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Completeness of Infinite-dimensional Lie
Groups in Their Left Uniformity

Helge Glockner

Abstract. We prove completeness for the main examples of infinite-dimensional Lie groups and
some related topological groups. Consider a sequence G; € G» < - - - of topological groups G, such
that G, is a subgroup of G4+ and the latter induces the given topology on G, for each n € N. Let
G be the direct limit of the sequence in the category of topological groups. We show that G induces
the given topology on each G, whenever U,y V1V2 -+ V, is an identity neighbourhood in G for
all identity neighbourhoods V;; € Gj. If, moreover, each G, is complete, then G is complete. We
also show that the weak direct product @ ;c; G; is complete for each family (Gj;) je; of complete Lie
groups G;. Asa consequence, every strict direct limit G = U,en Gn of finite-dimensional Lie groups
is complete, as well as the diffeomorphism group Diff. (M) of a paracompact finite-dimensional
smooth manifold M and the test function group C¥ (M, H), for each k € Ny U {co} and complete
Lie group H modelled on a complete locally convex space.

1 Introduction and Statement of the Main Results

Our main goal is to study completeness for Lie groups modelled on locally convex
spaces (in the sense of [16,36]; cf. also [24,33,34]), and more generally completeness of
topological groups, as far as this is useful for the main goal. Here completeness refers
to the left uniform structure [25]. The topological groups under consideration need
not be Hausdorft (unless we say so explicitly). It is well known that every Lie group G
modelled on a Banach space E is complete [10, Chapter III, §1.1, Proposition 1]), as the
left uniform structure and the one induced by the additive group of the Banach space
coincide on some identity neighbourhood U ¢ G that is homeomorphic to a closed
0-neighbourhood V C E.

Projective limits of complete Hausdorff groups being complete, this implies that
many Fréchet-Lie groups are complete, e.g., the mapping groups

C* (M, H) =lim C*(M, H)

that are the projective limit of the Banach-Lie groups C* (M, H) for k € N, for each
compact smooth manifold M and Banach-Lie group H. As usual, Lie groups mod-
elled on Fréchet spaces (resp., Banach spaces) are called Fréchet-Lie groups (resp.,
Banach-Lie groups) in the following. Of course, completeness properties of locally
convex spaces E, which furnish examples of abelian Lie groups (E, +), are a standard
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topic in functional analysis. Moreover, while completeness properties of topological
groups have been studied (see [2,40] and the references therein), no systematic study
of completeness properties of infinite-dimensional Lie groups is available so far. For
example, it is an open question whether completeness of the modelling space implies
completeness for a Lie group [36, Problem I1.9]. The current article strives to develop
specific tools that enable completeness to be shown for important classes of infinite-
dimensional Lie groups, under natural hypotheses. Our main results, Theorems 1.1
and 1.2, are devoted to completeness properties of direct limits. Recall that an ascend-
ing sequence G; € G, ¢ --- of topological groups (G, O,,) is a direct sequence of topo-
logical groups if, for each n € N, the inclusion map 41,4 (Gu> O4) = (Guis1, Opsr) is
a continuous homomorphism. If, moreover, each j,.1,, is a topological embedding,
i.e., a homeomorphism onto its image, then the direct sequence is called strict. Give
G := Upeny Gy the unique group structure for which each inclusion map j,: G, - G is
a group homomorphism. A topology on a group is called a group topology if it makes
it a topological group. There is a finest group topology O on G making each j,
continuous; (G, Or¢) is called the direct limit topological group. The topology Org
must not be confused with the final topology Opy on G with respect to the inclu-
sion maps j,, which makes (G, Opy) the direct limit topological space. It is clear that
Org € Opyr, but examples show that equality need not hold [42, 46].

Let O be a group topology on G making each j, continuous. Following [21], we
say that product sets are large in (G, Q) if
(L1 Uwva--v,

neN
is an identity neighbourhood in (G, ) for every identity neighbourhood V,, in
(Gn, 0,).! If product sets are large in (G, O), then O = Org [21, Proposition 11.8],
and moreover the product sets as in (1.1) form a basis of identity neighbourhoods for
(G, ) (as we will note in Lemma 4.2). We mention that sets of the form
U (Vn VZVI)(VIVZ”' Vn)
neN

(so-called “bamboo shoots") were already used [26,42] to obtain tangible descriptions
of the topology O in well-behaved situations. Our main result can be formulated
as follows.

Theorem 1.1 Let G, € G, C -+ be a strict direct sequence of topological groups and

G := Ueny Gy e its direct limit topological group.

(i)  If product sets are large in G, then each inclusion map G, — G is a topological
embedding.

(ii) If product sets are large in G and each G,, is complete, then G is also complete.

We mention that (G, Or¢) is HausdorfT if each G,, is Hausdorff and the inclusion
map G, — G is a topological embedding.?

Un [3], (G, ©) is then said to carry the strong topology.
Zfe # x € Gy, there is an open identity neighbourhood V ¢ G, with x ¢ V. Let W € G be an open

identity neighbourhood such that W 0 G, = V. Then x ¢ W. Hence {e} = {e} in G and thus G is
Hausdorff.
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Theorem 1.1 and its proof were inspired by Bourbaki’s discussion of completeness
for strict direct limits of complete locally convex spaces [9, Chapter II, §4, no. 6,
Proposition 9].

Now consider a family (Gj;) je; of Lie groups G; modelled on locally convex spaces
E;. Then the so-called weak direct product

G:=@®G;:={(xj)jes € [1Gj: x; = e for almost all j}
jel jeI

can be made a Lie group modelled on the locally convex direct sum E := @j; E; in
such a way that for some C*-diffeomorphisms ¢;: U; — V; from an open identity
neighbourhood U; € G; onto an open 0-neighbourhood V; ¢ E; with ¢;(e) = 0, the
set @je; Uj := G N [ Uj is an open identity neighbourhood in G and the map

D¢;OU; — DV, CE, (x))jey — (¢j(x)))jes

jer o jel jel
is a C*°-diffeomorphism (as in [18]). If ] is countable, then the topological group un-
derlying the weak direct product @ je; G; is the small box product of the topological
groups G; (as in [4]). If ] is uncountable, then the weak direct product and the small
box product still coincide as groups, but the box topology is coarser and can be prop-
erly coarser. For example, this happens for the family (R) j; for an uncountable set J.
The weak direct product RV) := @ jey R then coincides with the locally convex direct
sum, whose topology differs from the box topology,” as is well known [43].

Theorem 1.2 Let (Gj)je; be a family of Lie groups G; modelled on locally convex
spaces. If each G is complete (resp., sequentially complete), then also the weak direct
product @ j¢; G; is complete (resp., sequentially complete).

Similarly, one finds that the small box product of each family of complete (resp.,
sequentially complete) topological groups is complete (resp., sequentially complete),
see Example 5.2.

We now explain how the main results (and further findings) can be used to es-
tablish completeness for infinite-dimensional Lie groups within the main classes of
examples [36, pp. 3-4], and related topological groups.

