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RANDOM MOTION OF STRINGS AND RELATED
STOCHASTIC EVOLUTION EQUATIONS*

TADAHISA FUNAKI

§0. Introduction

In this paper, we shall investigate the random motion of an elastic
string by using the theory of infinite dimensional stochastic differential
equations. The paper consists of three main parts and appendices. In
the first part (§2), we shall derive a basic equation which describes the
random motion of a string. Several properties of this equation will be
investigated in §3, 4 and 5. In the third part (§6), we shall deal with a
stochastic differential equation on a Hilbert space as a generalization of
the equation of the string.

For given two functions a: R*— R!® R? and b: R* — R¢, let x, be a
diffusion process on R¢ determined by the stochastic differential equation:
0.1) dx, = a(x,)dw, + b(x)dt ,
where w, is a d-dimensional Brownian motion.

We shall introduce in § 2 the following C([0, 1], R%)-valued stochastic
differential equation (0.2) as an equation that describes a string which
moves in R? being interfered with by the process x,.

2
02  dX(0) = aX(NIB() + bX(Ndt + £ X (o),
g€ [O’ 1]’ K > 0 4
where ¢ is a parameter of the string and B,(¢) is a cylindrical Brownian mo-
tion on L¥([0, 1], R%), i.e., (8B,/dt)(0) is a d-dimensional Gaussian white noise
with two parameters (¢, ) € [0, 00) X [0, 1]. The equation (0.2) should have
some boundary conditions corresponding to the state at edges of the string.

The idea behind the derivation of the equation (0.2) is to take the

scaling limit of a sequence of polygonal approximations. More precisely,
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we approximate the string by a polygon and set on each corner a particle
which moves governed by the stochastic differential equation (0.1) with a
suitable scaling. In each step of the approximation, the interaction be-
tween neighboring two particles is always taken into account.

The Hamiltonian of an elastic string X e C([0, 1], R%) with modulus &
of elasticity which is located in the potential field U(x) (x e R% is given
by

0.3) HX) = L UX(@)ds + £ f 0 l%iﬁ(a) do .

With this H(X), a physical meaning of the equation (0.2) becomes clear
when a(x) = I, (d X d-identity matrix) and

1 1/ 00U oU
bx) = — LPUG@) = — L )
@) 57U 2( ox, ox,

In this case, the equation (0.2) is rewritten in the following form:

0.4) dX(0) = dBo) — 5 53r-(X)d,

where 0H/6X is the functional derivative of H(X). This is the infinite-
dimensional Einstein-Smoluchowski equation which is given by the limit
of the Ornstein-Uhlenbeck theory for the string with large friction, i.e.,
the limit of 8 — oo in the following equation (0.5) which describes the
dynamics of the string with friction intensity g forced by white noise (see
Appendix III).

dX (o) = V/o)dt

(0.5) _ B éH _
dVy(o) = E 3X(0) (X)dt .BVc(O')dt + ﬂdBt(a) .

We shall then study the properties of the equation (0.2) of the string
in the following four aspects.
(a) To look for the limit of the solution of the equation (0.2) as the
parameter « tends to infinity.
(b) To give a stationary reversible measure of the equation (0.2).
(c¢) To discuss the motion from some topological view points.
(d) To study the recurrent properties of the random motion of the string.

In §3, we shall answer to the problem (a). The limit processes are
different according as situations of both edges of the string. Roughly
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speaking, our results are the following. In the case where both edges
move freely and independently, the string shrinks to one point whose
motion is governed by the original stochastic differential equation (0.1);
in the case where one end is fixed at a point A,c R* while the other
moves freely, the string contracts to the point A,; in the case where both
ends are fixed at two points A,, A, € R? respectively, the string converges
to the segment A,A,. We shall also discuss the deviations from the limit
processes.

In §4, assuming that a(x) = I, and b(x) = —FU(x)/2, namely, con-
sidering the equation (0.4), we shall give a stationary reversible measure of
this equation explicitly. This measure is the infinite-dimensional analogue
to that given by A. N. Kolmogorov [11] in the finite-dimensional case.
Using this expression of the stationary measure, in the case where the
potential function U(x) diverges on some closed region E in R? and where
the both edges are fixed in D = E° (the complement of the region E),
we shall also construct a process that may be thought of as a stationary
solution of the equation (0.4). Since we can show that the string never
touches the domain E (the interior of E), this stationary solution induces
a probability measure P on the space C([0, o), C([0, 1], D)). As a simple
answer to the problem (c), we shall give a decomposition of P according as
the fundamental group z,(D) of the region D. By using S. A. Molchanov’s
results [17], we shall also be able to answer to the problem (a) in case a
divergent potential is given.

In §5, the recurrent properties of two dimensional strings with free
edges will be discussed. Assuming that d =2, £t =1, a(x) = I, and b(x)
= 0, we will get the following two results.

(i) The solution X, of the equation (0.2) is recurrent as a C([0, 1], R?-
valued process.

(ii) The string X,(s) sweeps away all points in R* with probability 1.

Finally in §6, we shall discuss, as a generalization of the equation

(0.2), the following semi-linear stochastic differential equation (0.6) on a
Hilbert space H.

0.6) dX, = a(X))dB, + b(X,)dt — rAX,dt,

where a: H— Z(H) = {the set of all bounded linear operators on H}, b:
H — H, B, is a cylindrical Brownian motion on H and A is a self-adjoint,
non-negative operator which has pure point spectrum {1,}i.;; 054,
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4 < --- such that 2, ~ ck'*? (¢,6 > 0) as B — oco. Such an equation was

introduced and discussed by D. A. Dawson [6]. With his results in mind,
we will give the limit or the scaling limit of the solutions indexed by «
of the equation (0.6) by letting £ — co.

The author wishes to thank Professor T. Hida for valuable suggestions
and kind encouragement in preparing the manuscript.

§1. Preliminaries

(a) The continuity of sample functions of random fields with n para-
meters.

Let C(R") be a set of all real-valued continuous functions defined on
R~ A sufficient condition for tightness of a sequence {X,}5., of random
elements of C(R") is given by the following proposition.

ProrostiTioN 1.1. The sequence {X,} is tight if it satisfies these two

conditions:
(1) There exists ¥ > 0 such that

sup E[|X,(0)}] < oo .

(ii) For each M < oo, there exist a, 8 and C > 0 such that
sup B[] Xy(x) — Xy = Clx — y[*?
for all x, ye R™: |x|, |y| < M.

For the continuity of sample functions of random fields defined on
R, the following result is known (see, e.g., Yu. N. Blagovescenskii and
M. 1. Freidlin [3]).

ProrposiTioN 1.2. Suppose that o real-valued separable random field
X(x) defined for x € R satisfies the following two conditions.
(1) There exists 1 > 0 such that

EX0)] < oo .
(ii1) For each M < oo, there exist a, 8 and C > 0 such that

E[X(x) — X(5)I] < Cla — y["*?
for all x, yeR":|x), |y| < M.

Then, X(x) has a version continuous in X.
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(b) A cylindrical Brownian motion on a Hilbert space.

Let H be a separable real Hilbert space with inner product {(,)» and
norm ||-|. Suppose a complete probability space (2, &, P) and an increasing
family {#,; t > 0} of sub-o-fields of # be given. After M. Yor [19], we define
a cylindrical Brownian motion on H as follows.

DeriNtTION 1.1. A family of random linear functionals {B,; ¢ = 0} on
H is called a cylindrical Brownian motion on H if it satisfies the following
conditions:
(i) By@) = 0 and B,¢) is & -adapted for every ¢ e H.
(ii) For every ¢ e H(¢ + 0), B(g)/|4|l is a one-dimensional Brownian mo-
tion.

