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Completeness of Infinite-dimensional Lie
Groups in Their Left Uniformity

Helge Glöckner

Abstract. We prove completeness for the main examples of inûnite-dimensional Lie groups and
some related topological groups. Consider a sequence G1 ⊆ G2 ⊆ ⋅ ⋅ ⋅ of topological groups Gn such
that Gn is a subgroup of Gn+1 and the latter induces the given topology on Gn , for each n ∈ N. Let
G be the direct limit of the sequence in the category of topological groups. We show that G induces
the given topology on each Gn whenever ⋃n∈N V1V2 ⋅ ⋅ ⋅Vn is an identity neighbourhood in G for
all identity neighbourhoods Vn ⊆ Gn . If, moreover, each Gn is complete, then G is complete. We
also show that the weak direct product⊕ j∈J G j is complete for each family (G j) j∈J of complete Lie
groupsG j . As a consequence, every strict direct limitG = ⋃n∈N Gn of ûnite-dimensional Lie groups
is complete, as well as the diòeomorphism group Diò c(M) of a paracompact ûnite-dimensional
smooth manifold M and the test function group Ck

c (M,H), for each k ∈ N0 ∪ {∞} and complete
Lie group H modelled on a complete locally convex space.

1 Introduction and Statement of the Main Results

Our main goal is to study completeness for Lie groups modelled on locally convex
spaces (in the sense of [16,36]; cf. also [24,33,34]), andmore generally completeness of
topological groups, as far as this is useful for themain goal. Here completeness refers
to the le� uniform structure [25]. _e topological groups under consideration need
not beHausdorò (unlesswe say so explicitly). It iswell known that every Lie group G
modelled on a Banach space E is complete [10, Chapter III, §1.1, Proposition 1]), as the
le� uniform structure and the one induced by the additive group of the Banach space
coincide on some identity neighbourhood U ⊆ G that is homeomorphic to a closed
0-neighbourhood V ⊆ E.

Projective limits of complete Hausdorò groups being complete, this implies that
many Fréchet–Lie groups are complete, e.g., themapping groups

C∞(M ,H) = lim←ÐC
k(M ,H)

that are the projective limit of the Banach–Lie groups Ck(M ,H) for k ∈ N0, for each
compact smooth manifold M and Banach–Lie group H. As usual, Lie groups mod-
elled on Fréchet spaces (resp., Banach spaces) are called Fréchet–Lie groups (resp.,
Banach–Lie groups) in the following. Of course, completeness properties of locally
convex spaces E, which furnish examples of abelian Lie groups (E ,+), are a standard
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topic in functional analysis. Moreover, while completeness properties of topological
groups have been studied (see [2,40] and the references therein), no systematic study
of completeness properties of inûnite-dimensional Lie groups is available so far. For
example, it is an open question whether completeness of themodelling space implies
completeness for a Lie group [36, Problem II.9]. _e current article strives to develop
speciûc tools that enable completeness to be shown for important classes of inûnite-
dimensional Lie groups, under natural hypotheses. Our main results, _eorems 1.1
and 1.2, are devoted to completeness properties of direct limits. Recall that an ascend-
ing sequenceG1 ⊆ G2 ⊆ ⋅ ⋅ ⋅ of topological groups (Gn ,On) is a direct sequence of topo-
logical groups if, for each n ∈ N, the inclusion map jn+1,n ∶ (Gn ,On)→ (Gn+1 ,On+1) is
a continuous homomorphism. If, moreover, each jn+1,n is a topological embedding,
i.e., a homeomorphism onto its image, then the direct sequence is called strict. Give
G ∶= ⋃n∈N Gn the unique group structure forwhich each inclusionmap jn ∶Gn → G is
a group homomorphism. A topology on a group is called a group topology if it makes
it a topological group. _ere is a ûnest group topology OTG on G making each jn
continuous; (G ,OTG) is called the direct limit topological group. _e topology OTG
must not be confused with the ûnal topology ODL on G with respect to the inclu-
sion maps jn ,whichmakes (G ,ODL) the direct limit topological space. It is clear that
OTG ⊆ ODL , but examples show that equality need not hold [42,46].

Let O be a group topology on G making each jn continuous. Following [21], we
say that product sets are large in (G ,O) if

(1.1) ⋃
n∈N

V1V2 ⋅ ⋅ ⋅Vn

is an identity neighbourhood in (G ,O) for every identity neighbourhood Vn in
(Gn ,On).1 If product sets are large in (G ,O), then O = OTG [21, Proposition 11.8],
andmoreover the product sets as in (1.1) form a basis of identity neighbourhoods for
(G ,O) (as we will note in Lemma 4.2). Wemention that sets of the form

⋃
n∈N

(Vn ⋅ ⋅ ⋅V2V1)(V1V2 ⋅ ⋅ ⋅Vn)

(so-called “bamboo shoots")were already used [26,42] to obtain tangible descriptions
of the topology OTG in well-behaved situations. Our main result can be formulated
as follows.

_eorem 1.1 Let G1 ⊆ G2 ⊆ ⋅ ⋅ ⋅ be a strict direct sequence of topological groups and
G ∶= ⋃n∈N Gn be its direct limit topological group.
(i) If product sets are large in G, then each inclusion map Gn → G is a topological

embedding.
(ii) If product sets are large in G and each Gn is complete, then G is also complete.

Wemention that (G ,OTG) is Hausdorò if each Gn is Hausdorò and the inclusion
map Gn → G is a topological embedding.2

1In [3], (G,O) is then said to carry the strong topology.
2If e /= x ∈ Gn , there is an open identity neighbourhood V ⊆ Gn with x /∈ V . Let W ⊆ G be an open

identity neighbourhood such that W ∩ Gn = V . _en x /∈ W . Hence {e} = {e} in G and thus G is
Hausdorò.
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_eorem 1.1 and its proof were inspired by Bourbaki’s discussion of completeness
for strict direct limits of complete locally convex spaces [9, Chapter II, §4, no. 6,
Proposition 9].

Now consider a family (G j) j∈J of Lie groups G j modelled on locally convex spaces
E j . _en the so-called weak direct product

G ∶= ⊕
j∈J

G j ∶= {(x j) j∈J ∈ ∏
j∈J

G j ∶ x j = e for almost all j}

can be made a Lie group modelled on the locally convex direct sum E ∶= ⊕ j∈J E j in
such a way that for some C∞-diòeomorphisms ϕ j ∶U j → Vj from an open identity
neighbourhood U j ⊆ G j onto an open 0-neighbourhood Vj ⊆ E j with ϕ j(e) = 0, the
set⊕ j∈J U j ∶= G ∩∏ j∈J U j is an open identity neighbourhood in G and themap

⊕
j∈J

ϕ j ∶⊕
j∈J

U j Ð→ ⊕
j∈J

Vj ⊆ E , (x j) j∈J z→ (ϕ j(x j)) j∈J

is a C∞-diòeomorphism (as in [18]). If J is countable, then the topological group un-
derlying the weak direct product⊕ j∈J G j is the small box product of the topological
groups G j (as in [4]). If J is uncountable, then the weak direct product and the small
box product still coincide as groups, but the box topology is coarser and can be prop-
erly coarser. For example, this happens for the family (R) j∈J for an uncountable set J.
_e weak direct product R(J) ∶=⊕ j∈J R then coincides with the locally convex direct
sum, whose topology diòers from the box topology,3 as is well known [43].

_eorem 1.2 Let (G j) j∈J be a family of Lie groups G j modelled on locally convex
spaces. If each G j is complete (resp., sequentially complete), then also the weak direct
product⊕ j∈J G j is complete (resp., sequentially complete).

Similarly, one ûnds that the small box product of each family of complete (resp.,
sequentially complete) topological groups is complete (resp., sequentially complete),
see Example 5.2.

We now explain how the main results (and further ûndings) can be used to es-
tablish completeness for inûnite-dimensional Lie groups within the main classes of
examples [36, pp. 3-4], and related topological groups.

1.1 Direct Limits of Finite-dimensional Lie Groups

IfG1 ⊆ G2 ⊆ ⋅ ⋅ ⋅ is a direct sequence of topological groups and the direct limit topology
ODL on G = ⋃n∈N Gn makes G a topological group, i.e., if OTG = ODL , then product
sets are large in (G ,OTG) [17,Proposition 11.3]. _us_eorem1.1 entails the following
corollary.

Corollary 1.3 IfOTG = ODL onG = ⋃n∈N Gn for a strict direct sequenceG1 ⊆ G2 ⊆ ⋅ ⋅ ⋅
of complete topological groups, then (G ,OTG) is complete.

