
G G G G G

Figure 3. Impact of the growing number of attributes G on the (A) destabilization and (B) prevention of polarized states. The
panels show the measure of local polarization P;p for complete graph networks of size N = 9 for different types of attributes
and y coupling strengths. Apart from PUA, an analytical, approximate polarization level for the case of large coupling (y —
o0) is plotted. In scenario A, coupling strength thresholds 7, are noticeable with large numbers of attributes G. For y < yi,
Pip changes as expected toward the value as without attributes, that is, for y = 0.5. Calculated thresholds (BA: y, = oo,
OAV =4: Py, =6, CA: Py = 3, NUA Vv =4: Py, = 2, PUA v = 4: 1y, = 4) agree with the simulation results. In scenario B, similar
thresholds do not exist. In the insets we show that having one binary attribute does not lower the polarization for any value
of the coupling constant y.

5.3 Impact of various types of attributes on destabilization and preventing

Figure 3 shows the effect of the number of attributes G of different types on reduction of existing
polarization (A) or preventing polarization (B) for different strengths of the attributes (y) in the
case of complete graph structures. As predicted for scenario A, for too weak coupling strength
¥ <1, no system is destabilized. The local polarization Prp is not equal to 1 because, in random
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balanced systems that contain only balanced triads, that is with 0 or 2 negative links, some of the
former triads are present. The destabilization does not occur for BA at G = 1 regardless of the
value of y (see the insets of Figure 3) because the attribute layer is also a balanced system in such a
situation: with the appropriate coupling strength, the relation layer will change its initial balanced
state to another balanced (probably polarized) state. In other cases above y > 1, as predicted,
some systems are destabilized. In the case of BAs the destabilization becomes possible because the
attribute layer contains both balanced and unbalanced triads when G > 1.

Destabilizing the system with NUA is related to reaching the state of hell. This is evidenced by
the high Prp (i.e., high densities of triangles with 2 or 3 negative links; see also Figure 2 in SM).
The increase in local polarization for NUA is caused by the negative expected value of attribute
layer weights E[h] < 0, which leads to more frequent destabilization of positive links than negative
links. For other attributes, looking at the polarization figures, you can see that for attributes with
a positive expected value of E[h] > 0 (i.e., OA and PUA), high y strengths effectively limit the
polarization and lead to the paradise state. For BA and for the couplings lower than the threshold
y < Yy, for OA and PUA, the considered measures of polarization return to the baseline as the
number of attributes increases. In such cases, the attributes are of less and less importance.

Thus, the results confirm the existence of threshold values of strength as discussed in
Section 5.2. For attributes with positive E[h], for y > 1, as the number of attributes increases,
first we observe the decrease of polarization, and then depending whether y < py, or v > Py,
we either observe an increase and return to the baseline polarization, or a further decrease up to
reaching a paradise state, respectively. For negative unordered attributes, we have E[h] < 0, there-
fore we observe a symmetric, but opposite behavior (i.e., more attributes make the state more
polarized, exceeding Py, results eventually in reaching the state of hell, etc.). A small number of
binary attributes slightly lowers polarization; however, as E[h] = 0, a further increase of G makes
the attributes matter less and less, which stops efficient destabilization or prevention.

Looking at Scenario B in Figure 3, we see that attributes have a bigger impact on prevent-
ing than on destabilizing the polarized state. This is mostly due to (which applies broadly to all
Figures 3-5) an increased basin of attraction for unpolarized states given random initial condi-
tions (i.e., when initial conditions are random, the network is less likely to fall into a polarized
state, especially as number of nodes increases). For the prevention problem, the baseline level of
Prp that is reached for larger G depends on the attribute type’s expected value E[h]. For binary
attributes (E[h] =0) there is no visible difference between scenarios. Positive or negative E[h]
make the system less or more polarized, respectively. Smaller couplings y, as compared to desta-
bilization scenario, are sufficient to bring the systems to paradise or hell states. Assuming E[/] > 0,
there is no negative effect of increasing the number of attributes for any value of coupling, as we
do not observe the threshold py,. Thus, in such a case having more attributes ensures smaller
polarization.