1.1 Direct Limits of Finite-dimensional Lie Groups

If G, € G, ¢ ---isadirect sequence of topological groups and the direct limit topology
Opr on G = U,y G, makes G a topological group, i.e., if Org = Opp, then product
sets arelarge in (G, Org) [17, Proposition 11.3]. Thus Theorem 1.1 entails the following
corollary.

Corollary 1.3 IfOrg = Opr on G = U, en Gy for a strict direct sequence Gy € G € -+
of complete topological groups, then (G, Org) is complete.

31n fact, { (Xj)rey € RU) Y jey Ixj| < 1} is a 0-neighbourhood in the locally convex direct sum which
cannot contain any box @ je;]-q;, q;[ with q; € ]0,00[ N Q =: C as one of the sets J; := {j € J : g; = q}
with g € C must be uncountable and hence infinite.
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We mention that Org = Opr on G = U,ey G, for a direct sequence G; € G, € -
of locally compact Hausdorft topological groups [26, 42]. Hence every strict direct
limit G = U,en Gy of locally compact Hausdorff topological groups G; € G, € -+ is
complete. In particular, the Lie groups limG,, [19] are complete for each strict direct
sequence G; € G € --- of finite-dimensional Lie groups.*

1.2 Diffeomorphism Groups

For M a paracompact finite-dimensional smooth manifold, consider the group
Diff (M) of all C*°-diffeomorphisms ¢: M — M with compact support (in the sense
that ¢(x) = x for x outside some compact set). Then Diff (M) is a Lie group mod-
elled on the space of smooth compactly supported vector fields on M (and Diff (M)
can be made a Lie group with Diff. (M) as an open normal subgroup) [33]. For each
compact subset K € M,

Diffg(M) := {¢ € Diff (M) : (Vx e M\ K) ¢(x) = x}

is a Lie subgroup of Diff (M), modelled on the Fréchet space of all smooth vector
fields supported in K. If M is o-compact and K; € K; C --- an exhaustion of M by
compact sets,” then

(1.2) Diffg, (M) ¢ Diff, (M) € -
is a strict direct sequence of Lie groups. By [21, Example 11.7], the map

m: @ Diff, (M) — Diffe(M)
ne

taking (¢1,...,¢u,idps,idps,...) to ¢y o -+ 0 ¢, admits a smooth local section
around idy (in the spirit of fragmentation techniques familiar in the theory of diffeo-
morphism groups [6]. By [21, Remark 11.5, Proposition 11.8], this implies that product
sets are large in Diff (M) and Diff . (M) is the direct limit topological group of (1.2)),
as recorded in [21, Proposition 5.4] (see [5, Remark 1, Proposition 1] for these argu-
ments).°

Now Diffg, (M) is a strong (ILB)-Lie group (as considered in [38]) for each n ¢
N. Using that strong (ILB)-Lie groups are complete (see Proposition 6.1 and Re-
mark 6.2 (a)), Theorem 1.1 implies that Diff (M) is complete for o-compact M (see
Remark 6.2 (b) and (c) for details).

If M is merely paracompact and (M;);e its family of connected components,
then Diff . (M) has an open subgroup G that is isomorphic to the weak direct product
@ jes Diff (M) as a Lie group, and we deduce with Theorem 1.2 that G (and hence
Diff .(M)) is complete also for paracompact M.

The completeness of diffeomorphism groups contrasts the incompleteness of many
groups of homeomorphisms, among which one finds typical examples of metrizable
topological groups that cannot be completed, as the sets of Cauchy sequences for the
left and right uniformity do not coincide [15].

#The Lie group structure on important examples of such groups (like GLoo (R) = lim GL, (R) and

SLeo (R) = lim SL,, (R)) was already constructed [32,35].
SThus M = Unen Kn and K, € Kgﬂ for each n € N.

SWe mention that the topology on the Lie group Diff . (M) coincides with the Whitney C*-topology
used in [5]; this is clear from the description of this topology in [30] (see also [28] for a detailed account).
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1.3 Mapping Groups and Gauge Groups

Among the prime examples of infinite-dimensional Lie groups are the Lie groups
C*(M, H) of C*-maps from a compact manifold M to a Lie group H for k € Ngu{oo}
(notably the loop groups with M = S' the circle group [39]), see [34,38]. More gen-
erally, if M is a paracompact finite-dimensional smooth manifold and H a Lie group
modelled on a locally convex space E, there is a natural Lie group structure on the
group C¥(M, H) of all C¥-maps y: M — H whose support

supp(y) = {x € M:y(x) # e}
is compact (where e is the neutral element of H), which is modelled on the locally

convex space CK(M, E); see [1,17] if M is o-compact. In the general case, we let
(M;) jey be the family of connected components of M and use the group isomorphism

CH(M,H) — G?}Cf(Mj’H)r Y= (vla) jej
J

to transport the Lie group structure of the weak direct product to the left-hand side.
Using Theorems 1.1 and 1.2, we shall see that C¥(M, H) is complete whenever H and
its modelling space E are complete (Proposition 7.5). Likewise, gauge groups and full
symmetry groups of principal bundles [41, 45] are complete if the structure group H
and its modelling space are complete (see Remark 7.6 for more details).

1.4 Linear Lie Groups

We can also prove completeness for some unit groups of topological algebras.” Con-
sider an ascending sequence A; € A, C --- of unital Banach algebras, such that all in-
clusion maps A, - A, are continuous homomorphisms of unital algebras. Endow
A = Upeny Ay with the unital algebra structure turning each inclusion map A, - A
into ahomomorphism of unital algebras. Then the locally convex direct limit topology
makes A a topological algebra and product sets are large in A* = U,y A}, [21, Proposi-
tion 12.1 (a), ()], [14]. With Theorem 1.1, we deduce that A* (like each A’;) is complete
whenever the direct sequence A; € A, C --- is strict.

1.5 Ascending Unions of Banach-Lie Groups

Beyond unit groups of Banach algebras, let us consider an ascending sequence G; €
G, ¢ --- of Banach-Lie groups over K ¢ {R,C} such that each inclusion map
G, — Gy is a K-analytic group homomorphism. In [12, Theorem C], conditions
were spelled out that ensure that G = U,y G, can be made a K-analytic Lie group
modelled on the locally convex direct limit of the respective Lie algebras. We show
that product sets are large in the Lie groups G constructed in [12, Theorem C], whence
the given topology on G makes it the direct limit topological group G = lim G,
(Proposition 8.2). Using Theorem 1.1, we deduce that G = U,y G, (as before) is
complete whenever the direct sequence G; € G, < - - is strict (Proposition 8.2).

For a concrete example, let (F,, || - | »)nen be @ sequence of Banach spaces. Write
L(F) for the Banach algebra of bounded operators S: F — F for a Banach space F,

7If A is a unital algebra, we write A* for its unit group of all invertible elements.
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endowed with the operator norm | - |[op. We equip E,, := F; @ - -- & F,, with the maxi-
mum norm and identify GL(E,) := £L(E,)* with the subgroup GL(E,,) x {idg,_, } of
GL(E,+1). Using [13, Theorem A], it was shown in [11, Theorem 38] that

GL((Fn)neN) = nLeJN GL(En)

can be made into a Lie group.® As the direct sequence GL(E;) € GL(E,) C - - is strict,
the preceding reasoning shows that GL((F, ) ney) is complete.

