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SIMPLE ALGEBRAS OVER RATIONAL FUNCTION FIELDS 

T. NYMAN AND G. WHAPLES 

T h e well-known Hasse-Brauer-Noether theorem states tha t a simple algebra 
with center a number field k splits over k (i.e., is a full matr ix algebra) if and 
only if it splits over the completion of k a t every rank one valuation of k. I t is 
natural to ask whether this principle can be extended to a broader class of 
fields. In particular, we prove here the following extension. 

T H E O R E M . Let k be any field, K = k(t) a rational function field in one variable 
over k, and A a central simple algebra over K. A necessary and sufficient condition 
for A to split over K is that it split locally, at the completion of K, for every valuation 
of K which is trivial on k. 

Using the language of [2], we call a i^-prime ( = an equivalence class of 
valuat ions of K) a K/k-prime if the valuat ions are trivial on k. If p is a i^-prime, 
we denote the completion of K a t p by Kp and say tha t a simple algebra A with 
center K splits locally at p if A 0 X K$ ^ 1. Thus we wish to prove 4̂ —̂' 1 if 
and only if A ®K K$ ~ 1 for all K/k-pnmes p. 

The necessity of the local splitting is obvious. When K has characteristic 0, 
the sufficiency follows a t once from results of [4] and when char k = p and k 
has no inseparable extension, it follows from Proposition 4.1 of [3]. The re­
maining case seems new and its proof follows. (Case 1 of our proof also gives 
a short proof for the cases handled in [3] and [4].) 

Let k be any field of characteristic p ^ 0 having inseparable extensions and 
let A be a counterexample to the theorem: namely, a central simple algebra 
over K = k(i) which is not a full matr ix algebra bu t A <g>K K$ ~ 1 for every 
K/k-prime p. From [7] it follows tha t there exist finite degree constant field 
extensions of i£(extensions L0(t) with L0/k finite algebraic) which split A. 

Case 1. A is split by a separable constant field extension. By a s tandard 
argument using Sylow groups (see Theorem 4.30 of [1]) it follows tha t there 
exists a counter-example B = (C/F, a, b) which is a cyclic algebra of prime 
degree with C = C0( / ) , F = F0(t), b G F and Co/F0 cyclic, such tha t B splits 
a t all / y / v p r i m e s bu t is not <~1. Then b is a local norm a t every C/Co-prime, 
so the principal T^-divisor (b) is the norm of some degree zero C-divisor. Since 
C has genus 0 over Co, every degree zero C-divisor is principal, hence there is 
a r G C with \bNc/F(T)\i = 1 for every / y / v p r i m e p. Thus b' = bNc/F(T) 
is in the field of constants F0 of F, and B = (C/F, a, bf) since b and b' differ by 
a norm. We can now write B = B0 ® Fo F0(t) where B0 = (CQ/FQ, a, bf) is a 
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cyclic algebra of prime index over F0. If B0 is a division algebra then B cannot 
split locally a t any degree one F/ Fo-prime. Indeed, suppose p is such a prime 
and 7T is a prime element a t p. Then since F$ = F0(T), the field of formal power 
series in ir over F0, we have B ® F F$ = (B0 ® Fo F) ®F Fp = B0 (g)Fo F0(T). 
But if Bo is a division algebra, B0 ® Fo FO(TT) is jus t the field of formal power 
series in T with coefficients in B0 and is also a division algebra. This contradicts 
the local split t ing of B a t all F / T v p r i m e s . So this case is impossible. 

Case 2. 4̂ is not split by any separable constant field extension. If kSM- is a 
separable algebraic closure of k, then it is easily seen t h a t A ®K kSM-(t) is still 
a counterexample. So we can and shall assume k has no separable algebraic 
extension. Then A has a split t ing field L = L0(t) with L0/k pure inseparable. 
Since we can get from k to L0 by a chain of pure inseparable extensions of 
degree p it follows tha t we have a counterexample A ®K L' which is split by 
an inseparable constant field extension L" of degree p over IJ where 
V = U{t). 