Differences between the effect of attributes for the two scenarios are also marked in Figure 4,
where the entire range of attribute layer strength (y) is compared. Selecting y < 1 is not enough to
destabilize a polarized state, but may sufficiently prevent polarization from occurring. With high
coupling values, the attribute impact is the same. The destabilization or prevention of a polarized
system occurs most effectively (in order according to the lowest required strength) for CA, PUA,
OA, and BA. NUA can reduce the global polarization (see Figure 4 in SM), but it always leads to
an increase of local polarization within the system.

Figure 5 shows that the local polarization decreases with growing system size N. The curves
on the BA charts (i.e., OA for v=2), OA for v = 4 and CA (i.e., OA for v = 1000) change mono-
tonically with the increasing number of categories. The larger v, the smaller the polarization of
the system (see also Figure 3 in SM). This observation goes along with the conclusions from
Table 2, because with increasing expected value E[h], decreasing polarization becomes easier. For
PUA (and partially CA) and high coupling strengths, the lack of polarization is tantamount to the
system reaching paradise. It is surprising that having an intermediate coupling strength slightly
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Figure 4. Preventing (B) from forming as compared to destabilizing (A) polarized states requires smaller strength. The panels
show the local polarization measure P;p as a function of attribute layer strength y for N =9 and G = 5, for different types of
attributes, for complete graph networks.
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Figure 5. Same conditions of attributes for growing systems of size N lead to approximately lower local polarization P;p.
Panels show scenarios of (A) destabilization and (B) preventing, respectively, for G =5 of different types of attributes and
different strengths.

exceeding 1 (e.g., ¥ = 1.5), unordered attributes are worse at destabilization of the polarized state.
This is not true for scenario B. For the intermediate threshold, all the attributes reduce global
polarization (see Figure 5 in SM), but the consequence of NUA is an increase in local polarization.

Having a certain number of attributes of a given type, it is not always possible to eliminate
polarization completely (i.e., achieve paradise) by simply increasing the attribute layer influence y.
For extremely large couplings there is a limit, that is, an average polarization level one achieves
having a certain type and number of attributes. This limit can be larger than 0. For instance, as
shown in Figure 3, with BAs one cannot decrease the polarization on average below P p = 0.5 no
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Figure 6. No significant changes in the results for a real-world network structure as compared to a complete graph topol-
ogy. Similarly to Figure 4, the plots show local polarization measure P;p as a function of the strength y for the scenarios of
(A) destabilization and (B) preventing from forming a polarized state. The underlying network is a structure of face-to-face
contacts between high school classmates.

matter other parameters. For OAs (v =4, G = 5) with high coupling paradise is not reached but
Prp~0.23. Similar levels that agree with these analytic curves are also visible in Figures 4 and 5.

5.4 Destabilization and prevention of polarization in real-world network structures

The impact of attributes on scenarios A and B in the case of increasing y strength does not depend
on the network topology as the obtained results for the complete graph (Figure 4) and the high
school network structure (Figure 6) are almost the same. One can only notice that for the high
school topology, probably due to the larger system size, smaller strength is required to reach the
plateau level of Py p. The same observation is made when comparing other analyzed characteristics
(Figure 3 and SM, Figure 7). Thus, we confirm that a complete graph is a good approximation of
a small community network in this model. The previously obtained conclusions are valid also for
other networks that do not display community structure.