We often denote B,(¢) by (B, ¢> or (¢, B,>. Sometimes, B, is called
a Siegel process (R. Holley and D. Stroock [9]) or a standard Wiener &'-
process in case H = L*(R") (K. It6 [10]). When H = L*G), G being a
domain in R", we shall denote (B, ¢> by
I B(o)§o)ds, ¢ecH.
(2]

(c) Stochastic integrals with respect to the cylindrical Brownian motion.
For an H-valued % ,-adapted measurable function f({, ) (({, »)e
[0, T] X £2) such that

E|[ 1ft, oyrat] < oo,

we define a real valued stochastic integral .[T {f(®), dB,> by
0

Pl RVIOWRYIIERY

where {¢,} is a complete orthonormal system in H. With this notation
we have

@D £| | <r@,aBy[] = E[[ irora.

If H = LYG), then we shall denote the stochastic integral JT<f(t), dB,> by
0

I : I [t 9)dBo)da .
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Let #,(H) be the set of all Hilbert-Schmidt operators on H, and denote
the Hilbert-Schmidt norm by ||-|,. For an Z,(H)-valued & .-adapted measur-

able function F(f, w), we define an H-valued stochastic integral .[T F(t)dB,
0
by the following equality:

<j : F(3)dB, ¢> - j (F*($)g,dB)  for every ¢ H,

where F* is the adjoint operator of F. Then we have

1= &[[ 1Foa|.

By analogy with the finite dimensional case (I.I. Gihman and A. V.
Skorohod [8]), the following estimates hold for the stochastic integrals
with respect to the cylindrical Brownian motion.

(1.2) E[HLT F($)dB,

Proposition 1.3. (i) Forp=1,2, ---, there exists a positive constant
C = C(p) such that

13 E([ <o, dBy)"| = c{f Burorea)
and
(14 E[([7 <, aB>)”] = e [ EufoIae

for every H-valued % ,-adapted measurable function f(t, w) which satisfies

[ Evf@rma: < oo .

(ii) For each Z,(H)-valued F ,-adapted measurable function F(t, w) which
satisfies

[ EuF@RId < o0,
the following estimates hold.

(1.5) E[H j : F(t)dB,

"] = [ EurErray’

(16) E[

j F(t)dB,

"] = e [ BUF@ L

Proof. We show only the estimates in (i), since those in (ii) can be
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shown similarly. Using It6’s formula in the infinite dimensional case (M.
Yor [19]), we have

E([ <@, aBy)"| = pep — v | ask|([[ <t aB.>) @1
for t <T.
By Hoélder’s inequality,

(], s ano)’]
(p=1)/p

< pep — 1) [ asE|([ <fwy, aBy) | EUAD I
= pep — VE|([ <0, B> )| [ BUs) 1

We, therefore, have (1.3) with C = {p(2p — 1)}>. The estimate (1.4) can
be derived from (1.3) by using Hélder’s inequality. (Q.E.D.)

(d) Stochastic differential equations on a Hilbert space.
Consider the following non-linear stochastic evolution equation on H.

{dXt = a(t, X,)dB, + b(t, X,)dt — AX,dt, tel0, T]

1.7
@7 X, e H,

where B, is the cylindrical Brownian motion on H. We assume that A,
a and b satisfy the following three conditions.

(A.1) A is a non-negative, self-adjoint operator on H and has pure point
spectrum {2,}7-; 0<2, <2, £ -+, such that 2, ~ ck'*%(c, d > 0) as

k — oo.

(A.2) a(-, -)is a mapping from [0, T'] X H into the set #(H) of all bounded
linear operators on H and satisfies the following two conditions.
(i) a*(-, -)¢, is a continuous mapping from [0, 7] X H into H for
each k=12, .-,
(i) lle*@, X)¢: | = K1 + | XD,
[(@*( X)) — a*(¢, X))l < KNI X, — X, K>0,
for every X, X,, X,eH, te[0,T] and k=1,2, ---,
where a*(¢, X) is the adjoint operator of a(f, X) and ¢, is the
normalized eigenvector of A corresponding to the eigenvalue
Ape

(A.3) b(-,-)is a continuous mapping from [0, 7] X H into H and satisfies
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o, X)) — b, X = K| X, — X, K>0,
for every X,, X, e H and t¢[0, T].

An H-valued & ,-adapted process X, is called a solution of the equation
(1.7), if it satisfies the following integral equation:

X, = U®X, + f: Ut — s)a(s, X,)dB, + L Ut — s)b(s, X,)ds ,

where {U(f), ¢ = 0} is a semi-group on H generated by —A. The following
theorem was shown by D. A. Dawson [6].

THEOREM 1.1. There exists a unique solution X, of the equation (1.7)
such that sup,cr,r E[|X.|f] < oo for each T < oo and X, e C([0, o), H)
(a.s.).

In Appendix I, we shall discuss the case of H = L¥G, R?) with a
bounded domain G in R”. In this case, the solution X,(-) of the equation
(1.7) determines an R’valued random field defined for (¢, 0) < [0, ) X G.
We shall study the joint continuity of sample functions of the X,(o¢) in

(t, o).

§2. The stochastic differential equations of randomly fluctuating
strings
Let x, be a diffusion process on R‘ determined by the following
stochastic differential equation:

2.1) dx, = a(x,)dw, + b(x,)dt, t>0,

where w, is a d-dimensional Brownian motion, and where ¢ and b are
R?® R% and R%valued Lipschitz continuous functions on R?, respectively.
In addition, @ is assumed to be bounded.

In this section, we derive the stochastic equation (0.2) of an elastic
string which moves in R? being interfered with by the process x,. The
state space of continuous strings, denote them by X(g), ¢€[0,1], is a
function space ¥ = C([0, 1], R%) topologized by the uniform-norm.

The state space is often specified to a subset of ¥, so that we are
led to consider the following three cases.

(I) Both ends of the string move freely.

(II) One end of the string is fixed at a point A, R* while the other
end moves freely.

(III) Both ends are fixed at points A4,, A, € R¢, respectively.
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The initial state X;e % of the string is assumed to satisfy the following
conditions in the cases (II) and (III).

{XO(O) = A,, in the case (II).
X0)=A4,, X(1)=A,, in the case (II).

In the case (I), nothing is assumed for X,.

We are now ready to derive the equation by the polygonal approxi-
mation. Let {w,(k)};., be an infinite system of independent d-dimensional
Brownian motions. We determine, for a positive integer N, an N X
d-dimensional diffusion process {XM(k/N)}i_, by the stochastic differential
equation:

(2.2)

axo(4) = ol (1 )aoth (x4

+ %A‘”Xﬁ”"(—k—)dt ,

2.3) < N

<kE<N, £>0, t>0,

where

A(N)XﬁN)(_j\%) — {A<N>(X§N) ({\gf_))(z‘)};’ Xém(?%) — {(XgN) (%))(i};

and where

(e ()
- el () - s )+ (e (B

The following boundary conditions are given according as cases (I)—(III).
x0 = x( ), xeo(NEL) = x>0,

in the case (I) .
@y X0 =4, xe(TEL) - xr@, >0,

in the case (II) .
XM(0) = A, XE’”(E%) =A,, t>0, in the case (III).
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The physical meaning of the equation (2.3) is as follows. The move-
ment of the IV particles {X{"(k/N)}{_, on the string is governed by a system
of stochastic differential equations which have the diffusion coefficient
~/Na(x) and the drift coefficient b(x). The random fluctuation forces are
understood to be mutually independent. Two neighboring particles attract
each other by the force «N*|X™((k 4 1)/N) — XP(RIN)|/2 (0 < k< N).
The constant x is the modulus of elasticity of the string.

We define X*(0), ¢ €[0, 1], by

X0 = (o =k + DX )+ (= NoXp (£,

E—1 k]
2l 1<k<n.
04:N N ==

A probability measure P® 1is introduced on C([0, =), ¥) by X, since
the process lives in C([0, o0), ¥).