1.6 Outlook: Lie Groups Modelled on Silva Spaces

Work by Hunt and Morris [29] implies that every Lie group modelled on a Silva
space’ is complete [22, Corollary 1.4]. This entails that direct limits U,y G, of finite-
dimensional Lie groups (or locally compact groups) G; € G, € --- are always com-
plete (no matter whether the direct sequence is strict or not). It also shows that the Lie
group Diff” (M) of real-analytic diffeomorphisms is complete for each compact real-
analytic manifold M, as well as the Lie group C* (M, H) of all real-analytic H-valued
mappings on the latter, for each finite-dimensional Lie group H [22].

2 Preliminaries and Notation

We write N = {1,2,...} and Ny := Nu {0}. Topological groups and locally convex
(real topological vector) spaces shall not be assumed to be Hausdorft, unless we say
so explicitly. If f: X — Y is a function between metric spaces (X, dx) and (Y, dy),

e A (f(), S ()
. a JAWACTINAVI I
Lip(f) ._sup{w .x%yeX} € [0, 00]
and call f Lipschitz if Lip(f) < oo. If each point x € X has a neighbourhood V ¢ X
such that f]y: V — Y is Lipschitz (with respect to the metric dx|v«v induced on V),
then f is called locally Lipschitz. If (E, || - |) is a Banach space, we write GL(E) for the
group of continuous automorphisms of the vector space E. For x € E and r > 0, we
. E —E .

write Bf (x) :={y e E:|y—x| <r}and B, (x) :={yeE:|y—x| <r}. Ifgisa
continuous seminorm on a locally convex space E, we write

BY(0) = {x € E:q(x) <1}

forr > 0.

Remark 2.1 For our setting of C*-maps, real and complex analytic mappings be-
tween open subsets of locally convex Hausdorff topological vector spaces, the reader is
referred to [16,36], where the corresponding concepts of manifolds (and Lie groups)
modelled on Hausdorff locally convex spaces are also described (cf. also [8, 24, 33,
34]).!% All of these manifolds (and Lie groups) are Hausdorff. Every Lie group G

81n [11], GL((F ) pery) is denoted by GL(E), with E := Uy En.

% Alocally convex space is called a Silva space or (DFS)-space if it is a locally convex direct limit limE,
for an ascending sequence E; C E; € --- of Banach spaces, such that all inclusion maps E, — E, 4 are
compact operators.

10The C*-maps are those of Keller’s C¥-theory [31], going back to A. Bastiani [7].
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is a topological group in its given topology (as smooth maps are continuous in the
infinite-dimensional calculus we are using). We write e for the neutral element of G
and L(G) := T, (G) (or simply g) for its Lie algebra (the tangent space at e). We write
expg: L(G) — G for the exponential function of G, if it exists [34,36]. If f:G — H is
a smooth group homomorphism between Lie groups, we abbreviate L(f) := T, (f).
If M is a C¥-manifold with k > 1, we let 775: TM — M be the bundle projection. If
E is alocally convex space and U C E an open subset, we identify the tangent bundle
TU with U x E in the usual way. If M is a C'-manifold and f: M — U a C'-map, we
write d f: TM — E for the second componentof Tf: TM - TU=UXE.Ifg:U - F
is a C'-map to a locally convex space, we write g’(x) := dg(x,-):E - F for x € U.

The following fact is based on the Mean Value Theorem.

Lemma 2.2 Let (E,|-|g) and (F,|-|r) be normed spaces, let U € E be open and

let f:U — F be a C'-map. Then the following hold.

(i)  f is locally Lipschitz.

(ii) If U is convex, then f is Lipschitz if and only if L := sup,. ., | f'(x)|lop < o0, in
which case Lip(f) = L.

Recall that a net (x4 ) 4e4 in a topological group G is called a left Cauchy net if, for
each identity neighbourhood U ¢ G, there exists y € A such that xﬁlx(x € U for all
a, B > y. If every left Cauchy net in G is convergent, then G is called complete; if every
left Cauchy sequence in G is convergent, then G is sequentially complete.

2.1 Facts Concerning Completeness

Many results concerning completeness of topological groups can be found in [40].
We mention useful facts.

Proposition 2.3 (i) If a topological group G is complete (resp., sequentially com-
plete), then every closed subgroup H C G is complete in the induced topology.

(ii) Forevery family (Gj) jej of topological groups that are complete (resp., sequentially
complete), the direct product [1e; G is complete (resp., sequentially complete) in

the product topology.
(iii) Let ((Gj)jes» (qi,j)i<j) be a projective system of Hausdorff topological groups G
and continuous homomorphisms q; ;: Gj — G; for i < jin J such that q; ; = idg,

and q;j o qjx = qi,x whenever i < j < k. If each G; is complete (resp., sequen-
tially complete), then also the projective limitlim G is complete (resp., sequentially
complete), as it can be realized as the closed subgroup

{(x)jes € JEIIGJ (Vi< ) xi = qii(x))}

of the direct product, endowed with the induced topology.

(iv) Completeness is an extension property: If G is a topological group and N € G a
normal subgroup such that both N and G /N are complete, then G is also complete
[40, Theorem 12.3 (a)].
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If G is a topological group, H € G a subgroup and N € G a normal subgroup, we
say that G is the (internal) semidirect product of N and H as topological groups if the
product map N x H > G, (x, y) = xy is a homeomorphism. Since ¢:G - H, xy — y
is a quotient homomorphism with kernel N, the following holds as special case of (iv):

(v) Let G bea topological group which, as a topological group, is the internal semidirect
product of a normal subgroup N and a subgroup H. If N and H are complete, then
G is also complete [40, Proposition 12.5 (a)].

The following slight generalization of Proposition 2.3 (iii) is useful.

Lemma 2.4 Let G be a topological group whose underlying topological space is the
projective limit of a projective system ((X;) jes> (qi,j)i<j) of Hausdor{f topological spaces
X, with limit maps q;:G — X for j € J. Assume that for each Cauchy net (Xa)aea
in G, the corresponding net (q;j(x«))aca converges in Xj, for each j € J. Then G is
complete.