3In fact, {(x j)r∈J ∈ R(J) ∶ ∑ j∈J ∣x j ∣ < 1} is a 0-neighbourhood in the locally convexdirect sumwhich
cannot contain any box⊕ j∈J]−q j , q j[ with q j ∈ ]0,∞[∩Q =∶ C as one of the sets Jq ∶= { j ∈ J ∶ q j = q}
with q ∈ C must be uncountable and hence inûnite.
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Wemention that OTG = ODL on G = ⋃n∈N Gn for a direct sequence G1 ⊆ G2 ⊆ ⋅ ⋅ ⋅
of locally compact Hausdorò topological groups [26, 42]. Hence every strict direct
limit G = ⋃n∈N Gn of locally compact Hausdorò topological groups G1 ⊆ G2 ⊆ ⋅ ⋅ ⋅ is
complete. In particular, the Lie groups limÐ→Gn [19] are complete for each strict direct
sequence G1 ⊆ G2 ⊆ ⋅ ⋅ ⋅ of ûnite-dimensional Lie groups.4

1.2 Diffeomorphism Groups

For M a paracompact ûnite-dimensional smooth manifold, consider the group
Diò c(M) of all C∞-diòeomorphisms ϕ∶M → M with compact support (in the sense
that ϕ(x) = x for x outside some compact set). _en Diò c(M) is a Lie group mod-
elled on the space of smooth compactly supported vector ûelds on M (and Diò(M)
can bemade a Lie group with Diò c(M) as an open normal subgroup) [33]. For each
compact subset K ⊆ M,

DiòK(M) ∶= {ϕ ∈ Diò c(M) ∶ (∀x ∈ M ∖ K) ϕ(x) = x}
is a Lie subgroup of Diò c(M), modelled on the Fréchet space of all smooth vector
ûelds supported in K. If M is σ-compact and K1 ⊆ K2 ⊆ ⋅ ⋅ ⋅ an exhaustion of M by
compact sets,5 then

(1.2) DiòK1(M) ⊆ DiòK2(M) ⊆ ⋅ ⋅ ⋅
is a strict direct sequence of Lie groups. By [21, Example 11.7], themap

π∶ ⊕
n∈N

DiòKn(M)Ð→ Diò c(M)

taking (ϕ1 , . . . , ϕn , idM , idM , . . . ) to ϕ1 ○ ⋅ ⋅ ⋅ ○ ϕn admits a smooth local section
around idM (in the spirit of fragmentation techniques familiar in the theory of diòeo-
morphismgroups [6]. By [21,Remark 11.5, Proposition 11.8], this implies that product
sets are large inDiò c(M) and Diò c(M) is the direct limit topological group of (1.2)),
as recorded in [21, Proposition 5.4] (see [5, Remark 1, Proposition 1] for these argu-
ments).6

Now DiòKn(M) is a strong (ILB)-Lie group (as considered in [38]) for each n ∈
N. Using that strong (ILB)-Lie groups are complete (see Proposition 6.1 and Re-
mark 6.2 (a)), _eorem 1.1 implies that Diò c(M) is complete for σ-compact M (see
Remark 6.2 (b) and (c) for details).

If M is merely paracompact and (M j) j∈J its family of connected components,
thenDiò c(M) has an open subgroupG that is isomorphic to theweak direct product
⊕ j∈J Diò c(M j) as a Lie group, and we deduce with _eorem 1.2 that G (and hence
Diò c(M)) is complete also for paracompact M.

_e completeness of diòeomorphismgroups contrasts the incompleteness ofmany
groups of homeomorphisms, among which one ûnds typical examples of metrizable
topological groups that cannot be completed, as the sets of Cauchy sequences for the
le� and right uniformity do not coincide [15].

4_e Lie group structure on important examples of such groups (like GL∞(R) = lim
Ð→

GLn(R) and
SL∞(R) = lim

Ð→
SLn(R)) was already constructed [32,35].

5_us M = ⋃n∈N Kn and Kn ⊆ K0
n+1 for each n ∈ N.

6Wemention that the topology on theLie groupDiò c(M) coincideswith theWhitneyC∞-topology
used in [5]; this is clear from the description of this topology in [30] (see also [28] for a detailed account).
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1.3 Mapping Groups and Gauge Groups

Among the prime examples of inûnite-dimensional Lie groups are the Lie groups
Ck(M ,H) ofCk-maps from a compactmanifoldM to a Lie groupH for k ∈ N0∪{∞}
(notably the loop groups with M = S1 the circle group [39]), see [34, 38]. More gen-
erally, if M is a paracompact ûnite-dimensional smooth manifold and H a Lie group
modelled on a locally convex space E, there is a natural Lie group structure on the
group Ck

c (M ,H) of all Ck-maps γ∶M → H whose support

supp(γ) ∶= {x ∈ M∶ γ(x) /= e}
is compact (where e is the neutral element of H), which is modelled on the locally
convex space Ck

c (M , E); see [1, 17] if M is σ-compact. In the general case, we let
(M j) j∈J be the family of connected components ofM and use the group isomorphism

Ck
c (M ,H)→ ⊕

j∈J
Ck
c (M j ,H), γ ↦ (γ∣M j) j∈ j

to transport the Lie group structure of the weak direct product to the le�-hand side.
Using _eorems 1.1 and 1.2, we shall see that Ck

c (M ,H) is complete whenever H and
its modelling space E are complete (Proposition 7.5). Likewise, gauge groups and full
symmetry groups of principal bundles [41,45] are complete if the structure group H
and its modelling space are complete (see Remark 7.6 for more details).

1.4 Linear Lie Groups

We can also prove completeness for some unit groups of topological algebras.7 Con-
sider an ascending sequence A1 ⊆ A2 ⊆ ⋅ ⋅ ⋅ of unital Banach algebras, such that all in-
clusion maps An → An+1 are continuous homomorphisms of unital algebras. Endow
A ∶= ⋃n∈N An with the unital algebra structure turning each inclusion map An → A
into ahomomorphismofunital algebras. _en the locally convexdirect limit topology
makesAa topological algebra andproduct sets are large inA× = ⋃n∈N A×n [21,Proposi-
tion 12.1 (a), (c)], [14]. With_eorem 1.1,we deduce that A× (like each A×n) is complete
whenever the direct sequence A1 ⊆ A2 ⊆ ⋅ ⋅ ⋅ is strict.

1.5 Ascending Unions of Banach–Lie Groups

Beyond unit groups of Banach algebras, let us consider an ascending sequence G1 ⊆
G2 ⊆ ⋅ ⋅ ⋅ of Banach–Lie groups over K ∈ {R,C} such that each inclusion map
Gn → Gn+1 is a K-analytic group homomorphism. In [12, _eorem C], conditions
were spelled out that ensure that G = ⋃n∈N Gn can be made a K-analytic Lie group
modelled on the locally convex direct limit of the respective Lie algebras. We show
that product sets are large in the Lie groupsG constructed in [12,_eoremC],whence
the given topology on G makes it the direct limit topological group G = limÐ→Gn

(Proposition 8.2). Using _eorem 1.1, we deduce that G = ⋃n∈N Gn (as before) is
complete whenever the direct sequence G1 ⊆ G2 ⊆ ⋅ ⋅ ⋅ is strict (Proposition 8.2).
For a concrete example, let (Fn , ∥ ⋅ ∥n)n∈N be a sequence of Banach spaces. Write

L(F) for the Banach algebra of bounded operators S∶ F → F for a Banach space F,
7If A is a unital algebra, we write A× for its unit group of all invertible elements.
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endowed with the operator norm ∥ ⋅ ∥op. We equip En ∶= F1 ⊕ ⋅ ⋅ ⋅ ⊕ Fn with themaxi-
mum norm and identifyGL(En) ∶= L(En)× with the subgroup GL(En)× {idFn+1} of
GL(En+1). Using [13,_eorem A], it was shown in [11,_eorem 38] that

GL((Fn)n∈N) ∶= ⋃
n∈N

GL(En)

can bemade into a Lie group.8 As the direct sequenceGL(E1) ⊆ GL(E2) ⊆ ⋅ ⋅ ⋅ is strict,
the preceding reasoning shows that GL((Fn)n∈N) is complete.

1.6 Outlook: Lie Groups Modelled on Silva Spaces

Work by Hunt and Morris [29] implies that every Lie group modelled on a Silva
space9 is complete [22, Corollary 1.4]. _is entails that direct limits⋃n∈N Gn of ûnite-
dimensional Lie groups (or locally compact groups) G1 ⊆ G2 ⊆ ⋅ ⋅ ⋅ are always com-
plete (nomatterwhether the direct sequence is strict or not). It also shows that the Lie
groupDiòω(M) of real-analytic diòeomorphisms is complete for each compact real-
analyticmanifoldM, as well as the Lie group Cω(M ,H) of all real-analytic H-valued
mappings on the latter, for each ûnite-dimensional Lie group H [22].