However, an unexpected result is obtained when the underlying topology contains a commu-
nity structure. Figure 7a shows the change of local polarization when more and more attributes
are considered to influence the relation layer in the case of ZKC network topology. The obtained
level of polarization in the system without the attributes (i.e., when y < 1) is surprisingly low. The
reason for that is the low number of edges between the two groups (see ZKC network graph in
SM, Figure 3b) and, as a consequence, the initially low number of polarized triads. When com-
paring this plot to Figure 3a, it may seem that not only do negative unordered attributes increase
polarization, but also that using binary attributes or small numbers of ordered and continuous
attributed has a detrimental effect on the destabilization of polarization. However, the opposite
conclusion comes from Figure 7b, where for the same network the probability Pgp of reaching
global polarization is shown. Having a weak influence of attributes y < 1, the system always stays
globally polarized. All kinds of attributes are able to destabilize the system. Looking at different
numbers G and strengths y, the most beneficial are CAs, followed by PUAs, BAs and OAs (both
giving similar effect), and NUAs as the least effective. Actually, the impacts of attributes on global
polarization probability in the cases of ZKC and complete graph topologies are very similar (see
SM, Figure 2¢ for comparison).

From this, we see a connection between an increase in local polarization and a decrease in
global polarization. The measure P;p takes only into account separate triadic motifs whereas the
probability Pgp treats the structure of the whole network as one consistent object. Therefore, in
the case of systems consisting of distinct communities, both measures of polarization should be
included in the analysis. For NUAs, either the system usually reaches a globally polarized state
(Pgp close to 1) or most of the links are negative. For binary attributes or small numbers of ordered
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Figure 7. In networks with distinct communities, destabilization of a polarized state is still possible, but sometimes at the
cost of increasing local tensions. Panels (a) and (c) show the local polarization metric P;p as a function of number of attributes
G for Zachary karate club and Windsurfers networks, respectively. Panel (b) displays the probability Pp of obtaining global
polarization for Zachary karate club network. Although local tensions increased (panel a), a globally polarized state is less
frequently achievable (panel b).

or continuous attributes one cannot destroy the globally polarized state without introducing some
tensions (i.e., polarized triads) inside the initially divided communities. On the other hand, even
a small number of positive unordered attributes reduces both polarization metrics.

Similar results are also obtained for the Windsurfers network (Figure 7c). The initial level of
local polarization is larger, which shows that the connections between the two communities are
more frequent. Again, BAs or small number of OAs are enough to completely eradicate the glob-
ally polarized state (see SM, Figure 9 for Pgp relation) but at the same time, the increase of local
polarization is observed. This time CAs and PUAs can be used to decrease both the local and
global polarization.

Above we described the influence of attributes related to scenario A. The results related to
scenario B in the networks with communities are shown only in SM, Figure 8. We do not observe
any significant differences as compared to Figure 3b. Communities do not influence the rise of
polarization shortly after networks are formed.
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6. Discussion and conclusions

The general model and simulation framework that we presented is sufficient to allow us to draw
conclusions about how different types of attributes may impact polarization in a network. From
this, we are able to characterize the types of changes likely to occur in the network as well as the
strength of emphasis needed on the attributes to create substantial change in the relationships.
This model is consistent with both structural balance and homophily theories. The model allows
us to learn about traits in general, traits relative to each other, and about particular traits as well.
One of the advances of this modeling framework is that we connect the ideas of structural balance
and polarization, which requires redefining some aspects of each, allowing us to use models of
structural balance to study polarization.

We can learn about the general effect of attributes on relationships through both analytical
reasoning and statistical analysis. If the strength of the distance function between attributes is
not big enough (i.e., |g;j| < 1), then a lot of emphasis will need to be placed on the attributes to
destabilize the relationship layer (i.e., y > 1). Furthermore, if we want to destabilize a particular
link in a network, we will be able to do so if the signs of weights in the relation and attribute
layers are not the same and there is a strong enough emphasis placed on the attribute layer—that
is, Equation (9). Since that will not ensure a permanently destabilized network, we can do so by
ensuring that at least one triad is unpolarized, which can be achieved when [see Equation (10)]
the emphasis placed on the attributes is sufficient (i.e., |y g;j| > 1), and either there is at least some
social tension in the triad (i.e., the triad is unbalanced with one negative link) or there are only
positive links connecting the triad’s agents.