We now pause to consider the stochastic partial differential equation
of semi-linear type:

(2.5) dX(0) = a(X(0)dBo) + b(X(0))dt + %AXz(o)dt ,
oel0,1], ¢>0,
with the boundary conditions,

9
do

x@zAm,gxm=o,mmmmum,
(v

x@zgxmzo, in the case (D),

(2.6)

X0 =A4,, X@1)=A,, in the case (II),

where B, is a cylindrical Brownian motion on L*[0, 1], R%), and where
4X(0) = {4 X (0) Y1, Xio) = {(X(0))®}1 and A(X(0))® = (8"/00"(X (o).

By a solution of the equation (2.5) with the boundary condition (2.6)
and the initial state X, €%, we mean a solution of the stochastic integral
equation:

X0 = X..0) + [, pt — 5,0, Da(X(NdB.()dr

+ J: J: pt — s, g, )b(X(c))dsdz ,

@7

where X, (o) is the solution of the equation:
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2.8) 9 X,.(0) = £ 4X,(0),
ot ’ 2 ’

with the boundary condition (2.6) and with the initial state Xi(s), and
where p(t,0,7) is the fundamental solution of (x/2)4 with the boundary
conditions:

al(t, 0,7) = ﬁp—(t, 1,z) =0, in the case (I),
do oo

9 p(,0,7) = %p—(t, 1,7)=0, in the case (II),
g

p0,7) =pi,1,z) =0, in the case (III) .

We denote by X, .(0) and X, (0), the second term and the third term
of the right hand side of the equation (2.7), respectively. When ¢ =1,
the fundamental solution will be denoted by q(¢, g, 7) instead of p(¢, g, 7).

By the argument in Appendix I, the equation (2.5) has a unique
solution X, living in C([0, =), ¥) (a.s.). We denote by P the probability
measure on C([0, o0), ¥) induced by X,. In the rest of this section, as-
suming £ = 1 for simplicity, we shall show that X converges to the X,
as N — oo in the following sence.

THEOREM 2.1. As probability measures on C([0, ), %), P tends
weakly to P as N — co.

To prove this theorem, first, we rewrite the equation (2.3) in an inte-
gral form. Let g"(¢, /N, I/N) (t = 0,0 < k,1 < N + 1) be the fundamental
solution of (£/2)4", i.e., a solution of the equation:

Lqooft, %, L) = Lagan(t £, ),

ot N' N "N’ N
(2.10) t>0, 1<k £<N,
k z)
<N)0, , =N7c ,
g ( N' N O

with the boundary conditions,

4 1 4
@ A 09 ) = (N)<t, ’ —‘)’
[q ( N/ \"NN
3 N+1 ¢ ) ( Z >
o t; y =+ | & @ t, 1’ ’
1 ( N 'N/)71¢ N
(2.11) t>0, 1<¢4< N, in the case (I),
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4 N+1 ¥/ £
@ L 0, )20’ (N)( >= (N)(’ ’ )9
a( N ? N "N/ ¢ N

t>0, 1<¢< N, in the case (II),
VA N+ 1 £
) t,O,——>— (N)( )_:0,

q ( N/=¢ N 'N
| t>0, 1<¢<L N, in the case (III) .
Noting that {< B,(9), VN X—v/x.0m(0) >H-1 is a system of N independent
d-dimensional Brownian motions, the process X/ has the same distribution
as the solution of the integral equation:

X0 = X206 + [ a0t = 5, 0, [Da(X " (ED)AB.)ds

2.12) 1
+ j I (4t — 5, 0, [EDBX P ([e]))dsdz,

where [d] = [¢]" = E/N,

¢(t, 0, ) = o — k + Dg(t, £, )

N N
E—1 ¢

+ ( — N <N>(t, ,_),
( 2l N ' N

k (k -1
(N) (N) (N)
X®(o) = (No — k + XX ( ) + ( — No)X{§ ),

for oe(k_l k],

N N
and where {X{T(k/N)}i, is a solution of the following equation (2.13).

9 <N><_k_>=l . (m(i)
ot X N 24 X N

() - x(4)
with the boundary condition (2.4). We shall denote by X{(s) and X{¥(o0),
the second term and the third term of the right hand s1de of the equation
(2.12), respectively.

For p > 0 and an R%valued random variable X(¢, ¢) with a parameter
(t5 0) € [0, T] X [O, 1], we set

1Xllz,, = sup  E[X(t, o)1 .

(t,0)€[0,T]x[0,1]

1<kRZEN,

(2.13)

When p = 2, we denote || X|;, simply by | X]||,.
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Using the estimates on ¢’ and ¢ which are summarized in Appendix
II, we have the following uniform estimate on the processes {X{™}7...

Lemma 2.1. For each p > 0 and T < oo, we have
2.149) sup | XMz, < oo, where N ={1,2,---}.
NeN

Proof. Since

(215) X260 = [ (XD — XODIg™, o, [Dds + X0(),

where
0 , in the case (),
X(g) = A, , in the case (II),
Ni - No)A, + NoA}, in the case (III),
we can first show
(2.16) sup  sup (X)) =C, < oo

NeN (t,0)€[0,T]X[0,1]

Since the function a is bounded, Proposition 1.3 and the estimate (AIL5)
in Appendix II prove

sl
2.17) <G {I dsE [(Il la(X,([z])) |2(q(1v>(t —s, 7}:7_’ [T]))zdf)p]l/p}p

c{j q<~><2(t— 5), & N ]’;)ds}” ~C <o, forpeN.

In the above expression, |a| stands for the norm of the matrix a, ie.,
lal’ = 3,;,;a% for a = (a;;). Noting that the Lipschitz continuity of the
function b implies the estimate:

[bx)| = C (1 +|x)),

IA

we have

o)l ]

@1 < B|([ ds | px )]

< af {1+ s B x0(£)

f: ds J: (q“‘”(t — s, ——1}:7-, [r]))gdz‘}p
2p]}ds .
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By the estimates (2.16)-(2.18), we have

k 2p 2 k 2p
nf R < e
o E[xeo ()| = 6 f {1+ sup B2 ()" e,

where a positive constant C; is independent of N. We obtain the desired
estimate (2.14) by the help of Gronwall’s lemma for each positive even
number p. We can prove the estimate (2.14) for general p > 0 by using
the Hélder’s inequality. (Q.E.D.)

To show the tightness of the sequence {X{(™}3_.;, we need the following
lemma.

LemMmA 2.2. For each i =2, 3, T < oo and pe N, there exists C =
C(T, p) > 0 such that

(2.19) E[‘XL(?:Z(O.I) - Xfi‘,’%(%)l“’] = C{[tl — L + lo, — ozlp/z} ’
for every t, t,e [0, T], o, 0,€[0,1], Ne N.

Proof. For 0<¢ <t < T and gy, 0, € [0, 1] such that ¢, = [¢], g, = [a.],
Proposition 1.3 and estimates (AIL5-6) imply

E[X30) — X84 P]
= ¢{[ asE|([ 1a@@D)e ™t — 5. 0 EDcun
— ¢t — 5,9, [D)rae) ||

ta 1 »
@20 = cff s @0 - s 0 EDlaw — a6 — 5,0, EDYde]

Il

Cz{.rl q™(2s, g, a,)ds + J’" q"(2s, a,, a,)ds
0 0

(t1+1t2)/2
-2 J ot g™ (2s, o, az)ds}p

(ta—t1)/2
= CS{Itl - tzlm + |o; — 0.211/2}13
= C4{| t— 4"+ |oy — O.le/z} .