Proof We can assume that G = {(x;)jey € [Tje; X; : (Vi < j) x; = ¢3,j(x;)} and
qi((xj)jey) = xi forall i e Iand x = (x;j)jey € G. For j € ], let y; € X; be the limit of
(9j(xa))aea. For i, j € I'with i < j, the net (qi(xa))aea = (9,j(qj(Xa)))aea in X;
converges both to y; and g, ;j( ;). Since X; is Hausdorff, y; = g;,;(y;) follows. Hence
y:=(yj)je € Gand as gj(xa) — y;j = qj(y) for all j € J, the net (x4)qea converges
to y. |

Lemma 2.5 ([4]) If (Gj)je is a family of topological groups, let Oje;G; € T1;¢; G;
be the subgroup of all (x;)je; € I1jc; Gj such that x; = e for all but finitely many j.
Consider the sets Oje;U; = [1e; Uj N Ojes Gy, for (U;) jej ranging through the families
of open subsets U; € G; such that e € U; for all but finitely many j. The latter sets form
a basis for a topology on Oje;G; making it a topological group called the box topology.
When endowed with this topology, 0je; G is called the small box product of the family

(Gj)jer-

Ifeach G; is a Lie group modelled on a Hausdorfflocally convex space then, O;¢; G
is also a Lie group in a natural way. (See [23], where small box products are called
weak direct products, in contrast to the conventions here.) It is modelled on the small
box product Oj¢; E;. If, instead, we use the locally convex direct sum as the modelling
space, then the group Oje;G; can also be made into a Lie group, called the weak di-
rect product of the family and denoted here by @ ¢; G; (see [18], where the notation
[Ty G; is used). The two possible modelling spaces (and the two Lie groups) coincide
if ] is countable. When dealing with Djej Gj, we write D ey Uj, instead of Oje; U;.

3 Exploiting Completeness of a Subgroup
The following lemma is essential for the proof of Theorem 1.1.

Lemma 3.1 Let (x4)qea be aleft Cauchy net in a topological group G and H € G be a
subgroup that is a complete topological group in the induced topology. Assume that, for
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each a € A and identity neighbourhood W € G, there exists f > « such that xg € HW.
Then (x4 ) qea converges in G to some y € H.

Proof Let U be the set of all identity neighborhoods in G. By hypothesis,
Aw:={aeA:x, e HW}

is cofinal in A for all W € U and thus M := {(W,a) e Ux A: a € Ay} becomes a
directed set if we write (W), a;) < (W3, a,) if and only if W, € W) and a; < «a,. For
a=(W,a) e M, pick y, € Hand w, € W such that

(3.1 Xo = YaWa-

Then (¥,)qem is aleft Cauchy net in H. In fact, if U is an identity neighborhood in H,
we find Q € U such that U = Hn Q. Let P € U such that PPP™ ¢ Q and y € A such
that xglxa e Pforall , B > y. We may assume that y € Ap. Foralla,b > (P,y) in M,
saya = (W,a)and b = (V, ), wehave V, W ¢ P and hence

Yo' Ya = Wpxg Xqw, € VPW™ € PPPT' c Q.

Thus y,'y, e HnQ = U.

Let y be the limit of (y,)4epm in H. Then y, — y also in G. Given W € U, let
o € Aw. Since w, € W for a > (W, ), the net (w,)zepm converges to e in G. Using
(3.1), we deduce that the subnet (x4 ) (w,qa)em Of (Xa)aea, and hence also the Cauchy
net (x4 )qea, converges to y. [ |

4 Completeness of Strict Direct Limits

In this section, we prove Theorem 1.1.

Lemma 4.1 Let G beagroup,2<neN,and G € G, C--- S G, = G be subgroups.
For je {1,...,n}, let Wj be a subset of G;. Then

(41) G1 N (‘/VIWZ Wn) = G1 N (Wl Wn—l(Gn—l N Wn))

Proof We show by induction on # that the left-hand side of (4.1) is a subset of the
right-hand side (the other inclusion is trivial), for all G, Gy,...,G,, and Wi,..., W,
as described in the lemma. If n = 2 and x € G; N W} W,, then x = wyw, with w; € Wi
and w, € W;. Since W; € Gy, we have w; € G; and thus w; = w;lx € Gy n Wh.

If n > 2 and the assertion holds for n — 1, let x € G; n (Wy--- W,,). Write x =
wiwy - w, with wj € W for je {1,...,n}. Then

Wy Wy :Wl_leGlﬂ(Wz~~Wn) CGn(Wy-—-W,)
and thus w, ... w, € Wy -+ W,_1(G,-1 N W,,) by the inductive hypothesis. [ |

Lemma 4.2  Assume that G is the direct limit topological group of a direct sequence
G € G, € -+ of topological groups, and that product sets are large in G. Then ev-

ery identity neighbourhood of G contains a product set U,y Wi W, - -- W, for suitable
identity neighbourhoods W, ¢ G,,.
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Proof If Vj is an identity neighbourhood in G, there exist identity neighbourhoods
Vu € G for n € N such that V,,V,, € V,,_;. Then W, := G, n V,, is an identity neigh-
bourhood in G, and V|V, --- V,, € V, for all n € N implies that

Uw---w,cuJ vV, cW. |

neN neN
Proof of Theorem 1.1 (i) To see that G induces the given topology on G,, we can
assume that n = 1. Let V] € G; be an identity neighbourhood. There exists an identity
neighbourhood W ¢ G; such that Wy W; C V;. Recursively, for m > 2, find an identity
neighbourhood V,, ¢ G,, such that G,,_; N V,, = W,,,_; (which is possible as G,
induces the given topology on G,,_;) and an identity neighbourhood W,, ¢ G,, such
that W,, W,, € V,,. Then Gy n (WyW,---W,,) € Gy n (Wy--- W, Vj) forall j e
{m,m -1,...,1}, by induction. If j = m, we have W,, C V,, and the assertion holds.
If j€ {2,...,m} and the assertion holds for j, then

Gin(MiWy---W,,) €GN (WlW;—le) =GN (Wl"'Wj—l(Gj—lm VJ))
=GN (Wi Wjs W) €Gin (Wr--- Wi, Vi),

using the inductive hypothesis, Lemma 4.1, the identity G;_; n V; = W;_y, and the
inclusion Wj_;Wj_; € Vj_;. Taking j = 1, we deduce that G; n (W, W, --- W,,) € V},
for all m € N and hence Gin W ¢ V; if we define W := U, ey WiW5 -+ W,,,. As we
assume that product sets are large in G, the set W is an identity neighborhood in G.
Since G; N W ¢ W}, the group topology T induced by G on G; is finer than the given
topology O; on G; and hence coincides with it (noting that T < O, as the inclusion
map (Gy, ;) - G is continuous).

(i) If each G, is complete, let (x,)qea be a left Cauchy net in G. Let U be the set
of all identity neighborhoods in G. We claim that there exists m € N such that, for
each « € Aand W € U, there exists > « such that xg € G, W. If this is true, then
() aea converges in G by Lemma 3.1 using that G induces the given complete group
topology on G, by (i).

To prove the claim, suppose it is wrong. Then, for each m € N, there exist a,,, € A
and W,, € U such that

(4.2) Xq 8 G W, forala>a,.

After shrinking W, if necessary, we can assume that Wy, = U e Wl(m) W,Sm) with

identity neighbourhoods wi™ ¢ G,, by Lemma 4.2. After shrinking wHw®,
we can assume that

(4.3) w(mD ¢ wm  forall n,meN.