This framework also allows us to make claims about the effect of attributes relative to one
another (remembering, of course, that we have not exhaustively defined all attributes). In order
to destabilize or prevent polarization, attributes are most effective in descending order (assuming
four categories where applicable): continuous attributes, positive unordered attributes, ordered
attributes, binary attributes (with an important caveat discussed below), and negative unordered
attributes. One important way of restating the above is that for a given collection of attributes (e.g.,
number of attributes and categories), the emphasis on the attribute layer needed to destabilize the
polarization decreases according to the list. This means that if placing emphasis on the attribute
layer is costly (e.g., a business seeks to disrupt polarization in a work group), then costs will be
lower by focusing on traits in the order presented above. One interesting difference between the
types of traits is that positive unordered traits are more likely to lead to paradise than ordered
traits while ordered traits are more likely to have diverse triads.

In general, for attributes for which a probability density function and a mean can be found,
we obtained some expectations for how they will impact polarization. These expectations were
met for the specific types of attributes tested using our framework. If the mean is less than 0
(e.g., for negative unordered attributes), attributes may destabilize global polarization but, at the
same time, they increase local polarization, eventually, with sufficient emphasis, leading to a state
of hell (all links negative). That is the reason why we have not considered negative unordered
attributes as contributing much to decreases in polarization, because we understand polarization
so as the state with many negative links to be a social state that makes coordination between
people more difficult. If the mean is 0, attributes may lower polarization to some small extent,
though it may not be enough to destabilize a polarized system. An example is binary attributes.
A small number of them decreases polarization, but a large number has no effect. A similar effect
was observed in (Pham et al., 2022), where balanced states are more difficult to achieve when
having more binary attributes. For a special case of one binary attribute, the polarization also
is not lowered, because the network may change one polarized state into another one (Altafini,
2012). If the mean is positive, then attributes have the potential to destabilize and prevent
polarization as long as the emphasis on them is strong enough. This is the case for positive
unordered, ordered and continuous attributes types. This finding is also in agreement with the
results obtained in Schweighofer et al. (2020b), where in a different model unpolarized states are
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more probable when there are more continuous attributes. While many systems with positive
mean approach paradise with a high enough y, they all need an emphasis greater than the theo-
retical minimum to destabilize polarization (i.e., y > 1). Intriguingly, this suggests there may exist
an attribute type that is more effective at depolarizing a network (i.e., ¥ approaching 1 from the
right would be sufficient enough to see substantial polarization drop). The effect of the number of
categories goes in opposite directions for unordered and ordered attributes. As the number of cat-
egories in an unordered attribute increases, the less likely it is to destabilize polarization - in the
extreme example, every person is completely unique. For ordered attributes, however, increasing
the number of categories increases how effective the attribute is at destabilizing polarization until,
at the extreme end, it is a continuous attribute.

Our results fit into previous research on the topic where it was shown that binary attributes
were the most effective in limiting structural balance (Du et al., 2016) while continuous attributes
led to an increased abundance of structural balance (Gao and Wang, 2018). In our model, we have
obtained complementary results (see section 4.3 in SM) for binary and continuous attributes and
also explored other attribute types. The difference between these previous findings and our main
finding that continuous attributes effectively destabilize and prevent polarization shows that most
of the impact of continuous attributes on increasing structural balance comes from such attributes
leading to a state of paradise.

Our study shows that preventing polarization from forming is easier than destabilizing a bal-
anced (usually polarized) state. Even a small strength of the attribute layer may be sufficient to
prevent polarization. Moreover, in such a case increasing the number of attributes does not worsen
the attribute effect. The above observations are not true when the goal is to destabilize the initial
system. First, as already mentioned a necessary condition for the destabilization is facilitating the
attribute layer to be more influential than the relation layer. Second, even if above condition is ful-
filled but the attribute layer coupling strength does not exceed the analytically calculated threshold
level 7y, then too many attributes make the destabilization less effective. Apart from that, for both
considered scenarios, it was observed that the larger the number of nodes in the network, the
easier the tasks of prevention and destabilization are.