2 Preliminaries and Notation

We write N = {1, 2, . . .} and N0 ∶= N ∪ {0}. Topological groups and locally convex
(real topological vector) spaces shall not be assumed to be Hausdorò, unless we say
so explicitly. If f ∶X → Y is a function between metric spaces (X , dX) and (Y , dY),
we deûne

Lip( f ) ∶= sup{ dY( f (x), f (y))
dX(x , y)

∶ x /= y ∈ X} ∈ [0,∞]

and call f Lipschitz if Lip( f ) < ∞. If each point x ∈ X has a neighbourhood V ⊆ X
such that f ∣V ∶V → Y is Lipschitz (with respect to themetric dX ∣V×V induced on V ),
then f is called locally Lipschitz. If (E , ∥ ⋅ ∥) is a Banach space, wewriteGL(E) for the
group of continuous automorphisms of the vector space E. For x ∈ E and r > 0, we
write BEr (x) ∶= {y ∈ E ∶ ∥y − x∥ < r} and BEr (x) ∶= {y ∈ E ∶ ∥y − x∥ ≤ r}. If q is a
continuous seminorm on a locally convex space E, we write

B
q
r (0) ∶= {x ∈ E ∶ q(x) ≤ r}

for r > 0.

Remark 2.1 For our setting of Ck-maps, real and complex analytic mappings be-
tween open subsets of locally convexHausdorò topological vector spaces, the reader is
referred to [16,36], where the corresponding concepts ofmanifolds (and Lie groups)
modelled on Hausdorò locally convex spaces are also described (cf. also [8, 24, 33,
34]).10 All of these manifolds (and Lie groups) are Hausdorò. Every Lie group G

8In [11], GL((Fn)n∈N) is denoted by GL(E), with E ∶= ⋃n∈N En .
9A locally convex space is called a Silva space or (DFS)-space if it is a locally convex direct limit lim

Ð→
En

for an ascending sequence E1 ⊆ E2 ⊆ ⋅ ⋅ ⋅ of Banach spaces, such that all inclusion maps En → En+1 are
compact operators.

10_e Ck-maps are those of Keller’s Ck
c -theory [31], going back to A. Bastiani [7].
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is a topological group in its given topology (as smooth maps are continuous in the
inûnite-dimensional calculus we are using). We write e for the neutral element of G
and L(G) ∶= Te(G) (or simply g) for its Lie algebra (the tangent space at e). We write
expG ∶ L(G) → G for the exponential function of G, if it exists [34,36]. If f ∶G → H is
a smooth group homomorphism between Lie groups, we abbreviate L( f ) ∶= Te( f ).
If M is a Ck-manifold with k ≥ 1, we let πTM ∶TM → M be the bundle projection. If
E is a locally convex space and U ⊆ E an open subset, we identify the tangent bundle
TU with U × E in the usual way. If M is a C1-manifold and f ∶M → U a C1-map, we
write d f ∶TM → E for the second component of T f ∶TM → TU = U ×E. If g∶U → F
is a C1-map to a locally convex space, we write g′(x) ∶= dg(x , ⋅)∶ E → F for x ∈ U .

_e following fact is based on theMean Value_eorem.

Lemma 2.2 Let (E , ∥ ⋅ ∥E) and (F , ∥ ⋅ ∥F) be normed spaces, let U ⊆ E be open and
let f ∶U → F be a C1-map. _en the following hold.
(i) f is locally Lipschitz.
(ii) If U is convex, then f is Lipschitz if and only if L ∶= supx∈U ∥ f ′(x)∥op < ∞, in

which case Lip( f ) = L.

Recall that a net (xα)α∈A in a topological group G is called a le� Cauchy net if, for
each identity neighbourhood U ⊆ G, there exists γ ∈ A such that x−1

β xα ∈ U for all
α, β ≥ γ. If every le�Cauchy net inG is convergent, thenG is called complete; if every
le� Cauchy sequence in G is convergent, then G is sequentially complete.

2.1 Facts Concerning Completeness

Many results concerning completeness of topological groups can be found in [40].
Wemention useful facts.

Proposition 2.3 (i) If a topological group G is complete (resp., sequentially com-
plete), then every closed subgroup H ⊆ G is complete in the induced topology.

(ii) For every family (G j) j∈J of topological groups that are complete (resp., sequentially
complete), the direct product∏ j∈J G j is complete (resp., sequentially complete) in
the product topology.

(iii) Let ((G j) j∈J , (q i , j)i≤ j) be a projective system of Hausdorò topological groups G j
and continuous homomorphisms q i , j ∶G j → G i for i ≤ j in J such that q i , i = idG i

and q i , j ○ q j,k = q i ,k whenever i ≤ j ≤ k. If each G i is complete (resp., sequen-
tially complete), then also the projective limit lim←ÐG j is complete (resp., sequentially
complete), as it can be realized as the closed subgroup

{(x j) j∈J ∈ ∏
j∈J

G j ∶ (∀i ≤ j) x i = q i , j(x j)}

of the direct product, endowed with the induced topology.
(iv) Completeness is an extension property: If G is a topological group and N ⊆ G a

normal subgroup such that both N andG/N are complete, then G is also complete
[40,_eorem 12.3 (a)].
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If G is a topological group, H ⊆ G a subgroup and N ⊆ G a normal subgroup, we
say that G is the (internal) semidirect product of N and H as topological groups if the
product map N ×H → G, (x , y) ↦ xy is a homeomorphism. Since q∶G → H, xy ↦ y
is a quotient homomorphism with kernel N , the following holds as special case of (iv):
(v) LetG be a topological groupwhich, as a topological group, is the internal semidirect

product of a normal subgroup N and a subgroup H. IfN andH are complete, then
G is also complete [40, Proposition 12.5 (a)].

_e following slight generalization of Proposition 2.3 (iii) is useful.

Lemma 2.4 Let G be a topological group whose underlying topological space is the
projective limit of a projective system ((X j) j∈J , (q i , j)i≤ j) ofHausdorò topological spaces
X j , with limit maps q j ∶G → X j for j ∈ J. Assume that for each Cauchy net (xα)α∈A
in G, the corresponding net (q j(xα))α∈A converges in X j , for each j ∈ J. _en G is
complete.

Proof We can assume that G = {(x j) j∈J ∈ ∏ j∈J X j ∶ (∀i ≤ j) x i = q i , j(x j)} and
q i((x j) j∈J) = x i for all i ∈ I and x = (x j) j∈J ∈ G. For j ∈ J, let y j ∈ X j be the limit of
(q j(xα))α∈A. For i , j ∈ I with i ≤ j, the net (q i(xα))α∈A = (q i , j(q j(xα)))α∈A in X i
converges both to y i and q i , j(y j). Since X i isHausdorò, y i = q i , j(y j) follows. Hence
y ∶= (y j) j∈J ∈ G and as q j(xα) → y j = q j(y) for all j ∈ J, the net (xα)α∈A converges
to y.

Lemma 2.5 ([4]) If (G j) j∈J is a family of topological groups, let ◻ j∈JG j ⊆ ∏ j∈J G j
be the subgroup of all (x j) j∈J ∈ ∏ j∈J G j such that x j = e for all but ûnitely many j.
Consider the sets ◻ j∈JU j ∶=∏ j∈J U j ∩ ◻ j∈JG j , for (U j) j∈J ranging through the families
of open subsets U j ⊆ G j such that e ∈ U j for all but ûnitely many j. _e latter sets form
a basis for a topology on ◻ j∈JG j making it a topological group called the box topology.
When endowed with this topology, ◻ j∈JG j is called the small box product of the family
(G j) j∈J .

If eachG j is a Lie groupmodelled on aHausdorò locally convex space then,◻ j∈JG j
is also a Lie group in a natural way. (See [23], where small box products are called
weak direct products, in contrast to the conventions here.) It ismodelled on the small
box product ◻ j∈JE j . If, instead, we use the locally convex direct sum as themodelling
space, then the group ◻ j∈JG j can also be made into a Lie group, called the weak di-
rect product of the family and denoted here by⊕ j∈J G j (see [18], where the notation
∏∗

j∈J G j is used). _e two possiblemodelling spaces (and the two Lie groups) coincide
if J is countable. When dealing with⊕ j∈J G j , we write⊕ j∈J U j , instead of ◻ j∈JU j .

3 Exploiting Completeness of a Subgroup

_e following lemma is essential for the proof of_eorem 1.1.