Since product sets are large in G, the set W := ey Wl(l) e Wn(”) is an identity neigh-
bourhood in G. By (4.3), we have

U wm+1) ...erﬂ) c U erl'l’l) ...erm) cuU VVI("’) ...erm) =W,,.
n>m

n>m m+1 neN
Using that Wl(l) W,E") c Gy forne{l,...,m}, we deduce that

GuW =G, U W ow c G, W,
n>m
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and thus

(4.4) G, WcG,W, forallmeN.
By definition of a Cauchy net, we find y € A such that
(4.5) X, xgeW,

for all &, B > y. Now x,, € Gy, for some m, € N. Since A is directed, we find a € A
such that « > y and & > @,,. Using (4.5), we obtain x, = x,(x,'xa) € G, W. But
Xq ¢ Gy Wi, by (4.2) and thus x, ¢ G,,,, W by (4.4), which is absurd. [ |

5 Completeness of Weak Direct Products

The following lemma will enable us to reduce the completeness of weak direct prod-
ucts (and box products) to that of direct products.

Lemma 5.1 Let P be a complete, respectively, sequentially complete, topological group

and G be a subgroup of P, endowed with a topology O that is finer than the topology T

induced by P on G. Assume that, for each x € P such that x ¢ G, there exists a closed

subset L in P such that

(i) G n L isanidentity neighborhood in (G, O),

(ii) GnxL=g@.

Moreover, assume that

(iii) The closures V in (G, T) form a basis of identity neighbourhoods in (G, O), for V
in the set of identity neighbourhoods in (G, 0).

Then also (G, Q) is complete, respectively, sequentially complete.

Proof Assume that P is complete. If (x4)qea is a left Cauchy net in (G, O), then it
also is a left Cauchy net in P, whence x, — x in P for some x € P. Then x € G, since
otherwise we obtain a contradiction: let L € P be a closed subset such that GN L is an
identity neighbourhood in (G, 0) and GnxL = @. Let & € A such thatx;'xz € GNL
forall &, B > . Considering x"'xg as elements of P and passing to the limit in a, we
obtain x'x4 € L for all § > ap, whence x5 € G N xL = @, which is absurd.

Let W be an identity neighborhood in (G, Q). By hypothesis (iii), we find an iden-
tity neighbourhood V in (G, O) such that G n V ¢ W, where V is the closure of V
in P. There exists a € A such that x,;'xg € V for all a, f > . Considering x,'x4 as
an element of P and passing to the limit in a, we deduce that x 'x € V forall f > ay,
whence x'xg € GN'V ¢ W and thus xg € xW. Thus xg — x in (G, 0).

If P is sequentially complete, then the proof is identical with A := N. ]

Example 5.2 Let (G;)jes be a family of topological groups G; that are complete,
respectively, sequentially complete. Then also the small box product G := Oj¢;G| is
complete, respectively, sequentially complete.

To see this, let us check that Lemma 5.1 can be used with P := [],; G;. If

j€l

X = (xj)jelep\G>
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then I := {j € J : x; # e} is an infinite set. For each j € I,let U; ¢ G, be a closed
identity neigbourhood such that xj’1 ¢ Uj. For je JNLletU; = G;. Then L := []¢; U;
is closed in P and G N L = Oj¢;Uj is an identity neighbourhood such that xLn G = @
as each y = (y;)je € xL satisfies y; # e for all j € I. Finally, let W ¢ G be an
identity neighbourhood. Then W contains a box V := Oj¢;V; with closed identity
neighbourhoods V; € G;. The closure V of V in Pis []; Vj, whence GN'V = V ¢ W.

Proof of Theorem 1.2 To verify the theorem, let us check that Lemma 5.1 can be
applied with P := [1;; G;. If x = (x;j)je; € PN G, thenI:= {j e ] :x; # e} isan
infinite set. For each j € I, let U; € G; be a closed identity neigbourhood such that
xj_1 ¢ Uj. Forje J\I,letUj:= G;. Then L := Hjel Ujisclosedin Pand GNL = Oj; U;
is an identity neighbourhood (as the topology on G is finer than the box topology)
such that xL N G = @. Thus L satisfies the conditions (i) and (ii) in Lemma 5.1.

Next, let S ¢ G be an identity neighbourhood. For j € J, let E; be the locally
convex space on which G; is modelled. Then S contains an identity neighbourhood
of the form W = ¢~(Q) for a diffeomorphism ¢: U — V and a 0-neighbourhood
Q < V, where diffeomorphisms ¢;: U; — V; from open identity neighbourhoods
U; ¢ G;j onto open 0-neighbourhoods V; ¢ E; are used to define U := @j¢; Uj,
V= @jg Vj,and ¢ := @j;¢j: U - V. For each j € ], the topological group G;
has a closed identity neighbourhood K; such that K; ¢ Uj. Set L; := ¢;(K;). After
shrinking Q (and W = ¢7'(Q)), we can assume that W ¢ @j Kj =0 K and thus
Q € [1je Lj =: L. After shrinking Q further if necessary, we can also assume that
Q= EZ(O) for a continuous seminorm g on @j; E;j, and we may assume that g is
of the form q(x) = ¥ ;c; q;(x;) forall x = (x;)jej € @jes Ej, for certain continuous
seminorms q; on E;. Then the closure QofQin [1j Ej is the set C of all

(xj)je € [T E;
jeI

such that 7 gj(x;) < r, where the sum means the supremum of all finite partial
sums. To see this, let ® be the set of finite subsets of J. If x € C, then };.r x; € Q for
each F e @ (as ¥ cp q;(x;) < e gj(xj) <r)and thus x € Q.

Conversely, let x = (x;) jej € [1;¢; Ej with x ¢ C; thus 3.5 qj(x;) > r. There exists
a finite subset F C J such that 3 ;cp g;(x;) > r. Since

{jer e TTE; = 3 a;(y)) > 1}
JjeJ jeF

is an open subset of [] jes Ej that has empty intersection with Q, we have x ¢ Q. Thus
Q=C. B

By the preceding, (®je; Ej) N Q = (@je; Ej) nC = Q. Since L is closed in []; E;
and contains Q, we have Q ¢ L. Now K = [];.; Kj is a closed subset of P = [T Gj
and

jel
Vi IR — Lo ()= (95(50)je

is a homeomorphism, whence ¥ (Q) is closed in K and hence also closed in P =
ey Gj-
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Let W be the closure of W in P. By the preceding, W ¢ v '(Q) and thus W =
¥7'(Q), as y is a homeomorphism. For x € K, we have y(x) € @j¢; E; if and only if
X € @je] G;. Hence,

GNW=Gny™(Q)= w‘l((@]Ej) nQ)=y(Q=wcs,
je
entailing that Lemma 5.1 (iii) is also satisfied. [ |

6 Completeness of Diffeomorphism Groups
The next proposition is used to prove completeness of diffeomorphism groups.

Proposition 6.1 Let G be a topological group that is the projective limit of a projec-
tive sequence ((Gn)nen> (qu,m )n<m ) Of topological Hausdor{f groups. Assume that G,
admits a C'-manifold structure modelled on a Banach space (E, |- | ) for each n € N,
and assume that for each n € N, there exists m > n such that the map

bnm: Gm X G —> Gy (6, 9) = Qnm () = Gn,m (%) qn,m (¥)
is C'. Then G is a complete topological group.