Now change notat ion: let D be the division algebra in the Brauer class over 
L' containing A ®K L' and write k, K and K(sllp) in place of L0 ' , L' and L" 
respectively. Then D is a counterexample of index >̂ with center K = k(t) and 
a split t ing field X(s 1 / P ) with s £ k.By[l, Lemma 7.10 and Theorem 4.171 D is 
a cyclic algebra (s, X] for some \ £ K where we use the following nota t ion: if 
K is any field of characterist ic p ^ 0 and s, \ £ K with s ^ 0, then (s, X] 
denotes the algebra generated over K by the linearly independent elements 
ulv\ 0 ^ i, j < p, with relations 

(1) up — w = X,vu = (u + 1)^, ^p = >̂-

I t is well-known [8] t ha t the algebra (s, X] as constructed is a central simple 
algebra over K and t ha t it is — 1̂ if and only if either the equat ion xv — x — 
X = 0 has a solution in K or if s is a norm from K(u) to i£. This describes for 
fixed X the values of s making (s, X] ^ 1. The following lemma describes for 
fixed s the values of X making (s, X] ~ 1. This lemma is due to N. Jacobson 
(see [5] and Remark 1) bu t we include here an elementary proof. 

LEMMA. Let K be any field of characteristic p 9^ 0 and s, X G K with s ^ 0. 
Then (s, X] ^ 1 if and only if there are elements a0, ai, . . . , av-\ Ç K with 

(2) X = (a0
v - a0) + afs + a2

ps2 + . . . + a^s^K 

Proof. Suppose (s, X] ~ (s, Xr] ~ 1. Then the p X p total matr ix algebra 
(5, X] generated over K by u, v satisfying (1) contains elements it' and z/ 
satisfying the relations got by subst i tu t ing u', v', Xr for w, v, X in (1). T h e ele­
ments v and z;r are p X p matrices with minimum polynomial = characterist ic 
polynomial = xp — s, i.e., v and v' are non-derogatory matrices. T h u s an inner 
automorphism of the matr ix algebra transforms v' into v, so we can assume 
v = v'. Then the relations vu = uv -\- v and ^ r = -w'z; + v imply t ha t u' — u 
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commutes with v. Since v is non-derogatory this implies tha t u' — u can be 

wri t ten as a polynomial in v: 

(3) u' = u + a0 + a,\V + fi^2 + . . . + ap-\V
p~l 

for ttï £ X . 
We wish to compute the minimum polynomial of u'. To do so consider the 

matrices 

(4) U = 

A - 1 
A - 2 

P + 1 

0 0 0 s 
1 0 0 0 
0 1 0 0 

_0 0 1 0_ 

where A is an element of an algebraic extension of K with Ap — A = X. One 
easily checks tha t t / a n d I7 satisfy (1). Expanding by minors along the top row 
we find the de terminant of U + ctV — xl is 

(A - x) (A - x - 1) . . . (A - x - p + 1) + (-l)p~hips 

= (A - x)p - (A - x) + aps = X + aps - (xp - x). 

Using the Artin-Schreier symbol $(Y) = Yv — Y, we have with x = u' — 
u + az;: 

(5) If u, v satisfy (1), then fp(u + av) = X + ap5. 

Let t, j be integers with 0 < i < p and i • j = 1 (mod p). If u, v satisfy (1), 
then u' = ju and v' = vl satisfy the relations got from (1) by subst i tut ing 
X; = j \ for X and s' = sl for s. So u', v' generate (s\ j\] ~ (s, X] (for the rules 
used here see [8]). As in the preceding paragraph we have $(ju + bvl) = 

j \ + bps\ So multiplying by i and setting a = ib we get for x = u + av1: 

(6) If u, v satisfy (1) and 0 < i < p, then fp(u + av1) = p(u) + aps\ 

By repeatedly using (6) we can add the terms aiv
i to u one a t a t ime to get 

Wiu') = \ + p(a0) + afs + a2^2 + . . . + ap.x
psp-1 

as the characteristic polynomial for the u' of (3). I t is clear tha t this polynomial 
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of degree p has p dist inct roots in the algebraic closure of K. This means the 
p X p matr ix u' has p dist inct eigenvalues implying its characterist ic poly­
nomial coincides with its minimum polynomial. So we have found the minimum 
polynomial of u! as desired. 