Lemma 3.1 Let (xα)α∈A be a le�Cauchy net in a topological group G andH ⊆ G be a
subgroup that is a complete topological group in the induced topology. Assume that, for

138

https://doi.org/10.4153/CJM-2017-048-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-048-5


Completeness of Inûnite-dimensional Lie Groups in _eir Le� Uniformity

each α ∈ A and identity neighbourhoodW ⊆ G, there exists β ≥ α such that xβ ∈ HW .
_en (xα)α∈A converges in G to some y ∈ H.

Proof Let U be the set of all identity neighborhoods in G. By hypothesis,

AW ∶= {α ∈ A ∶ xα ∈ HW}

is coûnal in A for all W ∈ U and thus M ∶= {(W , α) ∈ U × A ∶ α ∈ AW} becomes a
directed set if we write (W1 , α1) ≤ (W2 , α2) if and only ifW2 ⊆ W1 and α1 ≤ α2. For
a = (W , α) ∈ M, pick ya ∈ H and wa ∈W such that

(3.1) xα = yawa .

_en (ya)a∈M is a le�Cauchy net in H. In fact, ifU is an identity neighborhood in H,
we ûnd Q ∈ U such that U = H ∩ Q. Let P ∈ U such that PPP−1 ⊆ Q and γ ∈ A such
that x−1

β xα ∈ P for all α, β ≥ γ. Wemay assume that γ ∈ AP . For all a, b ≥ (P, γ) in M,
say a = (W , α) and b = (V , β), we have V ,W ⊆ P and hence

y−1
b ya = wbx−1

β xαw−1
a ∈ VPW−1 ⊆ PPP−1 ⊆ Q .

_us y−1
b ya ∈ H ∩ Q = U .

Let y be the limit of (ya)a∈M in H. _en ya → y also in G. Given W ∈ U, let
α ∈ AW . Since wa ∈ W for a ≥ (W , α), the net (wa)a∈M converges to e in G. Using
(3.1), we deduce that the subnet (xα)(W ,α)∈M of (xα)α∈A, and hence also the Cauchy
net (xα)α∈A, converges to y.

4 Completeness of Strict Direct Limits

In this section, we prove_eorem 1.1.

Lemma 4.1 Let G be a group, 2 ≤ n ∈ N, and G1 ⊆ G2 ⊆ ⋅ ⋅ ⋅ ⊆ Gn = G be subgroups.
For j ∈ {1, . . . , n}, let Wj be a subset of G j . _en

(4.1) G1 ∩ (W1W2 ⋅ ⋅ ⋅Wn) = G1 ∩ (W1 ⋅ ⋅ ⋅Wn−1(Gn−1 ∩Wn)).

Proof We show by induction on n that the le�-hand side of (4.1) is a subset of the
right-hand side (the other inclusion is trivial), for all G, G1 , . . . ,Gn , andW1 , . . . ,Wn
as described in the lemma. If n = 2 and x ∈ G1 ∩W1W2, then x = w1w2 with w1 ∈ W1
and w2 ∈W2. SinceW1 ⊆ G1, we have w1 ∈ G1 and thus w2 = w−1

1 x ∈ G1 ∩W2.
If n > 2 and the assertion holds for n − 1, let x ∈ G1 ∩ (W1 ⋅ ⋅ ⋅Wn). Write x =

w1w2 ⋅ ⋅ ⋅wn with w j ∈Wj for j ∈ {1, . . . , n}. _en

w2 ⋅ ⋅ ⋅wn = w−1
1 x ∈ G1 ∩ (W2 ⋅ ⋅ ⋅Wn) ⊆ G2 ∩ (W2 ⋅ ⋅ ⋅Wn)

and thus w2 . . .wn ∈W2 ⋅ ⋅ ⋅Wn−1(Gn−1 ∩Wn) by the inductive hypothesis.

Lemma 4.2 Assume that G is the direct limit topological group of a direct sequence
G1 ⊆ G2 ⊆ ⋅ ⋅ ⋅ of topological groups, and that product sets are large in G. _en ev-
ery identity neighbourhood of G contains a product set ⋃n∈NW1W2 ⋅ ⋅ ⋅Wn for suitable
identity neighbourhoods Wn ⊆ Gn .
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Proof If V0 is an identity neighbourhood in G, there exist identity neighbourhoods
Vn ⊆ G for n ∈ N such that VnVn ⊆ Vn−1. _en Wn ∶= Gn ∩ Vn is an identity neigh-
bourhood in Gn and V1V2 ⋅ ⋅ ⋅Vn ⊆ V0 for all n ∈ N implies that

⋃
n∈N

W1 ⋅ ⋅ ⋅Wn ⊆ ⋃
n∈N

V1 ⋅ ⋅ ⋅Vn ⊆ V0 .

Proof of_eorem 1.1 (i) To see that G induces the given topology on Gn , we can
assume that n = 1. Let V1 ⊆ G1 be an identity neighbourhood. _ere exists an identity
neighbourhoodW1 ⊆ G1 such thatW1W1 ⊆ V1. Recursively, for m ≥ 2, ûnd an identity
neighbourhood Vm ⊆ Gm such that Gm−1 ∩ Vm = Wm−1 (which is possible as Gm
induces the given topology on Gm−1) and an identity neighbourhoodWm ⊆ Gm such
that WmWm ⊆ Vm . _en G1 ∩ (W1W2 ⋅ ⋅ ⋅Wm) ⊆ G1 ∩ (W1 ⋅ ⋅ ⋅Wj−1Vj) for all j ∈
{m,m − 1, . . . , 1}, by induction. If j = m, we haveWm ⊆ Vm and the assertion holds.
If j ∈ {2, . . . ,m} and the assertion holds for j, then

G1 ∩ (W1W2 ⋅ ⋅ ⋅Wm) ⊆ G1 ∩ (W1 ⋅ ⋅ ⋅Wj−1Vj) = G1 ∩ (W1 ⋅ ⋅ ⋅Wj−1(G j−1 ∩ Vj))
= G1 ∩ (W1 ⋅ ⋅ ⋅Wj−1Wj−1) ⊆ G1 ∩ (W1 ⋅ ⋅ ⋅Wj−2Vj−1),

using the inductive hypothesis, Lemma 4.1, the identity G j−1 ∩ Vj = Wj−1, and the
inclusion Wj−1Wj−1 ⊆ Vj−1. Taking j = 1, we deduce that G1 ∩ (W1W2 ⋅ ⋅ ⋅Wm) ⊆ V1,
for all m ∈ N and hence G1 ∩W ⊆ V1 if we deûneW ∶= ⋃m∈NW1W2 ⋅ ⋅ ⋅Wm . As we
assume that product sets are large in G, the set W is an identity neighborhood in G.
Since G1 ∩W ⊆ V1, the group topology T induced by G on G1 is ûner than the given
topology O1 on G1 and hence coincides with it (noting that T ⊆ O1 as the inclusion
map (G1 ,O1)→ G is continuous).

(ii) If each Gn is complete, let (xα)α∈A be a le� Cauchy net in G. Let U be the set
of all identity neighborhoods in G. We claim that there exists m ∈ N such that, for
each α ∈ A andW ∈ U, there exists β ≥ α such that xβ ∈ GmW . If this is true, then
(xα)α∈A converges in G by Lemma 3.1 using that G induces the given complete group
topology on Gm , by (i).

To prove the claim, suppose it is wrong. _en, for each m ∈ N, there exist αm ∈ A
andWm ∈ U such that

(4.2) xα /∈ GmWm for all α ≥ αm .

A�er shrinkingWm if necessary,we can assume thatWm = ⋃n∈NW(m)
1 ⋅ ⋅ ⋅W(m)

n with
identityneighbourhoodsW(m)

n ⊆ Gn , byLemma 4.2. A�er shrinkingW(2)
n ,W(3)

n , . . . ,
we can assume that

(4.3) W(m+1)
n ⊆W(m)

n for all n,m ∈ N.

Since product sets are large inG, the setW ∶= ⋃n∈NW(1)
1 ⋅ ⋅ ⋅W(n)

n is an identity neigh-
bourhood in G. By (4.3), we have

⋃
n>m

W(m+1)
m+1 ⋅ ⋅ ⋅W(n)

n ⊆ ⋃
n>m

W(m)
m+1 ⋅ ⋅ ⋅W(m)

n ⊆ ⋃
n∈N

W(m)
1 ⋅ ⋅ ⋅W(m)

n =Wm .

Using that W(1)
1 ⋅ ⋅ ⋅W(n)

n ⊆ Gm for n ∈ {1, . . . ,m}, we deduce that

GmW = Gm ⋃
n>m

W(m+1)
m+1 ⋅ ⋅ ⋅W(n)

n ⊆ GmWm
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and thus

(4.4) GmW ⊆ GmWm for all m ∈ N.