Preventing polarization does not depend on the underlying network structure. On the contrary,
destabilization is affected when the initial polarization goes together with distinct communities in
existing relations. In that case, attributes such as binary or ordered attributes may lead to opposite
effects in terms of local and global polarization. Namely, in order to decrease global polarization
in networks already divided into communities, it might be necessary to introduce some conflict
into those communities. This corresponds to observations that diversity and community are usu-
ally negatively correlated (Neal and Neal, 2014; Stivala et al., 2016). This could result in negative
reactions to efforts to reduce polarization as they may increase local polarization.

The presented model and results were obtained by using a number of assumptions some of
which were given in Sections 2.1 and 4.2. Those assumptions are necessary simplifications that
allow us to draw conclusions from the model. Probably the most significant assumption is tak-
ing into account only the impact of the attribute layer on the relation layer. This is related to
assuming that attributes change much slower than relations, as it is in the case of immutable
attributes, like race, or in the case of attributes that change at a slow rate (e.g., place of living, reli-
gion, wealth). Due to this assumption, the attribute layer is static and acts as a controller for the
subordinate relation layer. In a more complex model, a bilateral coupling would have to be con-
sidered, as in the model in (Gérski et al., 2017). This would be a natural extension of this research.
For the presented model, however, we can consider any attribute of an individual as long as it
changes much slower than relationships. This will include some traditionally considered opinions
(e.g., political preference) but may not include other opinions (e.g., best mid-tier restaurant in
the city). Importantly, this makes whether or not something can be considered an attribute an
empirical question: does that aspect of individuals change much more slowly than relationships
between individuals?
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The limitation of our model is that relations either exist or do not; new relations are not cre-
ated during the simulation. Only the initially existing ones evolve. Moreover, these relations tend
to become either positive or negative. They cannot become neutral. One way to overcome this is
introducing rates of link creation and disappearance that could depend on agents’ common neigh-
bors or the current value of the relation. Neutral links would also become possible if the model
evolution became dependent on noise (Malarz and Hotyst, 2022), which would require changing
the structural balance term of Equation (1). We also assume the indirect relations between agents.
Agents both like or dislike each other the same way and the influence of similarity is indirect
(gij = gji)- However, the model of relation evolution could easily be extended to directed networks
(Krawczyk et al., 2015). Nonreciprocal similarities require either nonhomogeneous agents for
whom different attributes would be of different importance or attributes with a nonsymmetri-
cal similarity function. An example is an attribute related to status theory (Leskovec et al., 2010a).
People would tend to have positive relations with those of higher status and negative ones with
those of lower status.

One of the ways that we can extend this model is to relax assumptions about the attributes. If
we were to relax the assumption that the similarity measure is maximized when the individuals
share a value of an attribute, this would allow for attributes where people are drawn to those who
are different than themselves. This might arise, for example, in a case of social niche specialization
(Bergmiiller and Taborsky, 2010) where people are trying to create a group that allows each person
to have a unique social role, thereby minimizing conflict. Relaxing other assumptions may allow
us to analyze additional types of relationships and attributes.