For every 0 < g, < 0, <1, we have
B[ X)) — XEAe)P]
< C{BIXNE) — XD M)

(2.21) + E[‘Xiﬁ%d«n]) - Xiﬁfé([az] - 7%,—)

g
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o

_c {sz([m] _ 01)“’E l ng; [0,] — %) - X;Ké([a,])‘zp]

g

+ E ]X [crz] - L) — X{M(a)

+ E [Xiff%([m]) —~ Xf:Y%([%] - i)

N
+ N — (o) + ) B % (ed — ) - x| ]}
< CCfllo) = o + 1t = £P" + |lo] = - — (o]

1

D/2
0, — [o)] + —Jv }

= 05C4{|t, — LI 4+ oy — Uz‘pﬂ} .

This proves the estimate (2.19) for i = 2. The estimate (2.19) for i = 3
can be proved, in a similar way to the case of { = 2, with the help of
Lemma 2.1. ~ (Q.E.D.)

The solution X{™ of the equation (2.12) converges to the solution X,
of the equation (2.7) as N — c in the following sense.

ProrosiTioN 2.1. We have

Im || X — X|l, =0  for each T < o .
N—co

Proof. By (2.15) and (AIL4),
(2.22) lim sup | X(e]) — X,,.(0)| = 0.

N—oo (t,0)€[0,7]X[0,1]
By the Lipschitz continuity and the boundedness of the function a,
E[ X ([0]) — X,
< ¢ [ ds[ Elg™¢ - 5, [0, EDaX (=)
(2.23) — q(t — s, 0, 7)a(X () Ildz
<c | as [1a = 5, 101 D) — at = 5,0, e

+ C, j: ds J:E [X([2]) — X.(2)[1g*¢ — s, 0, 2)dr .

The discussion in Appendix II guarantees that the first term of the last
line of (2.23) converges to 0 uniformly in (¢, 0) [0, T] X [0,1] as N — oo.
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The expectation
ENX2(o]) — X.0)[]

can be estimated in a similar way to get the estimate (2.23). Summing
up, for each ¢ > 0, there exists N, N such that

sup E[X "([o]) — X (0)[]

c€[0,1
Se+ G (¢~ 97" sup EIXO(0) — X()1ds,
0 o€[0,1
tel0, T], for every N> N, .

Using this estimate n times over, we have
XD ~ Xz = e"}jl (Cia ) I (1 + i[2)
i=0

+ (CiaD)' I (1 + nf2)| X(-]) — Xz,

where I'(x) is the gamma function. Noting that | X*([-D]l; < oo and | X||,
< o0, we have '

IXOCD ~ X £¢C,, €= 5 (CRTIAI(A +if2) < oo .
This proves
(2.249) lim | X([-]) — Xllp = 0.
Noting the equality
E[X{"([e]) — X{™(o)[]
= Nt — B[ x¢" (1] — ) — X&)

]
we have, by the representation (2.15) and Lemma 2.2,
(2.25) lim [ X"([-]) — XM, =0.
N-ooo
By the equalities (2.24) and (2.25), we finally conclude
lim || X — X]|,=0. (Q.E.D.)
N—=w
We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Noting Lemma 2.2 and that X{}(¢) converges
to X, .(¢) uniformly in (¢, ¢) on each compact subset of [0, o0) X [0, 1] as
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N — oo, we see that {P“}5., is tight as a system of probability measures
on C([0, o) X [0, 1], R%). Proposition 2.1 implies that every finite dimen-
sional joint distribution of P“” tends to that of P. Since C([0, ) x [0, 1],
R% = C(]0, ), ¥) and these two spaces have equivalent topologies, we
have the conclusion. (Q.E.D)

By Theorem 2.1, one may think of that the #-valued stochastic dif-
ferential equation (2.5) describes a mathematical model of an elastic string
which moves in R? being interfered with by the diffusion process x,. The
following sections will be devoted to the discussions of several properties
of the equation.

§3. The limit of the solution as the modulus of elasticity & — oo

The solution X,(¢) of the equation (2.5) depends on the parameter «,
so that we denote the solution by X,(s;«). The purpose of this section
is to investigate the limit process of the X,(s; ) as the modulus of elasticity
£ of the string tends to infinity. In fact, we shall prove the following
results:

(i) In the case (I), the string shrinks to a single point whose motion
is determined by the stochastic differential equation (2.1).
(ii) In the case (II), the string contracts to the point A,.

(iii) In the case (III), the string converges to the segment A,A,.

In the cases (II) and (III), we shall also study the deviation of the X,(s; x)
from the limit.

We denote by P,, the probability measure which is induced on
C((0, ), #) by X,(0;r) and also by X, ,(o;«x) each of the three terms in
the right hand side of the equation (2.7) instead of X, ,(¢) (i = 1,2, 3),
respectively.

To prove the above results we prepare two lemmas which give esti-
mates on X, ,(s;x) (I = 1,2,3). The X, ,(o;x) has the following represen-
tation:

(3D Xio30) = [ (X — XlaGet, 0, 2z + K@) ,
where

0 R in the case (),
(3.2 X(o) = A, , in the case (II),

1 — 04, + dA,, in the case (III).
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By this representation and the estimate (AIL 11) in Appendix II, we have
the following lemma immediately.

LemmA 3.1. There exists a positive constant C such that, for every
£k=>1,t>0and o0, 1],

| X, (0; &) — X,| < Ce P in the case (I),
and
|X, (03 £) — X(o)| < Ce#et in the cases (I) and (III) ,
where
Xy = J: X(o)do ,
and where B is a positive constant which appears in (AILS).
This lemma implies that

(3.3) sup | X, 1(0; 8)| < o0 .

(tyo,8)€[0,00)X%[0,17X[1,)
LEmMMA 32, Fori=2,3, p>0and T < oo,
sup X050, < oo in the case (1),
21
and
sup VEIX 30, < o in the cases (II) and (III) .
Proof. First, for pe N, we prove by using Proposition 1.3,
E[| X, (o5 £)[]
t 1 pJi/p)
< &{[ B[ ([ 1ax@ et - 9, 0,9d) ")
0 0
< Cz{r q(2ks, o, o)ds}p.
0
In the case (I), we have by (AIL12),
L q(xs, o, )ds < C, j {1+ 1/+/ 2rs)ds
0

(3.4) = Cft + V2t [V« }
SC{T+V2T}, t<T, r=>1.

While, in the cases (II) and (III),
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14 1 2kt
f q(2ks, 0, 0)ds = ——f q(u, o, 0)du
(3.5) ° 2 Jo
< (2)'Glo,0) < Cix™*,

where G is the Green function of (1/2)4 with the boundary conditions
(2.9). Therefore, we have the desired estimates for i = 2.
To derive estimates for i = 3,

E[| X, i(a; 0)7]
(3.6) < E[( I: ds J:Ib(Xs(r;x)) {zdr)p] X { I : ds j: Gt — 3), 0, r)df}”

< Cs{ﬁ q(2¢s, o, a)ds}ptp“ f: {1 + sup E[|X,(r; k) IQP]}ds .

€(0,1]

Noting (3.3) and estimates which are derived above for i = 2, we have
13
sup E[ X001 < G, [ {1 + sup EIX(c; 0"l)ds
e€[0,1] 0 z€[0,1]
for t<T and £>1.
By Gronwall’s lemma, we have
3.7 Sg? I XC5 0 < oo

Inserting this estimate into the right hand side of the inequality (3.6), by
(8.4) and (3.5), we have the concluding estimates for i = 3. (Q.E.D.)

To show the tightness of the family {X.(-;«), x > 1}, we need the fol-
lowing lemma.

LemmMA 3.3. For i =2, 3 and for each T < oo, pe N, there exists a
positive constant C such that

E[! X,,,(o:; k) — ng,i(o'z; £)[?]
(3.8) < C{ty, — L% + k2|0, — 0,7}
for every t,, t,€[0,T], 0, 0,€[0,1], £=1.