By deûnition of a Cauchy net, we ûnd γ ∈ A such that

(4.5) x−1
α xβ ∈W ,

for all α, β ≥ γ. Now xγ ∈ Gm0 for some m0 ∈ N. Since A is directed, we ûnd α ∈ A
such that α ≥ γ and α ≥ αm0 . Using (4.5), we obtain xα = xγ(x−1

γ xα) ∈ Gm0W . But
xα /∈ Gm0Wm0 by (4.2) and thus xα /∈ Gm0W by (4.4), which is absurd.

5 Completeness of Weak Direct Products

_e following lemma will enable us to reduce the completeness of weak direct prod-
ucts (and box products) to that of direct products.

Lemma 5.1 Let P be a complete, respectively, sequentially complete, topological group
and G be a subgroup of P, endowed with a topology O that is ûner than the topology T
induced by P on G. Assume that, for each x ∈ P such that x /∈ G, there exists a closed
subset L in P such that
(i) G ∩ L is an identity neighborhood in (G ,O),
(ii) G ∩ xL = ∅.
Moreover, assume that
(iii) _e closures V in (G ,T) form a basis of identity neighbourhoods in (G ,O), for V

in the set of identity neighbourhoods in (G ,O).
_en also (G ,O) is complete, respectively, sequentially complete.

Proof Assume that P is complete. If (xα)α∈A is a le� Cauchy net in (G ,O), then it
also is a le� Cauchy net in P, whence xα → x in P for some x ∈ P. _en x ∈ G, since
otherwisewe obtain a contradiction: let L ⊆ P be a closed subset such that G ∩L is an
identity neighbourhood in (G ,O) andG∩xL = ∅. Let α0 ∈ A such that x−1

α xβ ∈ G∩L
for all α, β ≥ α0. Considering x−1

α xβ as elements of P and passing to the limit in α, we
obtain x−1xβ ∈ L for all β ≥ α0, whence xβ ∈ G ∩ xL = ∅, which is absurd.

LetW be an identity neighborhood in (G ,O). By hypothesis (iii),we ûnd an iden-
tity neighbourhood V in (G ,O) such that G ∩ V ⊆ W , where V is the closure of V
in P. _ere exists α0 ∈ A such that x−1

α xβ ∈ V for all α, β ≥ α0. Considering x−1
α xβ as

an element of P and passing to the limit in α,we deduce that x−1xβ ∈ V for all β ≥ α0,
whence x−1xβ ∈ G ∩ V ⊆W and thus xβ ∈ xW . _us xβ → x in (G ,O).

If P is sequentially complete, then the proof is identical with A ∶= N.

Example 5.2 Let (G j) j∈J be a family of topological groups G j that are complete,
respectively, sequentially complete. _en also the small box product G ∶= ◻ j∈JG j is
complete, respectively, sequentially complete.

To see this, let us check that Lemma 5.1 can be used with P ∶=∏ j∈J G j . If

x = (x j) j∈J ∈ P ∖G ,
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then I ∶= { j ∈ J ∶ x j /= e} is an inûnite set. For each j ∈ I, let U j ⊆ G j be a closed
identityneigbourhood such that x−1

j /∈ U j . For j ∈ J∖I, letU j ∶= G j . _en L ∶=∏ j∈J U j
is closed in P and G ∩ L = ◻ j∈JU j is an identity neighbourhood such that xL ∩G = ∅
as each y = (y j) j∈J ∈ xL satisûes y j /= e for all j ∈ I. Finally, let W ⊆ G be an
identity neighbourhood. _en W contains a box V ∶= ◻ j∈JVj with closed identity
neighbourhoodsVj ⊆ G j . _e closureV ofV in P is∏ j∈J Vj ,whenceG∩V = V ⊆W .

Proof of_eorem 1.2 To verify the theorem, let us check that Lemma 5.1 can be
applied with P ∶= ∏ j∈J G j . If x = (x j) j∈J ∈ P ∖ G, then I ∶= { j ∈ J ∶ x j /= e} is an
inûnite set. For each j ∈ I, let U j ⊆ G j be a closed identity neigbourhood such that
x−1

j /∈ U j . For j ∈ J∖I, letU j ∶= G j . _en L ∶=∏ j∈J U j is closed in P andG∩L = ◻ j∈JU j
is an identity neighbourhood (as the topology on G is ûner than the box topology)
such that xL ∩G = ∅. _us L satisûes the conditions (i) and (ii) in Lemma 5.1.

Next, let S ⊆ G be an identity neighbourhood. For j ∈ J, let E j be the locally
convex space on which G j is modelled. _en S contains an identity neighbourhood
of the form W = ϕ−1(Q) for a diòeomorphism ϕ∶U → V and a 0-neighbourhood
Q ⊆ V , where diòeomorphisms ϕ j ∶U j → Vj from open identity neighbourhoods
U j ⊆ G j onto open 0-neighbourhoods Vj ⊆ E j are used to deûne U ∶= ⊕ j∈J U j ,
V ∶= ⊕ j∈J Vj , and ϕ ∶= ⊕ j∈J ϕ j ∶U → V . For each j ∈ J, the topological group G j
has a closed identity neighbourhood K j such that K j ⊆ U j . Set L j ∶= ϕ j(K j). A�er
shrinking Q (and W = ϕ−1(Q)), we can assume that W ⊆ ⊕ j∈J K j =∶ K and thus
Q ⊆ ∏ j∈J L j =∶ L. A�er shrinking Q further if necessary, we can also assume that
Q = Bq

r (0) for a continuous seminorm q on ⊕ j∈J E j , and we may assume that q is
of the form q(x) = ∑ j∈J q j(x j) for all x = (x j) j∈J ∈ ⊕ j∈J E j , for certain continuous
seminorms q j on E j . _en the closure Q of Q in∏ j∈J E j is the set C of all

(x j) j∈J ∈ ∏
j∈J
E j

such that ∑ j∈J q j(x j) ≤ r, where the sum means the supremum of all ûnite partial
sums. To see this, let Φ be the set of ûnite subsets of J. If x ∈ C, then∑ j∈F x j ∈ Q for
each F ∈ Φ (as∑ j∈F q j(x j) ≤ ∑ j∈J q j(x j) ≤ r) and thus x ∈ Q.
Conversely, let x = (x j) j∈J ∈∏ j∈J E j with x /∈ C; thus∑ j∈J q j(x j) > r. _ere exists

a ûnite subset F ⊆ J such that∑ j∈F q j(x j) > r. Since

{(y j) j∈J ∈ ∏
j∈J
E j ∶ ∑

j∈F
q j(y j) > r}

is an open subset of∏ j∈J E j that has empty intersection with Q, we have x /∈ Q. _us
Q = C.
By the preceding, (⊕ j∈J E j)∩Q = (⊕ j∈J E j)∩C = Q. Since L is closed in∏ j∈J E j

and contains Q, we have Q ⊆ L. Now K = ∏ j∈J K j is a closed subset of P = ∏ j∈J G j
and

ψ ∶= ∏
j∈J

(ϕ j ∣K j)∶K Ð→ L, (x j) j∈J z→ (ϕ j(x j)) j∈J

is a homeomorphism, whence ψ−1(Q) is closed in K and hence also closed in P =
∏ j∈J G j .
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Let W be the closure of W in P. By the preceding, W ⊆ ψ−1(Q) and thus W =
ψ−1(Q), as ψ is a homeomorphism. For x ∈ K, we have ψ(x) ∈⊕ j∈J E j if and only if
x ∈⊕ j∈J G j . Hence,

G ∩W = G ∩ ψ−1(Q) = ψ−1((⊕
j∈J
E j) ∩ Q) = ψ−1(Q) =W ⊆ S ,

entailing that Lemma 5.1 (iii) is also satisûed.

6 Completeness of Diffeomorphism Groups

_e next proposition is used to prove completeness of diòeomorphism groups.

Proposition 6.1 Let G be a topological group that is the projective limit of a projec-
tive sequence ((Gn)n∈N , (qn ,m)n≤m) of topological Hausdorò groups. Assume that Gn
admits a C1-manifold structuremodelled on a Banach space (En , ∥ ⋅ ∥n) for each n ∈ N,
and assume that for each n ∈ N, there exists m ≥ n such that themap

µn ,m ∶Gm ×Gm Ð→ Gn , (x , y)z→ qn ,m(xy) = qn ,m(x)qn ,m(y)
is C1. _en G is a complete topological group.