Here, we studied the impact of attributes of only one kind in a model. It would be interesting
to evaluate the inter-relations between different types of attributes. A combination of a nega-
tive ordered (or binary) attribute and a continuous attribute (proximity between places of living)
were considered by Neal and Neal (2014) and Stivala et al. (2016). A single unordered attribute
lead to polarization defined as highly clustered and internally dense communities. On the other
hand, a single continuous attribute facilitated community interlinks and, therefore, decreased
polarization. We also assumed that attributes are not correlated, have the same importance, and
all possible categories are drawn from a uniform distribution. However, our conclusions can be
extrapolated to cases not covered by those assumptions. In reality, the attributes are usually corre-
lated. Having correlated attributes in our model would decrease the effective number of attributes.
Thus, following Figure 3 which shows nonmonotonic changes, the consequence of correlated
attributes will depend on the parameters. For example, if all the binary attributes are perfectly
correlated (i.e., there is one effective attribute), then they do not decrease the polarization but lead
to a different polarized state. But if there are more effective binary attributes, we will obtain a
less polarized state as compared to the system with uncorrelated attributes. If attribute categories
are drawn from a different distribution, for example from a normal distribution, it also does not
change the obtained conclusions. For such attributes, we can still calculate (either analytically or
numerically) the expected value of the similarity and use the previously mentioned conclusions
related to the sign of the expected value.

Groups that we considered in this paper are networks of people and we analyzed polariza-
tion among humans. However, it is also possible to extend this model to the case of networks
of countries (Antal et al., 2005; Doreian and Mrvar, 2015). In such a case, the attributes could
be, for example, popular sports, main industries, religion. Our framework could be used to pre-
dict the changes of relations, although it is unclear whether reducing polarization at this level is
attainable.

6.1 Practical implications

These results have immediately useful application to problems of interest to institutions and
social groups. From a practical point of view, if we want to reduce tensions in a conflicted
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community, we should highlight attributes that have shared values in conflicted groups, which
would allow the creation of many positive mediating links between groups (Du et al., 2018;
Rawlings, 2022). Businesses can use these results to improve cohesion in their working groups.
Most business teams are small enough (7-9 people) that everyone knows each other and has
relationships. Consequently, this can lead to the formation of polarized groups with negative
consequences for the entire team. Suppose the company is able to identify attributes that have
on average a positive impact on the relation layer (e.g., continuous attributes) and appear fairly
evenly in both groups. In that case, it will be possible to dedicate relatively fewer resources to
emphasize these attributes than if, for example, a binary attribute was selected. The company can
do even better by emphasizing more of these attributes, requiring a lower investment.

Another example would be the question of reducing the polarization present in society. We
can envision an advertisement campaign in the United States that is something like, “Democrats
get lung cancer just like Republicans.” Or one in Britain that is something like, “Remainers play
football too.” Emphasizing positive unordered attributes (e.g., hobbies, diseases) highlights sim-
ilarities across polarized groups, hopefully decreasing polarization. The proposed model shows
that the more people see themselves through attributes of this type, the more they will create a
less polarized community. This is in agreement with the results from recent papers of Levendusky
(2018) and Rawlings (2022) where it was noticed that perceiving others through a common shared
attribute or having more crosscutting ties facilitates reduction of polarization that arose from
division of the society into two partisan camps.

Finally, the result of this work may also show the mechanism of increasing polarization in
society due to the rise of the Internet. It is not simply that you can find more people who think
similarly to you, therefore creating echo chambers. Rather, the impact of many attributes that
previously cut across political affiliation (such as income, race, hobbies) has decreased because
people who only know each other through the internet tend to know little about their partners.
We can describe this phenomenon using our model. Such attributes would not be present, or
their significance would be lowered by decreasing the Cg variable, only for these features. When
the only significant attributes left are those related to politics, only these attributes determine the
signs of connections between the members of a given group. Needless to say, these attributes most
closely resemble the negative unordered attributes (Huber and Malhotra, 2017). In effect, this
leads to system polarization. On the other hand, enabling people to learn attributes of others, if
they share attributes, instantly creates positive connections that reduce polarization even during
considerations of a partisan topic (Balietti et al., 2021).

The results presented here could immediately be applied at relevant levels to decrease polariza-
tion. This general framework could be extended by including additional attribute types, allowing
us to better decrease polarization. The model could also be extended to allow feedback between
relationships and attributes. The flexibility and versatility of this framework can make it useful to
both researchers and policymakers.
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