Proof. For 04, £t, £ T and o, 0,€[0,1], we have in a similar
manner to the proof of Lemma 2.2,

E[ X, 0; k) — X,, 0,; £) 7]
< Cl{r1 q(2xs, 0y, 0,)ds + fe q(2ks, a,, 0,)ds
0 0

(t1+t2)/2 V4
— 2.( q(2ks, gy, oz)ds}

(ta—t1)/2
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é,’C;(Z/c)‘”{r“‘q(u,fo,,io,) du + jm q(u, 0, a,)du
0 0

5(t1+t2) »
—2[ " g, 0, 0 duf” .

&(t2—t1)
The expression in braces is equal to

G(2xt,, gy, 0,) + G(2kty, 0,, 0;) — 2G(2¢t,, a4, 0,)

x(t1+t2)

69 +[awo,ordu—2[""" a0, 0)du
2xt1

2xty

c(ta—t1)
+ 2L q(u, ,, a,)du ,

where G(t;0,7) is a function which is defined in Appendix II. By the
estimate (AIL 15) on G(¢; o, 7), the absolute value of the sum of first three
terms in (3.9) is bounded by 6|s, — o,| for every £ > 0. The estimate
(AIL 12) implies that there exists C = C(T) > 0 such that the absolute
value of the sum of remaining three terms in (3.9) is bounded by Ck+/t, — ¢, .
Therefore, we have the estimate (8.8) for i = 2.

In a similar way, we have the estimate (3.8) for i = 3 by noting (3.7)
in the proof of Lemma 3.2. (Q.E.D.)

From now on, we shall discuss the problems in the case (I) and in
the cases (II), (III), separately.

Case (I). Let x, be the solution of the stochastic differential equation
(2.1) with a starting point X, We define X,(c; o) by

(3.10) X,(0; ) = x, for (¢,0) € (0, 00) X [0,1] .

Denote by P.., the probability measure on C((0, o), ¥) induced by X,(c; o).
We show that X,(-;«) tends to X,(-; o) as £ — oo in the following sense.

TaEOREM 3.1. (i) For 0< T, < T, < oo,
lim sup E[|X(o;£) — X,(0; )[1=0,

k=00 (t,0)€[T1,T2]X[0,1]

where X,(o; o) is defined as in (3.10) by the solution x, of the stochastic
differential equation (2.1) with a Brownian motion w, = {B/0), X;,/(0)>,
when a cylindrical Brownian motion B,(s) is given.

(ii) The probability measure P, tends weakly to P, as £ — oo.

Proof. The process x, = X,(¢; o) satisfies the integral equation:
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1 t 1 t M1
X, = L X()dr + f 0 fo a(x,)dB,(t)dr + f 0 f " b(x)dsds
=X+ X+ Xpys .
As for the process X,(o; k),
E[IXt,z(‘T; /5) - xz.2|2]
< [ ds [ Blla(X.e; 0)ae(t — 5),0,) — a(e)1de

(3.11) = 2}: ds L {Ella(X(z; ) FNq(a(t — $),0,7) — 1)
+ Ella(X(z; £)) — alx,) l}de
<G J: {a(2ks, 0, 0) — 1}ds + C, J: sup ElX.(z; £) — x,[)ds

< Cx' + G j sup E[X,(z; x) — x,/1ds .
0 16[0,1]

With the help of (3.7) with p = 1, we have the estimate for X, i(o;«):
E[[Xz,s(o'; K) — %5’

3.12) .
< C? + C3J sup E[|X(z; x) — x,[lds .
0 r€[0,1]

Again by (3.7), for each ¢ > 0, there exists d: 0 < 0 < T, such that

f sup] ENX(z;6) — x,/]ds < ¢ for every k> 1.

0 z€[0,1
By Lemma 3.1, there exists x, > 1/e such that

sup | X, (o58) — X[ <e, forx=x.
(t,0)€[3,T2]1%[0,1]

The above estimates prove that

El|X(o;6) — %1 < C + C [ sup BIX(x;) — x,flds
§ z€[0,1]
for telo, T,], £=«.
We therefore have

sup]E[le(o;x) —xf] £ Cee®?, teld,T], £=ko,

o €[0,1

which implies the assertion (i).
In particular, we see that every finite dimensional joint distribution
of P, converges to that of P,. Since the family of probability measures
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{Pw; £ = 1} is tight by Lemma 3.1 and Lemma 3.3, we have the assertion

(ii). (QED.)

Cases (II) and (III). Set X,(o; o0) = X(¢) for (¢ 0)e(0, ) X [0,1],
where X (o) is defined as in (3.2), and denote by P, the probability measure
on C((0, ), ¥) induced by X,(o; o). In the cases (II) and (IIl), we can
easily show that X,(-;x) tends to X(-) as ¥ — oo, as is prescribed below.

TaEOREM 3.2. (i) For 0 < T, < T,< oo and p > 0, we have
lim sup  E[X(o;¢) — X(@)*] =0.

£~ (t,0)€[T1,T2]X[0,1]
(ii) The probability measure P, converges weakly to P, as k£ — oo.

Proof. The assertion (i) follows from Lemma 3.1 and Lemma 3.2, while
the assertion (ii) follows by noting Lemma 3.3. (Q.E.D.)

We shall also discuss the deviation of the X,(¢; ) from the limit X ():
lim Y,(o; ),
where
Y(o;8) = V& (X0 £) — X(0)) .
Setting

V.uoi0) = v [ [ a@Oaett — ), 0, IdB.(2)ds
0J0
we have the following.
LEmmA 3.4. For each t > 0,
(i) lim sup E[v& X, 05 £) — Y..(0;6)[1 =0,

g—o0 0€[0,1]

(ii) lim sup E[|/ % X, :o; )1 =0.

k- ¢€[0,1]

Proof. Lemma 3.1, Lemma 3.2 and (AIIL 12) prove
EllyV& X, (0;6) — Y, (05 0)[]
—x fo dsEU; la(X(z; 1) — a(R (@) gt — $), o, r)df]
< Cur | sup Ella(X,(s; ) — a(R@)Fla@e(t — 5),0, 0)ds

< Cur [ e 4+ w)(2utt — )7
0

—-0 (as £— o).
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This implies the assertion (i).
The estimate (AIL 11) on ¢ shows that

El| V& X, ;)]
< CxE [{L ds j 1 X(c; ) — R qlet — 9), o, f)df}z]

+ 2x{ﬂ ds jo 16X @) gkt — 5), 0, 7) dr}z
< Cpe L ds ﬁEu X,(c; 1) — XK@ [)de X j ds L ¢(xs, o, 7)de
¥ C4IC{J: ds L q(ss, o, 7) df}z

< C,G(s, 0) j (e + k-)ds + csx{j’ e-Pids }
0 0
—0 (as £ — ).
We have therefore proved the assertion (ii). (Q.E.D.)

The next step is to show that Y,(-;«) tends to a process Y,(-) which
is defined later. First, we consider a Gaussian %-valued random variable
Y with mean 0 and covariance

%(aa*)(Ao)Gz(al, a,) in the case (II)
E[Y(e)® Y(a)] = | _ 1
L ds j (@)X, 7, Dals, 7, 7)ds
in the case (III) ,

where Y, ® Y, = (Y, ® Y,),,) = (YiYy) for vectors Y, = (Y}l Y, = (YHi,
and aa* = ((ea*),;) = G2, a;.a,,) for a matrix @ = (a,;). The definitions
of G, and ¢, can be found in Appendix II. Let {Y,;¢ > 0} be a family of
independent #-valued random variables such that each Y, has the same
distribution as Y.

Remark 3.1. In the case (II), Y(.) has a realization: Y(o) = a(A)w,
with a standard d-dimensional Brownian motion w,, with a time parameter
g€ [0, 1], starting from the origin. While, in the case (III), if a(x) = a
(constant matrix) for [xe A,4,, then Y(¢) = aw, with a d-dimensional
Brownian bridge w,.