Proof For n ∈ N, let qn ∶G → Gn be the limit map. Let (xα)α∈A be a le� Cauchy
net in G. By Lemma 2.4, it suõces to show that, for each n ∈ N, the le� Cauchy net
(qn(xα))α∈A converges in Gn . By hypothesis, µn ,m is C1 for some m ≥ n. We write
∥ ⋅ ∥ for the norm En × En → [0,∞[, (x , y) ↦ max{∥x∥n , ∥y∥n}. Let ϕ∶U → V be
a C1-diòeomorphism from an open identity neighbourhood U ⊆ Gm onto an open
0-neighbourhood V ⊆ Em and ψ∶ P → Q be a C1-diòeomorphism from an open
identity neighbourhood P ⊆ Gn onto an open 0-neighbourhood Q ⊆ En , such that
ϕ(e) = 0 and ψ(e) = 0. A�er shrinking U , we may assume that µn ,m(U × U) ⊆ P,
enabling us to consider the C1-map

f ∶= ψ ○ µn ,m ○ (ϕ−1 × ϕ−1)∶V × V Ð→ Q , (x , y)z→ ψ(qn ,m(ϕ−1(x)ϕ−1(y))).
A�er shrinking V , we may assume that f is Lipschitz (Lemma 2.2). Let L ≥ 0 be
a Lipschitz constant for f . _en ∥ f (x , y) − f (x , 0)∥n ≤ L∥(0, y)∥ = L∥y∥n for all
(x , y) ∈ V × V . Let C be a closed 0-neighbourhood in En such that C ⊆ Q. _en
q−1
n (ψ−1(C)) ∩ q−1

m (U) is an identity neighbourhood in G. _ere is α0 ∈ A such that
x−1
β xα ∈ q−1

n (ψ−1(C)) ∩ q−1
m (U) for all α, β ≥ α0. _us zα ∶= x−1

α0xα ∈ q−1
n (ψ−1(C)) ∩

q−1
m (U) for all α ≥ α0, and (qn(zα))α≥α0 is a le� Cauchy net in Gn , noting that

z−1
β zα = x−1

β xα ∈ q−1
m (U) for all α, β ≥ α0 .

Ifwe can show that (qn(zα))α≥α0 converges inGn , then also the subnet (qn(xα))α≥α0
of (qn(xα)α∈A) will converge, as qn(xα) = qn(xα0)qn(zα). Hence, (qn(xα))α∈A will
converge. Since zα = zβ(z−1

β zα) and zβ = zβe, we see that

ψ(qn(zα)) − ψ(qn(zβ)) = f (qm(zβ), qm(z−1
β zα)) − f (qm(zβ), 0)

and thus ∥ψ(qn(zα))−ψ(qn(zβ))∥n ≤ L∥qm(z−1
β zα)∥n ,which can bemade arbitrarily

small for large α, β. Hence, (ψ(qn(zα)))α≥α0 is a Cauchy net in (En ,+) and thus
convergent to some w ∈ En . Since wα ∶= ψ(qn(zα)) ∈ C for all α ≥ α0 and C is closed
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in E, we deduce that w ∈ C ⊆ Q. As a consequence, qn(zα) = ψ−1(wα) converges to
ψ−1(w).

Remark 6.2 (a) In particular, Proposition 6.1 shows that every strong (ILB)-Lie
group (as in [38]) is complete.

(b) Since Diò(M) is a strong (ILB)-Lie group for each compact smooth mani-
fold M without boundary (see [38]), we deduce from (a) that Diò(M) is complete.

(c) Let M be a σ-compact ûnite-dimensional smooth manifold (without bound-
ary). If K ⊆ M is a compact subset, then

DiòK(M) ∶= {ϕ ∈ Diò c(M) ∶ (∀x ∈ M ∖ K)ϕ(x) = x}

is a Lie subgroup of Diò c(M). Morse _eory [27] provides a compact submanifold
N ⊆ M with smooth boundary such that K is contained in the interior of N . Let N∗

be the double of N , which is a compact smooth manifoldwithout boundary obtained
by glueing two copies of N along their boundary.11 _en DiòK(M) ≅ DiòK(N∗) as
a Lie group. As DiòK(N∗) is a closed subgroup of the complete topological group
Diò(N∗), we see that DiòK(N∗), and hence also DiòK(M), is complete.

(d)Using_eorem1.1,wenow obtain completeness of Diò c(M) for σ-compact M,
as described in the Introduction; applying _eorem 1.2 to an open subgroup, com-
pleteness of Diò c(M) for paracompact M follows.

7 Completeness of Mapping Groups

We now discuss completeness ofmapping groups and test function groups.

7.1 Spaces of Ck-maps Between Manifolds

If k ∈ N ∪ {∞} and M is a Ck-manifold (possibly with boundary) modelled on a
Hausdorò locally convex space, we let TM be the tangent bundle and recursively de-
ûne T j+1M ∶= T(T jM) for j ∈ N such that j ≤ k. If f ∶M → N is a Ck-map to
another such manifold, we let T f ∶TM → TN be the tangent map and recursively set
T j f ∶= T(T j−1 f )∶T jM → T jN for all 2 ≤ j ∈ N such that j ≤ k. For convenience,
T0M ∶= M and T0 f ∶= f . We endow the set Ck(M ,N) of all Ck-maps from M to N
with the so-called compact-open Ck-topology, i.e., the initial topology with respect to
the mappings T j ∶Ck(M ,N) → C(T jM , T jN), f ↦ T j f for j ∈ N0 such that j ≤ k,
where C(T jM , T jN) is endowed with the compact-open topology [37].

7.2 Topological Groups of Ck-maps

If H is a Lie group, with multiplication µ∶H ×H → H, then the tangent map

Tµ∶T(H ×H)Ð→ TH

makes TH a Lie group, if we identify T(H × H) with TH × TH in the usual way.
_en Ck(M ,H) is a group for M as before and k ∈ N0∪{∞},with pointwise product

11Our use of the double was stimulated by discussions in [42].
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f g ∶= µ ○ ( f , g) for f , g ∈ Ck(M ,H). If k ≥ 1, then

(7.1) T( f g) = Tµ ○ (T f , T g) = T f T g

is the product in C(TM , TH),whence T f is a group homomorphism and hence also
T j f for all j ∈ N0 such that j ≤ k. Since C(T jM , T jH) is a topological group for each
j, we deduce that Ck(M ,H) is a topological group [37].

Our ûrst goal is to establish completeness properties for the topological groups
Ck(M ,H).

Proposition 7.1 Let H be a Lie group modelled on a locally convexHausdorò space E
and let M be a ûnite-dimensional Ck-manifold (possibly with boundary) for some k ∈
N0 ∪ {∞}. If H and E are complete, then the topological group Ck(M ,H) is also com-
plete.

_e proof is based on two lemmas.

Lemma 7.2 Given k ∈ N, let M be a ûnite-dimensional Ck-manifold (possibly with
boundary) and N be a Ck-manifold. _en themap

θ∶Ck(M ,N)Ð→ C(M ,N) × Ck−1(TM , TN), f z→ ( f , T f )
is a topological embedding with closed image. If N is a Lie group, then θ is a homomor-
phism of groups.

Proof _e ûnal observation follows from(7.1). It is clear that θ is injective. Moreover,
the topologyO onCk(M ,N)making θ a topological embedding is initialwith respect
to the inclusion maps

T0∶Ck(M ,N)→ C(M ,N) and T ∶Ck(M ,N)→ Ck−1(TM , TN).
As the topology on Ck−1(TM , TN) is initial with respect to themaps

T j ∶Ck−1(TM , TN)→ C(T j+1M , T j+1N) for j ∈ {0, . . . , k − 1},
we deduce, using thewell-known transitivity of initial topologies, thatO is initialwith
respect to T0 and themaps

T j ○ T ∶Ck(M ,N)→ C(T j+1M , T j+1N) for j ∈ {0, . . . , k − 1}.
Hence, O coincides with the compact-open Ck-topology.

To see that θ has a closed image, let ( fα , T fα)α∈A be a net in the image of θ that
converges to some ( f , g) ∈ C(M ,N) × Ck−1(TM , TN). It now suõces to show that
each x ∈ M has an open neighbourhood U such that f ∣U is C1 and T( f ∣U) = g∣TU ;
then f is Ck and g = T f , whence ( f , g) = θ( f ) is in the image of θ.
For x ∈ M, there is a chart ψ∶Uψ → Vψ ⊆ Y of N such that f (x) ∈ Uψ , where Y is

the modelling space of N , and a chart ϕ∶Uϕ → Vϕ ⊆ X of M with x ∈ Uϕ such that
Uϕ has compact closure K ∶= Uϕ and f (Uϕ) ⊆ Uψ , where X is the modelling space
of M. As the compact-open Ck-topology on Ck(M ,N) is ûner than the compact-
open topology, the set W ∶= {h ∈ Ck(M ,N)∶ h(K) ⊆ Uψ} is an open neighbourhood
of f inCk(M ,N). _us,we ûnd α0 ∈ A such that fα ∈W for all α ∈ A such that α ≥ α0.
For such α, we can deûne hα ∶= ψ ○ fα ○ ϕ−1∶Vϕ → Y . _en hα → ψ ○ f ○ ϕ−1 and
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d(hα)→ dψ ○ g∣TUϕ ○Tϕ−1 uniformly on compact sets, entailing that h ∶= ψ ○ f ○ϕ−1

is C1 with dh = dψ ○ g∣TUϕ ○ Tϕ−1, and thus Th = Tψ ○ g∣TUϕ ○ Tϕ−1. Hence f ∣Uϕ is
C1 with T( f ∣Uϕ) = g∣TUϕ .