Proof Forn € N, let g,:G — G, be the limit map. Let (x4)qca be a left Cauchy
net in G. By Lemma 2.4, it suffices to show that, for each n € N, the left Cauchy net
(gn(x4))aca converges in G,,. By hypothesis, g, ,, is C' for some m > n. We write
| -|| for the norm E, x E,, — [0, 00[, (x,y) = max{|x|,,|y]|.} Let ¢:U — V be
a C'-diffeomorphism from an open identity neighbourhood U ¢ G,, onto an open
0-neighbourhood V ¢ E,, and y: P - Q be a C'-diffeomorphism from an open
identity neighbourhood P ¢ G, onto an open 0-neighbourhood Q ¢ E,, such that
¢(e) = 0and y(e) = 0. After shrinking U, we may assume that y, ,,(U x U) ¢ P,
enabling us to consider the C'-map

f=yotnmo (@ x¢7)VxV—Q (x,9) — ¥(qum($” ()67 ()
After shrinking V, we may assume that f is Lipschitz (Lemma 2.2). Let L > 0 be
a Lipschitz constant for f. Then | f(x,y) — f(x,0)|» < L|(0,y)| = L||y| for all
(x,¥) € Vx V. Let C be a closed 0-neighbourhood in E,, such that C ¢ Q. Then
7,"(v"1(C)) n q;}(U) is an identity neighbourhood in G. There is a( € A such that
x5'xa € 4, (y71(C)) N q;, (U) forall a, B > ag. Thus zq = xz,%a € g, (7 (C)) N
g, (U) forall @ > ag, and (g, (2a ) ) asa, is @ left Cauchy net in G, noting that
25'20 = X' Xo € 4,y (U)  forall a, > aq.

If we can show that (g, (z4) ) asa, converges in G, then also the subnet (¢, (x4)) asaq

of (gn (%4 )aea) will converge, as g, (x4) = gn(Xa, )qn(24). Hence, (g, (x4)) aea will
converge. Since z, = zp (zElza) and zg = zge, we see that

¥(9n(20)) = ¥(an(2)) = f(am(2p) am(25'2a)) = £ (4 (2p), 0)

and thus |y(q,(2a))-v(qn(28)) s < L||qm (zl}lza) | »» which can be made arbitrarily
small for large «, 8. Hence, (¥(qn(2a)))asa, is @ Cauchy net in (E,, +) and thus
convergent to some w € E,,. Since w,, := y(q,(2z4)) € C for all a > ag and C is closed
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in E, we deduce that w € C € Q. As a consequence, q,(z,) = ¥ (w,) converges to

v (w). u

Remark 6.2 (a) In particular, Proposition 6.1 shows that every strong (ILB)-Lie
group (as in [38]) is complete.
(b) Since Diff (M) is a strong (ILB)-Lie group for each compact smooth mani-
fold M without boundary (see [38]), we deduce from (a) that Diff (M) is complete.
(c) Let M be a o-compact finite-dimensional smooth manifold (without bound-
ary). If K € M is a compact subset, then

Diffx(M) := {¢ € Diff (M) : (Vx e M~ K)¢(x) =x}

is a Lie subgroup of Diff.(M). Morse Theory [27] provides a compact submanifold
N ¢ M with smooth boundary such that K is contained in the interior of N. Let N*
be the double of N, which is a compact smooth manifold without boundary obtained
by glueing two copies of N along their boundary."! Then Diffx(M) = Diffx(N*) as
a Lie group. As Diffx(N*) is a closed subgroup of the complete topological group
Diff (N*), we see that Diff x (N*), and hence also Diffx (M), is complete.

(d) Using Theorem 1.1, we now obtain completeness of Diff . (M) for o-compact M,
as described in the Introduction; applying Theorem 1.2 to an open subgroup, com-
pleteness of Diff (M) for paracompact M follows.

7 Completeness of Mapping Groups

We now discuss completeness of mapping groups and test function groups.
7.1 Spaces of C*-maps Between Manifolds

If k e Nu{oo} and M is a C¥-manifold (possibly with boundary) modelled on a
Hausdorff locally convex space, we let TM be the tangent bundle and recursively de-
fine T/'M := T(T/M) for j € N such that j < k. If f:M — N is a C*-map to
another such manifold, welet T f: TM — TN be the tangent map and recursively set
T/f .= T(T7'f): T'M — TN for all 2 < j € N such that j < k. For convenience,
T'M := M and T°f := f. We endow the set C¥(M, N) of all C*¥-maps from M to N
with the so-called compact-open C*-topology, i.e., the initial topology with respect to
the mappings T/: C¥(M,N) - C(T/M, T'N), f  T/f for j € Nq such that j < k,
where C(T/M, T/N) is endowed with the compact-open topology [37].

7.2 Topological Groups of C*-maps
If H is a Lie group, with multiplication y: H x H — H, then the tangent map
TuT(HxH)— TH

makes TH a Lie group, if we identify T(H x H) with TH x TH in the usual way.
Then C*(M, H) is a group for M as before and k € Nou {00}, with pointwise product

1oyr use of the double was stimulated by discussions in [42].
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fg=po(f,g)for f,ge C¥(M,H).If k > 1, then

(71) T(fg)=Tuo(Tf, Tg)=TfTyg
is the productin C(TM, TH), whence T f is a group homomorphism and hence also
T f forall j € Ny such that j < k. Since C(T/M, T/H) is a topological group for each
j, we deduce that C¥(M, H) is a topological group [37].

Our first goal is to establish completeness properties for the topological groups
ck(M, H).

Proposition 7.1 Let H be a Lie group modelled on a locally convex Hausdor(f space E
and let M be a finite-dimensional C*-manifold (possibly with boundary) for some k €
No U {oo}. If H and E are complete, then the topological group C*(M, H) is also com-
plete.

The proof is based on two lemmas.

Lemma 7.2 Given k € N, let M be a finite-dimensional C*-manifold (possibly with
boundary) and N be a C*-manifold. Then the map

6:C*(M,N) — C(M,N) x C¥(TM, TN), f+— (f,Tf)

is a topological embedding with closed image. If N is a Lie group, then 0 is a homomor-
phism of groups.

Proof The final observation follows from (7.1). Itis clear that 6 is injective. Moreover,
the topology © on C*¥ (M, N') making 6 a topological embedding is initial with respect
to the inclusion maps

T%:C*(M,N) - C(M,N) and T:C*(M,N)— C*'(TM, TN).
As the topology on C¥~1(TM, TN) is initial with respect to the maps
T/:C*Y(TM, TN) - C(T"'M, T/*'N) for je {0,...,k—1},

we deduce, using the well-known transitivity of initial topologies, that O is initial with
respect to T® and the maps

T/ o T:C*(M,N) - C(T/'M, T"*'N) for je{0,...,k-1}.
Hence, O coincides with the compact-open C¥-topology.

To see that 6 has a closed image, let (fy, T fy)aca be a net in the image of 0 that
converges to some (f,g) € C(M,N) x Ck"1(TM, TN). It now suffices to show that
each x € M has an open neighbourhood U such that f|y is C' and T(f|v) = g|rus
then f is C¥ and g = Tf, whence (f, g) = 8(f) is in the image of .