LEmmA 8.5. For every 0<t, <t, < ---<t, and ¢,€[0,1] (G =1,
2, -+, n), the joint distribution of {Y,, (o; £)}?.; on (R%)" converges to that
of {Yu(ai)}?:l as Kk — oo,
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Proof. Since {Y,.(0;«); (¢, 0)e(0, ) X [0,1]} is a Gaussian system
with mean 0, it is enough to show the convergence of covariance functions.
It is of the form

E[Yn,z(al; £)® Ytz,z("z; £)]

(3°13) t1At2 1 ~
— & [ ds [ (@@ (@alutts - 9,0, IaGelt, — 5), 0, )z

When ¢, = t,, by (AIL 8), the right hand side of (3.13) tends to 0 as £ — oo;
and when ¢, =1, it tends to E[Y(c,) ® Y(0,)]. Therefore, we have the
conclusion. (Q.E.D.)

THEOREM 3.3. For every 0< t, <, < --- < t,, the joint distribution
of {Y,(-; 6}, on €™ tends to that of {Y,(-)}i., as £ — oo.

Proof. By Lemma 3.1, for each ¢ > 0, we have
(3.14) lim sup |v% (X, (o; %) — X(0))| =0.

£— ¢€[0,1]
By Lemma 3.4, Lemma 3.5 and (3.14), we see that the joint distribution of
{Y.(0;; £)}:-; tends to that of {Y,(¢))};-, for every 0< ¢, <, < - < ¢, and
5,€[0,1] 6 =1,2, ---,n). Taking t, =, = t in (3.8), we have

E[l V—K_Xm‘(ax; K) — N/TXt,i(o'z; K)*] < Clo'x — 0,|°
fori=2,3.

Combining this with (3.14), we see that {Y,(-;x); £ = 1} is tight as a family
of #-valued random variables for each ¢ > 0. Therefore, we obtain the
conclusion. (Q.E.D.)

§4. Brownian strings in a potential field

In this section, we discuss the equation of a Brownian string in a
potential field U(x) (x ¢ R%), that is, the equation (2.5) with a(x) = I, and
blx) = —VU(x)/2:

(4.1) dX,(0) = dB0) — %VU(X,(U)) di + £ 4X (o)d .
We shall give a stationary measure of the equation (4.1) explicitly,

and we shall also investigate the equation in the case where the potential
function U diverges on some region in R°.

(a) The stationary measure of the equation (4.1).
As is stated in Introduction and will be proved in Appendix III, the
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equation (4.1) may be thought of as the Einstein-Smoluchowski equation
on the space ¥. In the finite dimensional case, A. N. Kolmogorov [11]
characterized the equations of this type mathematically and gave their
stationary measures. By analogy with his results, we may expect that
the stationary measure of the equation (4.1) would be given by the fol-
lowing formal measure v on %:

4.2) dy(X) = e @ 9(X) ,

where H(X) is the Hamiltonian (0.3) of string and 2(X) is the “Lebesgue
measure” on ¥ (Feynman measure).
To state more mathematically, define, for each of three cases (I)-(III),
a d-dimensional process w,, ¢ € [0, '], as follows.
(i) In the case (I), w, is a Brownian motion whose initial distribution
is the Lebesgue measure on R‘
(ii) In the case (IT), w, is a Brownian motion with a starting point A,.
(iii) In the case (III), w, is a pinned Brownian motion which starts from
A, and arrives at A..

We denote by g, a non-negative measure on (%, #(%)) induced by the
process w,, (¢ € [0, 1]), where #Z(%) is the topological ¢-algebra on ¥. As
a mathematical realization of the formal measure in (4.2), we define a
non-negative measure v on (%, #(%)) by

du(X) = exp {— f U(Xa)da} dpn(X) .

Before we discuss the properties of v, we introduce some notations:
(i) C(R™) = {FeC(R*); F has a compact support},
(ii) Cy®) = {fe C(®); f is bounded} ,
C(%) ={feCy®); f =0 on %5 with some 0 < M < oo},
where
Cy ={Xe¥; | X(0)| £ M for every a0, 1]},

Gii) 9y = {fe C@); f(X) = F({X(%)}N) with Fe c(,(Rw)} :

QZCJ@N'
N=1

The potential function U will be assumed to satisfy the following
conditions.

AssumpTioN 1. The function U belongs to CY(R%), FU is Lipschitz
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continuous and U is bounded from below.

Under this assumption, the equation (4.1) has a unique solution X,(o)
and we can prove the following theorem.

THEOREM 4.1. Under Assumption 1, for each of three cases (I)—(III),
the measure v is a reversible measure of the solution X, of (4.1), that is,

43) [ BlfGNeBX) = [ ErleXf X)X
holds for every f, ge C(%),

where E,[-] means the expectation with respect to the probability measure
induced on C([0, o0), ¥) by the solution X, of (4.1) with initial state X, € €.

Proof. We define a function U on R*Y by

oy - Gofen() » 2 e (52) oo ()]

>y () B2\ aN
X X e R,
N /)k=1

where X®(0) and X ((IV 4 1)/N) satisfy the boundary conditions (2.4).
Using the function U, the equation (2.3) for X = {X{™(k/N)}Y_, can be
rewritten into the following form:

“.4) dxgm(%) — v Ndw,(k) — %V T(X™)dt .

)

Define a non-negative measure vy on R*" by

Ay (X) = exp [— %f U(X<N>)]dX<N>

“cem[- & fvler(4)]
(s h)eax(f) 15 02)

where dX“ is the Lebesgue measure on R? and C, is an appropriate
constant which depends on N. Then, it is known that v, is a reversible
measure of (4.4), i.e.,

f Ex oo [F(XI)GXET)dyn(X5Y)
RAN

- I ow Bren [GXNFX)don(XE7)
holds for every F, G e C(R™™).
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We therefore have

[, Errane exo (- 1 3 U(X(4))jduo)

= | B@tecor @ exp (= L3 U(X( %)) Jdue®
for every f, gc9,, N=12,...,

where E{¢D[-] means the expectation with respect to the probability measure
determined on C([0, ), %) by X as in §2. Noting Theorem 2.1 and
that U is bounded from below, we get the equality (4.3) for f, g€ 2 by
taking the limit of both sides in the above equality. Approximating the
functions in C,(%) by those in 9, we can easily show that the equality
(4.3) holds for every f, g€ C(%). (Q.E.D.)

Remark 4.1. (i) We can show that the equality (4.3) holds for every
[, g€ Cy(%) in the cases (II) and (III).

(ii) Infinite-dimensional Einstein-Smoluchowski equations have been
studied by several authors, e.g., H. Doss et G. Royer [7], R. Lang [13] and
R. Marcus [15].

(b) The case with a divergent potential.

Here, we limit our discussions to the case (III). The potential func-
tion U is permitted to diverge on some region in R% Namely, U is a
continuous function from R?® into (— oo, co]. Consider following regions
in R? determined by U.

D = {xeR%; Ux) < oo}
Dy={xeR; Ux)<N}, N=12 ...

We set the following assumption on U.

AssumprioN 2. The function U is in C'(D) and is bounded from
below. VU is Lipschitz continuous on D, for each N=1,2,.... Two
points A, and A, belong to the region D and are able to be connected
with a continuous curve in D.

For a potential U which satisfies Assumption 2, we shall construct
a process that may be thought of as a stationary solution of the equation
(4.1). First, we take a sequence of functions {U“"}3.; on R* which satisfy
the following three conditions.
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(i) UY satisfies Assumption 1 for each N=1,2, --- .
“4.5) (i) U%(x) = U(x) for xe D, .
(i) UOx)=U®x)<--- tUE®.

For each N, by Theorem 4.1, there exists a stationary solution of the
equation (4.1) with U replaced by U® and its stationary probability
measure v is given by

& (X) = Z3t exp { - [ U (X (@)do|duo(X) ,

where Z, is a normalizing constant. We denote by P the probability
measure on C((— oo, ), ¥) induced by this stationary solution.

