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SIMPLE ALGEBRAS OVER RATIONAL FUNCTION FIELDS
T. NYMAN AND G. WHAPLES

The well-known Hasse-Brauer-Noether theorem states that a simple algebra
with center a number field & splits over k (i.e., is a full matrix algebra) if and
only if it splits over the completion of & at every rank one valuation of k. It is
natural to ask whether this principle can be extended to a broader class of
fields. In particular, we prove here the following extension.

THEOREM. Let k be any field, K = k(t) a rational function field in one variable
over k, and A a central simple algebra over K. A necessary and sufficient condition
for A to split over K is that it split locally, at the completion of K, for every valuation
of K which is trivial on k.

Using the language of [2], we call a K-prime (= an equivalence class of
valuations of K) a K /k-prime if the valuations are trivial on k. If p isa K-prime,
we denote the completion of K at p by K, and say that a simple algebra 4 with
center K splits locally at p if A @k Ky, ~ 1. Thus we wish to prove 4 ~ 1 if
and only if 4 ®x K, ~ 1 for all K/k-primes p.

The necessity of the local splitting is obvious. When K has characteristic 0,
the sufficiency follows at once from results of [4] and when char # = p and &
has no inseparable extension, it follows from Proposition 4.1 of [3]. The re-
maining case seems new and its proof follows. (Case 1 of our proof also gives
a short proof for the cases handled in [3] and [4].)

Let k be any field of characteristic p # 0 having inseparable extensions and
let A be a counterexample to the theorem: namely, a central simple algebra
over K = k(t) which is not a full matrix algebra but 4 ® ¢ K, ~ 1 for every
K /k-prime p. From [7] it follows that there exist finite degree constant field
extensions of K (extensions L,(¢) with Lo/k finite algebraic) which split 4.

Case 1. 4 is split by a separable constant field extension. By a standard
argument using Sylow groups (see Theorem 4.30 of [1]) it follows that there
exists a counter-example B = (C/F, o, b) which is a cyclic algebra of prime
degree with C = Cy(t), F = Fo(t), b € Fand Cy/F, cyclic, such that B splits
at all F/F,y-primes but is not ~1. Then b is a local norm at every C/Cy-prime,
so the principal F-divisor (b) is the norm of some degree zero C-divisor. Since
C has genus 0 over C, every degree zero C-divisor is principal, hence there is
a I' € C with |[bN¢,»(T)|, = 1 for every F/Fy-prime p. Thus &’ = bN¢,p(T)
is in the field of constants Fyof F, and B = (C/F, ¢, b") since b and b’ differ by
a norm. We can now write B = By ® y, Fi(t) where By = (Co/Fo, o, b’) is a
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cyclic algebra of prime index over Fy. If By is a division algebra then B cannot
split locally at any degree one F/Fy-prime. Indeed, suppose b is such a prime
and 7 is a prime element at p. Then since Fy, = Fy(r), the field of formal power
series in 7 over Fy, we have Bz Fy, = (Bo Qpy F) @ Iy, = By @ 5, Fo(r).
But if By is a division algebra, By ® », Fo(m) is just the field of formal power
series in w with coefficients in By and is also a division algebra. This contradicts
the local splitting of B at all F'/ Fy-primes. So this case is impossible.

Case 2. 4 is not split by any separable constant field extension. If k%" isa
separable algebraic closure of k, then it is easily seen that 4 ®x k** (t) is still
a counterexample. So we can and shall assume % has no separable algebraic
extension. Then 4 has a splitting field L = Ly(¢) with Ly/k pure inseparable.
Since we can get from k to L, by a chain of pure inseparable extensions of
degree p it follows that we have a counterexample 4 ®x L’ which is split by
an inseparable constant field extension L’ of degree p over L’ where
L' = Ly(1).

Now change notation: let D be the division algebra in the Brauer class over
L' containing 4 ®x L’ and write k, K and K (s'”) in place of Ly, L' and L"
respectively. Then D is a counterexample of index p with center K = k(t) and
a splitting field K (s'”) with s € k. By [1, Lemma 7.10 and Theorem 4.17] D is
a cyclic algebra (s, \] for some A € K where we use the following notation: if
K is any field of characteristic p % 0 and s, A € K with s # 0, then (s, \]
denotes the algebra generated over K by the linearly independent elements
1w’ 0 £ 1,j < p, with relations

(1) w —u=Nou=(u+ o, 0" =

It is well-known [8] that the algebra (s, \] as constructed is a central simple
algebra over K and that it is ~1 if and only if either the equation x? — x —
X\ = 0 has a solution in K or if s is a norm from K (u) to K. This describes for
fixed X\ the values of s making (s, \] ~ 1. The following lemma describes for
fixed s the values of A making (s, \] ~ 1. This lemma is due to N. Jacobson
(see [5] and Remark 1) but we include here an elementary proof.