For x € M, there is a chart y: Uy, — V;, € Y of N such that f(x) € Uy, where Y is
the modelling space of N, and a chart ¢: Uy — V4 S X of M with x € Uy such that
Uy has compact closure K := Ug and f(Uy) € Uy, where X is the modelling space
of M. As the compact-open C*-topology on C¥(M, N) is finer than the compact-
open topology, the set W := {h € C*(M, N): h(K) € U, } is an open neighbourhood
of fin CK(M, N). Thus, we find &y € Asuch that f, € W forall « € Asuch that a > ay.
For such a, we can define hy = yo fy0¢™:Vy - Y. Then hy > yo fo¢™' and
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d(hy) — dy o g|ry, o T¢™" uniformly on compact sets, entailing that / := yo f o ¢~
is C! with dh = dy o g|ry, o T¢™", and thus Th = Ty o g|ry, o T¢~". Hence fly, is
C! with T(f|U¢) :g|TU¢- |

Lemma 73 Let M and N be smooth manifolds (possibly with boundary), both mod-
elled on Hausdorff locally convex spaces. Then

C*(M,N) = lim C¥(M, N)
keNg

as a topological space, using the respective inclusion maps as the bonding maps and limit
maps.

Proof Consider the standard realization P C [y, C*(M, N) of the projective
limit. As all bonding maps are the inclusion maps, it is the set of all sequences

(fi)kersy € [T CH(M,N)
keNy
such that f; = f, for all j, k € Ny, such that j < k. Then fy = fi, for all k € Ny, and
thus fo € C*°(M, N), entailing that the map ©:C*(M,N) - P, f — (f)ken, is a
bijection. The topology O on C*° (M, N), making ® a homeomorphism, is initial with
respect to the compositions T/ o 1 o @ = T/ for k € Ny and j € Ny such that j < k,
where 7y is the projection from the direct product onto its k-th factor. It therefore
coincides with the compact-open C*°-topology. ]

Proof of Proposition 7.1 ~If we can show that C*( M, H) is complete for each k € Ny,
then also C*° (M, H) (which is the projective limit of the latter topological groups by
Lemma 7.3) will be complete. We proceed by induction. If k = 0, then C°(M, H) =
C(M, H) is complete since H is complete and M, being locally compact, is a kg-
space'.

If k € N and the assertion holds for k — 1 in place of k, then C*"}(TM, TH) is
complete as TM has finite dimension, TH = L(H) »x H is complete (see Proposition
2.3 (v)) and also its modelling space E x E is complete. Moreover, C(M, H) is com-
plete. As, by Lemma 7.2, the topological group C*¥(M, H) is isomorphic to a closed
subgroup of the direct product C(M, H) x C*"}(M, TH) of complete groups, also
Ck(M, H) is complete. [ |

Remark 7.4 (i) If M is a compact smooth manifold and H a Lie group, then the
topology on the Lie group C*(M, H) (for k € Ngu{oco}) coincides with the compact-
open C*-topology defined above.Hence C*(M, H) is complete whenever H and its
modelling space are complete.

(ii) If M is a finite-dimensional o-compact smooth manifold and K ¢ M a com-
pact subset, then the topology on the Lie group

Cr(M, H) := {y e C*(M, H):supp(y) < K}

12Recall that a topological space X is called a kg -space if it is Hausdorff and functions f: X — R are
continuous if and only if f|x is continuous for each compact subset K < X.
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is induced by the compact-open C*-topology on C¥(M, H). Since CK(M, H) is a
closed subgroup of C*¥(M, H), we deduce that CK (M, H) is complete whenever H
and its modelling space are complete.

Proposition 7.5  Let M be a paracompact finite-dimensional smooth manifold and let
H be a Lie group. If H and its modelling space are complete, then C*(M, H) is complete
for each k e Ngu {o0}.

Proof If M is o-compact, we choose a sequence (K},) ey of compact subsets of M
such that M = U,y K, and K, € K2, for each n. Then

Ck,(M,H) c Ck (M,H) c---
is a strict direct sequence of topological groups and product sets are large in

CH(M,H) = UN Ck. (M, H)

as the product map
G?\ICIICQ,(M’H) - Cf(M’H)’ (YI"“’)}n)e’e"") > Y1Y2 " Yn
ne

admits a smooth local section around e which takes e to e [21, Example 11.6, Re-
mark 11.5]. Since CIk<n (M, H) is complete for each n € N (Remark 7.4 (ii)), we deduce
with Theorem 1.1 that C¥ (M, H) is complete.

If M is merely paracompact, we let (M) j; be the family of connected components
of M (each of which is o-compact). Then the map

©:C (M, H) — ];?]Cf(M;,H), y = (¥l )jer

is an isomorphism of groups and we give C¥(M, H) the smooth Lie group structure
that turns @ into an isomorphism of Lie groups. As the weak direct product is com-
plete by the first part of the proof and Theorem 1.2, we see that CK(M, H) is also
complete. ]

Remark 7.6 Let H be a Lie group, M be a smooth manifold of dimension m € N,
and P — M be a smooth principal bundle with structure group H.

(i) If M is o-compact and the condition SUBg of [41] is satisfied,”® then the gauge
group Gau, (P) of P is a Lie group that is isomorphic to a closed Lie subgroup of the
weak direct product @,y C*(K,, H), where (K}, ) 4en is a locally finite cover of M
by m-dimensional compact smooth submanifolds K,, with boundary such that P is
trivializable on some open neighbourhood of K. If H and its modelling space are
complete, then C*°(K,,, H) is complete for each n € N (by Proposition 7.1), whence
also the weak direct product is complete (by Theorem 1.2) and hence also Gau,(P),
being isomorphic to a closed subgroup of the latter as a topological group. Then the
full group Aut,(P) of compactly supported symmetries of P is complete', as it is an

13This is automatic if H is locally exponential in the sense that H has a smooth exponential function
that is a local C*°-diffeomorphism at 0.

14 1 [41], Aut, (P) was made into a Lie group. For compact M, the Lie group Aut(P) was already
constructed in [45].
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extension
{e} - Gau.(P) — Aut.(P) — Diff.(M)p — {e}

of Lie groups (and hence of topological groups) for some open subgroup Diff (M)p C
Diff.(M). Since Diff (M) is complete (as already observed) and also Gau,(P) is
complete, so is the extension Aut,(P) (as recalled in Proposition 2.3(iv)).

(i) If M is paracompact and condition SUBg is satisfied by P|¢ for each connected
component C of M, let (M;)je; be the family of connected components of M. We
can identify Gau,(P) with the weak direct product @ ;e; Gau.(M;) (whence it can
be considered as a complete Lie group by (i) and Theorem 1.2). Moreover, Aut,(P)
can be made a Lie group having the weak direct product € je; Aut,(P|s,) as an open
subgroup. Hence Aut,(P) is complete, using Theorem 1.2.