Lemma 7.3 Let M and N be smooth manifolds (possibly with boundary), both mod-
elled on Hausdorò locally convex spaces. _en

C∞(M ,N) = lim←Ð
k∈N0

Ck(M ,N)

as a topological space, using the respective inclusionmaps as the bonding maps and limit
maps.

Proof Consider the standard realization P ⊆ ∏k∈N0
Ck(M ,N) of the projective

limit. As all bonding maps are the inclusion maps, it is the set of all sequences

( fk)k∈N0 ∈ ∏
k∈N0

Ck(M ,N)

such that f j = fk , for all j, k ∈ N0, such that j ≤ k. _en f0 = fk , for all k ∈ N0, and
thus f0 ∈ C∞(M ,N), entailing that the map Φ∶C∞(M ,N) → P, f ↦ ( f )k∈N0 is a
bijection. _e topologyO onC∞(M ,N),makingΦ a homeomorphism, is initialwith
respect to the compositions T j ○ πk ○ Φ = T j for k ∈ N0 and j ∈ N0 such that j ≤ k,
where πk is the projection from the direct product onto its k-th factor. It therefore
coincides with the compact-open C∞-topology.

Proof of Proposition 7.1 Ifwe can show that Ck(M ,H) is complete for each k ∈ N0,
then also C∞(M ,H) (which is the projective limit of the latter topological groups by
Lemma 7.3) will be complete. We proceed by induction. If k = 0, then C0(M ,H) =
C(M ,H) is complete since H is complete and M, being locally compact, is a kR-
space12.

If k ∈ N and the assertion holds for k − 1 in place of k, then Ck−1(TM , TH) is
complete as TM has ûnite dimension, TH ≅ L(H) ⋊ H is complete (see Proposition
2.3 (v)) and also its modelling space E × E is complete. Moreover, C(M ,H) is com-
plete. As, by Lemma 7.2, the topological group Ck(M ,H) is isomorphic to a closed
subgroup of the direct product C(M ,H) × Ck−1(M , TH) of complete groups, also
Ck(M ,H) is complete.

Remark 7.4 (i) IfM is a compact smoothmanifold andH a Lie group, then the
topology on the Lie group Ck(M ,H) (for k ∈ N0∪{∞}) coincideswith the compact-
open Ck-topology deûned above.Hence Ck(M ,H) is complete whenever H and its
modelling space are complete.

(ii) If M is a ûnite-dimensional σ-compact smooth manifold and K ⊆ M a com-
pact subset, then the topology on the Lie group

Ck
K(M ,H) ∶= {γ ∈ Ck(M ,H)∶ supp(γ) ⊆ K}

12Recall that a topological space X is called a kR-space if it is Hausdorò and functions f ∶ X → R are
continuous if and only if f ∣K is continuous for each compact subset K ⊆ X.
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is induced by the compact-open Ck-topology on Ck(M ,H). Since Ck
K(M ,H) is a

closed subgroup of Ck(M ,H), we deduce that Ck
K(M ,H) is complete whenever H

and its modelling space are complete.

Proposition 7.5 Let M be a paracompact ûnite-dimensional smoothmanifold and let
H be a Lie group. IfH and itsmodelling space are complete, then Ck

c (M ,H) is complete
for each k ∈ N0 ∪ {∞}.

Proof If M is σ-compact, we choose a sequence (Kn)n∈N of compact subsets of M
such that M = ⋃n∈N Kn and Kn ⊆ K0

n+1 for each n. _en

Ck
K1
(M ,H) ⊆ Ck

K2
(M ,H) ⊆ ⋅ ⋅ ⋅

is a strict direct sequence of topological groups and product sets are large in

Ck
c (M ,H) = ⋃

n∈N
Ck

Kn(M ,H)

as the product map

⊕
n∈N
Ck

Kn(M ,H)Ð→ Ck
c (M ,H), (γ1 , . . . , γn , e , e , ⋅ ⋅ ⋅)z→ γ1γ2 ⋅ ⋅ ⋅ γn

admits a smooth local section around e which takes e to e [21, Example 11.6, Re-
mark 11.5]. Since Ck

Kn
(M ,H) is complete for each n ∈ N (Remark 7.4 (ii)), we deduce

with _eorem 1.1 that Ck
c (M ,H) is complete.

IfM ismerely paracompact,we let (M j) j∈J be the family of connected components
of M (each of which is σ-compact). _en themap

Φ∶Ck
c (M ,H)Ð→ ⊕

j∈J
Ck
c (M j ,H), γ z→ (γ∣M j) j∈J

is an isomorphism of groups and we give Ck
c (M ,H) the smooth Lie group structure

that turns Φ into an isomorphism of Lie groups. As the weak direct product is com-
plete by the ûrst part of the proof and _eorem 1.2, we see that Ck

c (M ,H) is also
complete.

Remark 7.6 Let H be a Lie group, M be a smooth manifold of dimension m ∈ N,
and P → M be a smooth principal bundle with structure group H.

(i) IfM is σ-compact and the condition SUB⊕ of [41] is satisûed,13 then the gauge
group Gauc(P) of P is a Lie group that is isomorphic to a closed Lie subgroup of the
weak direct product⊕n∈N C∞(Kn ,H), where (Kn)n∈N is a locally ûnite cover of M
by m-dimensional compact smooth submanifolds Kn with boundary such that P is
trivializable on some open neighbourhood of Kn . If H and its modelling space are
complete, then C∞(Kn ,H) is complete for each n ∈ N (by Proposition 7.1), whence
also the weak direct product is complete (by _eorem 1.2) and hence also Gauc(P),
being isomorphic to a closed subgroup of the latter as a topological group. _en the
full group Autc(P) of compactly supported symmetries of P is complete14, as it is an

13_is is automatic if H is locally exponential in the sense that H has a smooth exponential function
that is a local C∞-diòeomorphism at 0.

14 In [41], Autc(P) was made into a Lie group. For compact M, the Lie group Aut(P) was already
constructed in [45].
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extension

{e}→ Gauc(P)→ Autc(P)→ Diò c(M)P → {e}

of Lie groups (and hence of topological groups) for some open subgroupDiò(M)P ⊆
Diò c(M). Since Diò c(M) is complete (as already observed) and also Gauc(P) is
complete, so is the extension Autc(P) (as recalled in Proposition 2.3(iv)).

(ii) IfM is paracompact and condition SUB⊕ is satisûed by P∣C for each connected
component C of M, let (M j) j∈J be the family of connected components of M. We
can identify Gauc(P) with the weak direct product ⊕ j∈J Gauc(M j) (whence it can
be considered as a complete Lie group by (i) and _eorem 1.2). Moreover, Autc(P)
can bemade a Lie group having the weak direct product⊕ j∈J Autc(P∣M j) as an open
subgroup. Hence Autc(P) is complete, using _eorem 1.2.

8 Product Sets in Unions of Banach–Lie Groups

We now discuss ascending unions of Banach–Lie groups.

8.1 Well-behaved Ascending Unions

Let G1 ⊆ G2 ⊆ ⋅ ⋅ ⋅ be analytic Banach–Lie groups over K ∈ {R,C} such that the
inclusionmaps jn+1,n ∶Gn → Gn+1 areK-analytic group homomorphisms. Identifying
the Banach–Lie algebra gn ∶= L(Gn) with the image of themap L( jn+1,n) in gn+1, we
can consider the ascending union g ∶= ⋃n∈N gn and endow it with the locally convex
direct limit topology. Give G ∶= ⋃n∈N Gn the unique group structure making each
inclusion map Gn → G a group homomorphism. Deûne expG ∶g → G piecewise via
expG(x) ∶= expGn

(x) if x ∈ gn .