To show the existence of a limit of the sequence {P“®}, we need
another assumption on U.

AssumptioN 3. The sequence {U™’} satisfies
supj j IPUY(X (@) [*dadyv(X) < oo .
NeN J¢JOo

We shall give an example of the potential U which satisfies this
assumption later (Example 4.1).

PropoSITION 4.1. Under Assumptions 2 and 3, the family {P™}5., of
probability measures on C((— oo, o0), €) is tight. The stationary distribution
v of any limit P = P, of the sequence {P*"} is given by

dX) = 2 exp { - || UX(@)do}du(X),

where Z is a normalizing constant.

Proof. Noting that U®(x) is increasing in N for each x ¢ R¢, we can
easily show that v*¥ tends weakly to v as N — oo.

Under the probability distribution P®, the process X, satisfies the
following integral equation for ¢ = 0.

X(0) = X.@ + | [ pt = 5,0, 9dB.0)d
@7y = =[] pt = 5,0, P UK (@)dsde

= Xt,l(a) + Xt,z(a') + Xt,s(") ’

where X, (o) is the solution of the heat equation (2.8) with a random
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initial state X,(c) whose distribution on % is equal to v*. To show the
tightness of {P™}, we need uniform estimates on the moments:
M = E®[X, (o) — X, ,(0)["]
for ¢, ,e R', g, 0,€[0,1],
where E®™[.] means the expectation with respect to P®, Since P® is

stationary, we may estimate M only for 1 < ¢ <t, < T < . For this
purpose, we set

M® = E(N)[lth,i(ol) - th,z(o'z)lm]
fori=1,23.

First, by the representation (3.1) of X, |,

M® = E(N)[

[ @@ - XM, 0, %) — it 0, s

+ X(Ul) - X(o'z)

10]
< cE™|[ 1X0 - X@de]
0
1 5
x |[ e 09 = Pt 0 DFdz| + Cilo = sl
In the above estimate,
sup EW [ j '1X0) — )?(f)lwdr]
N 0
1 1 o
<, supf j | X () [*dedy™(X) + Czj IR(@)ds < oo,
N % JOo 0
and (AIL. 10) proves

1
IO {p(th (D) ‘E’) - p(tb Oy, 7)}2dt

= p(2t,, 0,, 0,) + p(2ty, 03, 03) — 2p(¢, + &, 04, 02)
= C3{[t1 - tzl + |0'1 - Uzl} .

Therefore, we have

(4.6) M® < C{lt, — | + |0y — o} .
Next, by Lemma 3.3,
“.7) M® < Clt, — t,P* + |o, — a.f} .

Finally, by Assumption 3, we get
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My = 25 [{[" ds [ PUS @)
X (Dt — 8,01 Mgy — Dt — 8, 01, t))df}W]
< f dsE(”)[{ j IPUMX, ()P dz-}s]
(4.9 x [ @t = 8,0, My — Pt — 5,0, 1 le)
<c {jo p(2s, 0, 0)ds + [ p(@s, 0, 0)ds

(t1+t2)/2 5
— 2 J p(2s, gy, Gz)ds}

(tg—t1)/2

<G {Itl — LI+ loy — ozls} .
Combining the estimates (4.6)-(4.8), we have
M < C{ty — . + |loy — a7},

with a positive constant C which is independent of N. Therefore, noting
that v — v (weakly) as N — oo, we see that the sequence {P™®} is tight
and that the stationary measure of any limit P of {P“} is equal to ».

(QED.)

We may regard a limit P = P, of the sequence {P“} as a distri-
bution of a stationary solution of the equation (4.1) with a divergent
potential U. We give a decomposition of P associated with the 1-dimen-
sional homotopy class of the closure D of the region D in the following
manner.

Consider a subset of :

%(D; A, A)) = {Xe%; X(0) e D for every ¢ el0,1] and
X(O) = Ao’ X(l) = Ax} .

The set ¥(D; A, A,) can be decomposed into connected components %,
(iem):
¢(D; Ay, A) = U % €, e B(%) .

i€n1

The set z, above is the fundamental group of the connected component
of D which includes two points 4, and A,. Since the support of the pro-
bability measure v is included in #(D; A,, A,), we have the following de-
composition of P.
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THEOREM 4.2. The probability measure P has a decomposition:

P= 3 aP
1€n1; ag>0
where a; = v%,;) aend P,= P, is a conditional probability measure
P(-|C((— 00, o), ).

Finally in this part, we give an example of a potential function U
which satisfies Assumption 3.

ExampLE 4.1. The following radial function U on R’ satisfies As-
sumption 3 for every & > 0.

U@ = UG) = { 1) for r<r,
(r—ry)= for r>r,,
with some 0 <r, < o and « > 2, where r = |x|.

Let w5, be a probability distribution of a 2-dimensional pinned
Brownian motion with speed 1/¢ which starts from 0 at time 0 and arrives
at A at time z. Noting that, with a standard Brownian motion w(s), the
process X(o) defined by

X(o) = w(%) + _"—(— w(%) + A) . sel0,d,

T
has the distribution 40 ), we have the following lemma.

LEMMA 4.1. For each ¢ >0, pe N and each bounded set E in R’
there exists C = C(k, p) > 0 such that
sup sup #:5,w[l{o € [0, 7]; X(0) € D(0, a)}| < B]

7€(0,1] A€ E

< C(ba~?)r for every a,b; 0<b<£a<1l,
where D0, a) = {x e R; |x| < a}.

With this lemma, we show that the function U in Example 4.1 satis-
fies Assumption 8. For the function U, we consider a sequence {U™};.,
of functions which satisfy the conditions (i) and (iii) in (4.5) and the fol-
lowing (iv) and (v).

Ux), xe CJ R,
(iv) U(x) =
constant , xe U R, UD*,

kE=n+2
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(v) UMx)| < Ck', xeR,, 1Sk<n+1,
where
R ={xeR|x|=r + 1},
1

Rk={xeR2;ro—|-71;§[x|§ro—|—7e—:—1~}, k=23, -.-.

For our purpose, it is now enough to show that

4.9) sup sup I,(z) < oo,

nzl ref0,1]

where

L© = Z:* | [PU 1) exp | - [ UnX @) do|dpra()
We first note that
z, = | exp|— [ Um0 ds]du (@)

>Z= L exp [— L U(X(o))do]d,,z(,)(X) >0.

(4.10)

For z€[1/2,1], I,(z) can be estimated as follows.

n+l T
L) £ 3 sup P U )27 [ exp [~ [ UNX @) do]dutzoX)
1
x [ exp [ [ U@ @) do]duiten @) % o e B
< 25 ey sup [ exo [~ [ U0 do ity
k=1 A€RBrJ¢¥ 0

To obtain an upper bound of the last integral, we consider the following
two subsets of 2 = C([0, ], R%):

9, ={Xe@;|{oclo,<]; X(0)e D(A, YR} = 1k}, 2<p<a,
0,=0-20,.

Then,
L exp [— I: U (”)(X(G))dd]d#%,,a,m
(a.11) = [ exo [~ [[ U@ da]ditis.co

i f exp [— j ’ U("’(X(a))do]dp'j;;,,i,(x) .
22 0
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The first integral in the right hand side of (4.11) is bounded by
exp [~ (k — 1)7/k*] < Coexp [~ k7] .
While, the second integral is bounded by

tugl’fAu,(x)(‘Q2)
< sup 17 wll{o €0, 7]; X(o) € D(0, 1/R)}| < 1/k7]

A€ D(0,|4o| +7o+1)

< C(R[E) .

Hence, for p large enough, we have
I(0) < C, 3 B fexp (— k%) + k709 < oo for ze[1/2,1] .
k=1

For r¢e]0,1/2], exchanging the roles of A, and A,, we have a similar
estimate. We therefore have the estimate (4.9) which implies that the
function U in Example 4.1 satisfies Assumption 3.