8 Product Sets in Unions of Banach-Lie Groups
We now discuss ascending unions of Banach-Lie groups.
8.1 Well-behaved Ascending Unions

Let G; € G, € --- be analytic Banach-Lie groups over K € {R,C} such that the
inclusion maps j,+1,n: Gy = Gy are K-analytic group homomorphisms. Identifying
the Banach-Lie algebra g, := L(G,) with the image of the map L(ju11,4) in g4+1, We
can consider the ascending union g := U,y g, and endow it with the locally convex
direct limit topology. Give G := U,y G, the unique group structure making each
inclusion map G, — G a group homomorphism. Define exp;:g — G piecewise via

expg(x) = expg (x) if x € gn.

Lemma 8.1 (Dahmenss setting) If; in the preceding situation,

(i) g is Hausdorff,

(i) therearenorms||- |, on g, definingits topology for n € N, such that the Lie bracket
of 9n and each inclusion map (gu, | - |») = (9n+1> | - [ ns1) has operator norm <1,

(iii) expy is injective on some 0-neighbourhood,

then G admits a unique K-analytic Lie group structure such that P := exp (Q) is open
in G for some open 0-neighbourhood Q € g and exp; g a diffeomorphism of K-analytic
manifolds. (See [12, Theorem C]).

Proposition 8.2 Let G, € G, C --- be analytic Banach-Lie groups over K € {R,C}
such that the inclusion maps G, — G4 are K-analytic group homomorphisms. As-
sume that Dahmen’s conditions (i)-(iii) from 8.1 are satisfied and endow G with the
K-analytic Lie group structure described there. Let O be the topology on the Lie group G.
Then product sets are large in (G, Q) = U,en Gy As a consequence, O = Org holds, i.e.,
O makes G the direct limit topological group limG,,. If, moreover, the direct sequence
Gy € Gy C -+ is strict, then (G, ) is complete.—>

Before we prove Proposition 8.2, let us compile useful facts concerning the Baker—
Campbell-Hausdorff (BCH) multiplication.
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8.2 BCH Multiplication

Let g be a Banach-Lie algebra and ||- | a norm on g that is compatible in the sense
that it defines the topology of g and ||[x, y]| < |x| || holds for all x, y € g. Then
the BCH series converges for x, y € g with | x| + | y| < In 2 and defines an analytic
function

{(e,y) egxg: x|+ |yl <In(3/2)} — B} ,(0), (x,y) —>x+*y
(see [10]). If g = L(G) for some Banach-Lie group G, then
(81) expg(x *y)=expg(x)expg(y), forallx,yegwith|x|+[y]<In2.
See [13, Lemma 3.5 (a)] for the following estimates concerning derivatives of the BCH

multiplication.

Lemma 8.3  There exists s € ]0, 3 In %[ such that, for each Banach-Lie algebra g and
compatible norm | - || on g,

(8.2) (Vx,y € BG(O)(1°) (x, ) = a®[lop <

>

N | =

where a%:g x g — g, (x, y) = x + y is addition and
u%: B (0) x BG(0) — g, (%) —xxy
is the BCH multiplication.

To calculate the operator norm, the maximum norm was used on g x g here. With
sp and notation as in Lemma 8.3, we deduce the following.

Lemma 8.4  For each Banach-Lie algebra g and compatible norm | - || on g, we have
(8.3) x*y+Bf/2(0)Ex*BE(y)Ex*y+B§r/2(0)

forall x € B, (0), y € Bfo/z(o)’ and r € 10, 3 ].
Proof Setting R(x, y) := u?(x, y) —x —y, we have y®(x, y) = x+ y+ R(x, y) forall
x,y € BS (0). Since |R'(x, y)|lop < 1, forall (x, y) € BE, (0) x BE (0) by (8.2), and the

2 >
latter set is convex, Lemma 2.2 (i) shows that Lip(R) < 3. For x € Bf, (0), consider

the map p3: BY, (0) - g, y = u%(x, y). Forall y,z € BZ (0), we have

|u3(2) =3 (y) —idg (2= )| = [0 (x,2) = (x +2) =2 (x, y) + x + ¥
= [R(x,2) = R(x, y)[ < Lip(R) |z - ¥,

and thus Lip(p3 - idg) < Lip(R) < . Applying now the Quantitative Inverse Func-
tion Theorem [20, Lemma 6.1 (a)] (or the version in [44]), to the function u§ with
A= idg, we get (8.3). [ |

Proof of Proposition 8.2 To see that product sets are large in G = U,y Gy, let
(Up) nen be a sequence of identity neighbourhoods U, ¢ G,. By hypothesis,

(8.4) [%]m < |x|x forallintegers1< k < mand all x € gi.
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Let so be as in Lemma 8.3. For n € N, choose r,, € ]0,50/2""![ so small that
V, = expGn(Bf: (0)) cU,.

For x,y € B¥(0), write x *, y := u%(x,y) for the BCH multiplication, (as in
Lemma 8.3). Deﬁne W = B?l‘(O) We claim that W, := W,_; *, B7"(0) can be
defined for each integer n > 2, and

n
(8.5) ZBrk/z(O c W, Q;Bijk/z(O)

If the claim is true, then W := UneN W, is a 0-neighbourhood in g, as it contains the
convex set S := Upen(B? 1, (0) +- Bf:/z(O)) that is an open 0-neighbourhood
in the locally convex direct limit g = U,y g, as it intersects each g, in an open
0-neighbourhood. Since exp (W) contains the open subset exp; (S N Q) of G (with
Q as in Lemma 8.1), we deduce that exp, (W) is an identity neighbourhood in G.
Now expg(W,) = WV,---V,, for each n € N; this is trivial if #» = 1 and follows
inductively as

expg(Wy) = expg (Wy) = expg (Wy-1 %, B2 (0))
- expg, (W 1) expg, (B2 (0)) = exp, (Wa 1) Vi
= Vl Vn—IVm

using (8.1), the definition of V,,, and the inductive hypothesis. Thus
U=U U--U,2U WV, = UNexpG(Wn) =expg (W),

neN neN

whence U is an identity neighbourhood in G and so product sets are large.

We now prove the claim by induction. For n = 2, we can form W, := W; %, Bf2(0)
as W = B7'(0) < BJ(0) < B¥(0) by (8.4), and Bf2(0) c Bf2(0). Moreover, as
12 < So/2, we have Wy + Br:/Z(O) cCW,c W + B 2 /2(0) by (8.3). Hence,

B}, (0) + B ,(0) € W € BS, ,(0) + B3}, ,(0)

a fortiori. For the induction step, assume that # > 2 and that W;, ..., W, have already
been defined such that (8.5) holds with k € {1, ..., n} in place of . In particular, (8.5)
holds for n and its right-hand side is a subset of

ZBZAM_ZB%AMCWMW)

using (8.4) for the first inclusion. Thus W, € B$**(0) and since 7,41 < so, we deduce
that W,,;; := W, *,1, B¥*1(0) can be defined. Moreover,

Tn+1

Wo + B! (0) € Waar € Wy + B3 (0),

by (8.3). Using (8.5), we obtain ;7] Bg" ,(0) €Wy € eyt Bgf 1
pletes the inductive proof of the claim.

As product sets are large in G = U,y Gn by the preceding, the last and penulti-
mate assertions of the proposition follow from [21, Proposition 11.8] and Theorem 1.1,
respectively. u

(0), which com-
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