Lemma 8.1 (Dahmen’s setting) If, in the preceding situation,
(i) g is Hausdorò,
(ii) there are norms ∥ ⋅ ∥n on gn deûning its topology for n ∈ N, such that the Lie bracket

of gn and each inclusionmap (gn , ∥ ⋅ ∥n)→ (gn+1 , ∥ ⋅ ∥n+1) has operator norm ≤ 1,
(iii) expG is injective on some 0-neighbourhood,
then G admits a uniqueK-analytic Lie group structure such that P ∶= expG(Q) is open
inG for some open 0-neighbourhoodQ ⊆ g and expG ∣PQ a diòeomorphismofK-analytic
manifolds. (See [12,_eorem C]).

Proposition 8.2 Let G1 ⊆ G2 ⊆ ⋅ ⋅ ⋅ be analytic Banach–Lie groups over K ∈ {R,C}
such that the inclusion maps Gn → Gn+1 are K-analytic group homomorphisms. As-
sume that Dahmen’s conditions (i)–(iii) from 8.1 are satisûed and endow G with the
K-analytic Lie group structure described there. LetO be the topology on the Lie group G.
_en product sets are large in (G ,O) = ⋃n∈N Gn . As a consequence,O = OTG holds, i.e.,
O makes G the direct limit topological group limÐ→Gn . If, moreover, the direct sequence
G1 ⊆ G2 ⊆ ⋅ ⋅ ⋅ is strict, then (G ,O) is complete.

Beforewe prove Proposition 8.2, let us compile useful facts concerning the Baker–
Campbell–Hausdorò (BCH) multiplication.
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8.2 BCH Multiplication

Let g be a Banach–Lie algebra and ∥ ⋅ ∥ a norm on g that is compatible in the sense
that it deûnes the topology of g and ∥[x , y]∥ ≤ ∥x∥ ∥y∥ holds for all x , y ∈ g. _en
the BCH series converges for x , y ∈ g with ∥x∥ + ∥y∥ < ln 3

2 and deûnes an analytic
function

{(x , y) ∈ g × g ∶ ∥x∥ + ∥y∥ < ln(3/2)}Ð→ Bgln 2(0), (x , y)z→ x ∗ y

(see [10]). If g = L(G) for some Banach–Lie group G, then

(8.1) expG(x ∗ y) = expG(x) expG(y), for all x , y ∈ g with ∥x∥ + ∥y∥ < ln 3
2 .

See [13, Lemma 3.5 (a)] for the following estimates concerning derivatives of the BCH
multiplication.

Lemma 8.3 _ere exists s0 ∈ ]0, 1
3 ln 3

2 [ such that, for each Banach–Lie algebra g and
compatible norm ∥ ⋅ ∥ on g,

(8.2) (∀x , y ∈ Bgs0(0))∥(µ
g)′(x , y) − αg∥op ≤

1
2
,

where αg∶g × g→ g, (x , y)↦ x + y is addition and

µg∶Bgs0(0) × B
g
s0(0)Ð→ g, (x , y)z→ x ∗ y

is the BCH multiplication.

To calculate the operator norm, themaximum norm was used on g×g here. With
s0 and notation as in Lemma 8.3, we deduce the following.

Lemma 8.4 For each Banach–Lie algebra g and compatible norm ∥ ⋅ ∥ on g, we have

(8.3) x ∗ y + Bgr/2(0) ⊆ x ∗ Bgr (y) ⊆ x ∗ y + Bg3r/2(0)

for all x ∈ Bgs0(0), y ∈ B
g
s0/2(0), and r ∈ ]0, s0

2 ].

Proof Setting R(x , y) ∶= µg(x , y)− x − y, we have µg(x , y) = x + y+R(x , y) for all
x , y ∈ Bgs0(0). Since ∥R′(x , y)∥op ≤ 1

2 , for all (x , y) ∈ B
g
s0(0)×B

g
s0(0) by (8.2), and the

latter set is convex, Lemma 2.2 (ii) shows that Lip(R) ≤ 1
2 . For x ∈ Bgs0(0), consider

themap µg
x ∶Bgs0(0)→ g, y ↦ µg(x , y). For all y, z ∈ Bgs0(0), we have

∥µg
x(z) − µg

x(y) − idg(z − y)∥ = ∥µg(x , z) − (x + z) − µg(x , y) + x + y∥
= ∥R(x , z) − R(x , y)∥ ≤ Lip(R)∥z − y∥,

and thus Lip(µg
x − idg) ≤ Lip(R) ≤ 1

2 . Applying now the Quantitative Inverse Func-
tion _eorem [20, Lemma 6.1 (a)] (or the version in [44]), to the function µg

x with
A ∶= idg, we get (8.3).

Proof of Proposition 8.2 To see that product sets are large in G = ⋃n∈N Gn , let
(Un)n∈N be a sequence of identity neighbourhoods Un ⊆ Gn . By hypothesis,

(8.4) ∥x∥m ≤ ∥x∥k for all integers 1 ≤ k ≤ m and all x ∈ gk .
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Let s0 be as in Lemma 8.3. For n ∈ N, choose rn ∈ ]0, s0/2n+1[ so small that

Vn ∶= expGn
(Bgn

rn (0)) ⊆ Un .

For x , y ∈ Bgn
s0 (0), write x ∗n y ∶= µgn(x , y) for the BCH multiplication, (as in

Lemma 8.3). Deûne W1 ∶= Bg1
r1 (0). We claim that Wn ∶= Wn−1 ∗n Bgn

rn (0) can be
deûned for each integer n ≥ 2, and

(8.5)
n

∑
k=1
Bgk

rk/2(0) ⊆Wn ⊆
n

∑
k=1
Bgk

3rk/2(0).

If the claim is true, then W ∶= ⋃n∈NWn is a 0-neighbourhood in g, as it contains the
convex set S ∶= ⋃n∈N(Bg1

r1/2(0) + ⋅ ⋅ ⋅ + B
gn
rn/2(0)) that is an open 0-neighbourhood

in the locally convex direct limit g = ⋃n∈N gn as it intersects each gn in an open
0-neighbourhood. Since expG(W) contains the open subset expG(S ∩Q) of G (with
Q as in Lemma 8.1), we deduce that expG(W) is an identity neighbourhood in G.
Now expG(Wn) = V1V2 ⋅ ⋅ ⋅Vn , for each n ∈ N; this is trivial if n = 1 and follows
inductively as

expG(Wn) = expGn
(Wn) = expGn

(Wn−1 ∗n Bgn
rn (0))

= expGn
(Wn−1) expGn

(Bgn
rn (0)) = expGn−1

(Wn−1)Vn

= V1 ⋅ ⋅ ⋅Vn−1Vn ,

using (8.1), the deûnition of Vn , and the inductive hypothesis. _us

U ∶= ⋃
n∈N

U1 ⋅ ⋅ ⋅Un ⊇ ⋃
n∈N

V1 ⋅ ⋅ ⋅Vn = ⋃
n∈N

expG(Wn) = expG(W),

whence U is an identity neighbourhood in G and so product sets are large.
We now prove the claim by induction. For n = 2, we can formW2 ∶=W1 ∗2 Bg2

r2 (0)
as W1 = Bg1

r1 (0) ⊆ Bg1
s0 (0) ⊆ Bg2

s0 (0) by (8.4), and Bg2
r2 (0) ⊆ Bg2

s0 (0). Moreover, as
r2 ≤ s0/2, we haveW1 + Bg2

r2/2(0) ⊆W2 ⊆W1 + Bg2
3r2/2(0) by (8.3). Hence,

Bg1
r1/2(0) + B

g2
r2/2(0) ⊆W2 ⊆ Bg1

3r1/2(0) + B
g2
3r2/2(0)

a fortiori. For the induction step, assume that n ≥ 2 and thatW1 , . . . ,Wn have already
been deûned such that (8.5) holdswith k ∈ {1, . . . , n} in place of n. In particular, (8.5)
holds for n and its right-hand side is a subset of

n

∑
k=1
Bgk

s0/2k(0) ⊆
n

∑
k=1
Bgn+1

s0/2k(0) ⊆ B
gn+1
s0 (0),

using (8.4) for the ûrst inclusion. _us Wn ⊆ Bgn+1
s0 (0) and since rn+1 ≤ s0, we deduce

that Wn+1 ∶=Wn ∗n+1 Bgn+1
rn+1 (0) can be deûned. Moreover,

Wn + Bgn+1
rn+1/2(0) ⊆Wn+1 ⊆Wn + Bgn+1

3rn+1/2(0),

by (8.3). Using (8.5), we obtain∑n+1
k=1 B

gk
rk/2(0) ⊆ Wn+1 ⊆ ∑n+1

k=1 B
gk
3rk/2(0), which com-

pletes the inductive proof of the claim.
As product sets are large in G = ⋃n∈N Gn by the preceding, the last and penulti-

mate assertions of the proposition follow from [21, Proposition 11.8] and_eorem 1.1,
respectively.
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