Now suppose u and v satisfy (1) with $(u) = X = 0. Then we have 

A' = fp(u') = @(u + a0 + fliw + • • • + ap-iv
p~l) 

and this is given by (2). T h u s (s, X'] ^ 1 implies X' is given by (2). 
For the reverse implication we note t ha t (s, avsi] ^ 1 and (s, $(a)] ~ 1 for 

all a £ K. Then for all s, \, at £ K, s ^ 0, 

(7) (5, X] - (5, X + ^ ( a 0 ) + afs + . . . + a^fs*-1]. 

So if X is given as in (2), (s, X] ~ (s, 0] ~ 1 completing the proof of the lemma. 
Note t ha t if s G Kp, then the first two terms of (2) a l ready represent all ele­
ments of K. 

Return ing to the proof of the theorem, suppose we have a counterexample 
(s, X] with center K = k(t) where k has no separable extensions. Represent X 
as a sum of part ial fractions in the usual way. Namely , X is a sum of a term 
p̂(oo) £ k[t] and finitely many terms X̂  whose denominator is a power of the 

monic irreducible polynomial corresponding to the K/k-pnme p and whose 
numera tor is an element of k[t] of degree less than the degree of the denomina­
tor. T h u s |Xp|q ^ 1 whenever p ^ q. Then (s, X] is similar to the product of 
the algebras (s, \] for the finitely many primes with X» ^ 0. Let p ^ q. Then 
XQ is integral a t p and the residue class field a t p has no separable extension 
because it is finite algebraic over k. Hence Xq = $(a) + b with \b\$ < 1; since 
b (E fP(Kp) whenever \b\p < 1, it follows tha t (s, Xq] ^ 1 a t p. Therefore 
(s, Xp] ~ (s, X] ^ 1 a t p. So if (s, X] is a counterexample, then (s, Xp] is a 
counterexample for a t least one p. 

Choose one such p. By the lemma, 

XP = jpM +a!*s + . . . +a,_1V~1 

for some set of at £ Kp. Since K is a rational function field we can use part ial 
fractions again to find elements bt (E K with \bt — at\$ ^ 1 and \bt\q ^ 1 for 
all q ^ p. By (7), (s, Xp] ~ (5, X/] where 

V = X* - P ( M ~ 6 1 ^ - . . . - V i ^ 1 . 

By construction |X'| ^ 1 for every i£/&-prime q, so X' £ &. But , since k has no 
separable extension, $(k) = k and thus X' G £?(&). Bu t then (s, X'] ^ 1 
which is a contradict ion and completes the proof of the theorem. 

We have, of course, the following immediate corollary. 

COROLLARY. / / C is a cyclic extension of k (t) then an element of k (t) is a norm 
from C if and only if it is a local norm at all primes of k(t) which are trivial on k. 
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Remark 1. The lemma was proved by N. Jacobson in 1937 modulo a minor 
change in notation. Let [c, d) denote the algebra generated over K by w, z, with 
relations wp = c, zv = d, and zw — wz = 1. If u, v generate (s, X] as in (1), 
then ft-1, wo generate [s~l, X s) : i.e., (s, X] ^ {s~1, X 5}. In ([5], p. 670), Nathan 
Jacobson proved our lemma for the algebras {c, d) as a special case of more 
general results. 

Remark 2. From our proof we see that when k has inseparable extensions it 
is easy to construct algebras (s, X] which are locally ^ 1 at all i£/&-primes 
except one. 

Remark 3. In general a field K = k(t) will have many valuations which are 
not trivial on k, since any valuation of k has at least one extension to a valua­
tion of K. See [6]. 
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