LEMMA. Let K be any field of characteristic p # 0 and s, N € K with s # 0.
Then (s, N] ~ 1 1f and only if there are elements ao, ay, . .., ap1 € K with

(2) XN = (a® — ao) + aiPs 4+ a’s* + ...+ a,_,PsPL

Proof. Suppose (s, A\] ~ (s, N'] ~ 1. Then the p X p total matrix algebra
(s, N\] generated over K by u,v satisfying (1) contains elements «’ and o’
satisfying the relations got by substituting #«’, ', X’ for #, v, X in (1). The ele-
ments v and ¢’ are p X p matrices with minimum polynomial = characteristic
polynomial = x? — s, i.e., v and ¢’ are non-derogatory matrices. Thus an inner
automorphism of the matrix algebra transforms v’ into », so we can assume
v = 9'. Then the relations v = uv + » and vo/ = u'v + v imply that ' — u
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commutes with 2. Since v is non-derogatory this implies that #’ — u can be
written as a polynomial in v:

B) v =u4a+av+av*+...4 a_12"!

for a; € K.
We wish to compute the minimum polynomial of #’. To do so consider the
matrices
A ]
A—1
A—2
4) U= ,
[0 0 0 s
1 0 0 0
0 1 0 0
V= ,
100 . . . 1 0]

where A is an element of an algebraic extension of K with A? — A = X\, One
easily checks that U and V satisfy (1). Expanding by minors along the top row
we find the determinant of U + a1V — x1 is

A—x)A—x—1)...(A—x—p+ 1)+ (—1)""a?s
= (A—x)?— (A —x) 4+ a’s = X+ a?s — (x* — x).

Using the Artin-Schreier symbol @ (V) = Y? — ¥, we have with x = ' =
u + av:

(5) If u, vsatisty (1), then @ (x + av) = N\ + a?s.

Let 7, j be integers with 0 < 2 < pand¢-j = 1 (mod p). If u, v satisfy (1),
then ' = ju and o' = v’ satisfy the relations got from (1) by substituting
N = jNfor Aand s = s’ fors. So ', o' generate (s?, j\] ~ (s, A\] (for the rules
used here see [8]). As in the preceding paragraph we have @ (ju + bv?) =
N 4 bPst So multiplying by 7 and setting @ = b we get for x = u + av®

(6) 1If u, vsatisfy (1) and 0 < 7 < p, then @ (u + av’) = @ (1) + a’s’.
By repeatedly using (6) we can add the terms ¢ 2° to u one at a time to get
P') =N+ @o) + a’s + afs® + ... + ap,_7s"!

as the characteristic polynomial for the u" of (3). It is clear that this polynomial
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of degree p has p distinct roots in the algebraic closure of K. This means the
p X p matrix ' has p distinct eigenvalues implying its characteristic poly-
nomial coincides with its minimum polynomial. So we have found the minimum
polynomial of #’ as desired.

Now suppose u and v satisfy (1) with § () = N = 0. Then we have

N=w)=Quw+a+av+ ...+ a_ 27"

and this is given by (2). Thus (s, N'] ~ 1 implies \’ is given by (2).
For the reverse implication we note that (s, a’s'] ~ 1 and (s, § (¢)] ~ 1 for
all « € K. Then forall s, \, a; € K, s # 0,

(7)) (5, N~ (5, N + P(ay) + a’s + ... + a,_"s"1].

Soif Nisgiven asin (2), (s, \] ~ (s, 0] ~ 1 completing the proof of the lemma.
Note that if s € K?, then the first two terms of (2) already represent all ele-
ments of K.

Returning to the proof of the theorem, suppose we have a counterexample
(s, \] with center K = k(t) where k has no separable extensions. Represent A
as a sum of partial fractions in the usual way. Namely, \ is a sum of a term
Mooy € R[t] and finitely many terms N\, whose denominator is a power of the
monic irreducible polynomial corresponding to the K/k-prime p and whose
numerator is an element of k[f] of degree less than the degree of the denomina-
tor. Thus [\]q £ 1 whenever p 5 q. Then (s, ] is similar to the product of
the algebras (s, Ay] for the finitely many primes with A\, # 0. Let p 5 q. Then
)\, is integral at p and the residue class field at p has no separable extension
because it is finite algebraic over k. Hence Ay = § (a¢) + b with |b|, < 1; since
b € 9(K,) whenever [0, < 1, it follows that (s, N\] ~ 1 at p. Therefore
(s, 7] ~ (s, \] ~ 1 at p. So if (s, \] is a counterexample, then (s, \y] is a
counterexample for at least one p.

Choose one such p. By the lemma,

N o= @(ao) + ar’s + ..+ ap P!

for some set of a; € K,. Since K is a rational function field we can use partial
fractions again to find elements 0; € K with [b; — a4y, £ 1 and |by, = 1 for
all ¢ & p. By (7), (s, \\] ~ (s, N'] where

N = )\p — KJ(bo) — blpS —_ ... b,,_lps”'l.

By construction |\'| < 1 for every K/k-prime @, so A’ € k. But, since & has no
separable extension, & (k) = k and thus XN € @ (k). But then (s, N'] ~ 1
which is a contradiction and completes the proof of the theorem.

We have, of course, the following immediate corollary.

CoRrROLLARY. If C s a cyclic extension of k(t) then an element of k(t) 1s a norm
from C if and only if it is a local norm at all primes of k(t) which are trivial on k.
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Remark 1. The lemma was proved by N. Jacobson in 1937 modulo a minor
change in notation. Let {c, d} denote the algebra generated over K by w, 2, with
relations w” = ¢, 2 = d, and zw — wz = 1. If u, v generate (s, A\] as in (1),
then v~!, uv generate {s~!, X s} : i.e., (s, \] ~ {571, X s}. In ([5], p. 670), Nathan
Jacobson proved our lemma for the algebras {¢, d} as a special case of more
general results.

Remark 2. From our proof we see that when k has inseparable extensions it
is easy to construct algebras (s, N\] which are locally ~ 1 at all K/k-primes
except one.

Remark 3. In general a field K = k(¢) will have many valuations which are
not trivial on &, since any valuation of k has at least one extension to a valua-
tion of K. See [6].
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