(¢) The limit of P, as x— oo.

Here, we assume that d = 2 and D is a non-convex connected open
polygon in R’. We denote by p;,, and v, (f€r,) the conditional proba-
bility measures p,(-|%;) and v, (-|%.), respectively. Let D be the universal
covering space of D and let p(t, x,y) (¢ > 0, x, y € D) be a transition proba-
bility density of the Brownian motion on D with absorbing boundary aD.
We note that there exists only one shortest continuous path 7(x,y) in D
which joins two points x, ye D. To investigate the limits of v« and P;

as k— oo, we use the following lemma and its corollary which were shown
by S. A. Molchanov [17].

LemMA 4.2. Assume that {(x,y) is transversal to 8D. Then,
P, x,y) = 0O (t"“ exp {— —21t—p(x, y)z}) as t—0,

where k is a positive constant which depends on (x,y) and p(-, -) is the
metric on D.

For k=1 and 0 < B8 < 1/2, we set

Q) = {X e ¥; dis (X(0),0D) >r1* for every ¢ € [0, 1]}
Qyx, B) = {X e¥; dis (X(0), 7 (o)) > g~/**2 for some o€ [0, 1]},

where 7,(-) is the shortest continuous path in ¥, which has a represen-
tation in terms of length and satisfies 7,(0) = A, and 7,(1) = A,.
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CoROLLARY (1) lim, . g, o(2:(k)) > 0, for each ien,.
(2) For each 0 <B < 1/2, p;, Rk, B)) = ole™*7**"*) as £k — oco.

By the estimates in this corollary, we see that g, ., tends to g, (the
d-measure concentrated on 7,) as £ — . To show that v, , — J,, holds as
£ — oo, we need assume that U and the region D satisfy the following
two conditions.

(vi) U(x) < C (dis(x, aD))™, xe D with some C >0 and 0 <a <1+ v 3.
(vii) There exists a finite set {o,, - - -, ¢,} in the interval (0, 1) such that

7(s)edD forj=1,2, .---,n,
7o) € 0D for 6€[0,1] — {0y, - -+, 0.} -

Then, we obtain the following.

ProposiTioN 4.2. Under Assumptions 2, 3 and conditions (vi), (vii),

we have

(@)) Vi, —> 0, as k—> oo,
) P, ,—> Oxe as Kk —> oo,
where

X(=(0) = 1(0)  for every te R'.

Proof. First, we estimate the normalizing constant Z, ,:
1
Zuw = [, exp |- [ U ONdo]dps @) -

We set 2., p) = 2,() N 2%x, f) with g = 1/2(a + 1) (0 < < 1/2). Then,
there exists a positive constant ¢ such that the inequality
dis (X(o), 0D) > r~1/*+#

holds for Xe 24, p) and for ¢€[0,1]: |¢ — g,/ > ck™'/**F for any j =1,
2, - -+, n. Therefore, for such X and ¢ we have

U(X(0)) £ Crt/2-be

While, for ¢ € [0, 1] such that |¢ — g;| < ck™"/**# with some j=1,2, ---,n,
the inequality

U(X(0) < Cg
holds. Therefore, we get

f ' UX(0))do < C, {072 4 portes-1t) — 90D for Xe D, f) .
0

https://doi.org/10.1017/50027763000020298 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020298

RANDOM MOTION OF STRINGS 163

Noting that
lim pr;, (0 (24(x, B)) > 0,

£E— 0

we have
Z; = Cyexp {— 2Cg*/*=+1} for sufficiently large « .

For each ¢:0 <e <1/2, since U is bounded from below, the above
two estimates prove

vol@e, ) = 2k [ exp |~ [ UG dpr, o)
< Cyexp {2C,k=/*=*V} exp {— £7*/2} (£ — o).
By taking ¢ such that 1/2 > ¢ > o*/4(¢ + 1), we obtain
Vi, (R, e)) —> 0 as £—> 0.

This implies the assertion (1). The assertion (2) follows from the assertion
(1) immediately. (Q.E.D.)

§5. Two dimensional Brownian strings

In this section, we assume that d =2, £ =1, a(x) = I, and b(x) = 0.
The equation (2.5) becomes as follows.

G.1) dX (o) = dB,o) + —;—AXt(o)dt .

We discuss the equation only in the case (I), namely the case where the
equation has the Neumann boundary conditions at ¢ = 0 and 1. Let Py,
be a probability measure which is induced on C([0, o), ¥) by the solution
X, of the equation (5.1) with an initial state X,e 4. We now show the
following recurrent properties of the solution X,.

TurorEM 5.1. The process X, is recurrent as a %-valued process, i.e.,
for each X,e % and non-empty open subset O of C,
Py (X, €O for some t,t o, n=12,---)=1
TuEOREM 5.2. The string X,(c) sweeps away all points in R? i.e., for
every xe R* and X, €%,
P, (X, (0,) = x for some ¢,€[0,1] and ¢, 0, n=1,2,---)=1.

The integral form (2.7) of the equation (5.1) has already given the
solution X,(o) = {X0)}}-1:
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.2 X0) = || Xatt, o, e + | [ att = 5,0, 7dB.)ds
= z,:(o') + Xz,z(o) .

The second term X, ,(¢) can be decomposed as follows.

63 Xuo) = B ok + [ [ {at — 5,0,9) — VB2
= Yt + Zt(o) .

In this decomposition, two processes Y, and Z,(.) are mutually independent
and Y, is a 2-dimensional Brownian motion.

LemmA 5.1. For each t > 0, let v, be a probability measure on € =
C([0, 1], R?) induced by Z,(o) (¢ €[0,1]), and let v be a probability measure

on % induced by {w(a) — I: w(z)dr; g € [0, 1]}, where w(o) is a 2-dimensional

Brownian motion with a time parameter o €[0,1]. Then, v, tends weakly
oy as t— oo.

Proof. For o,, 0,€]0,1], t>0, noting (AIl. 13), we have
E[IZL(UI) - Zt(o'z) I4]
13 1 2
= 6{]; dS jo (Q(t — 8, 0y, 7) - (I(t — 8, 0y, T))zdt}

(5.4)
< g{aw,, @) + G(a,, 0)) — 2G(ay, o)}
= 6|o, — a,f.
For t > 0,
6.5) ENZON =2 | ds [ {at — 5,09 — 1ydr < 2.

Two estimates (5.4) and (5.5) imply that the family {v,, £ > 0} of probability
measures is tight. To get the conclusion, noting that v, and v are both
Gaussian, it is enough to show that the covariance function of v, converges
to that of v as t » . For gy, 0,€[0,1], i, je{1, 2},

E[Z(0)Z{(a,)]

t 1
=0, | ds f {a(t — s, 01, 7) — B{q(t — s, 0, 7) — 1)dr

1 2¢
= 'E 0s5 L {Q(s7 0y, 03) — 1}d5
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—> ———1 0,,G
2 ij (0' 15 02)

- E[{wi(al) - j wi(t)dz'} {w’(az) — L w' (f)dz}] ,
as {—>o0.
Therefore, we have the conclusion. (Q.E.D.)

Now, we prove the theorems.

Proof of Theorem 5.1. We may assume that O is taken to be

D, a) = {v¢%; sup| (o) — #(0)] < a
¢€[0,1]
with some ¢ C and ¢ > 0. Fix a point A in R* and we set
V=D(A,qa3) ={A’eR};|A — A’| < a3},
and
t=1inf{t = 0; X, e O}
— 1
f = inf {t >0; X, = f X,(7)dr € V}
0
iy=inf{t>N; X, eV},

where we tacitly understand that inf {empty set} = co. Since X, is a 2-
dimensional Brownian motion, we have N < #y < o (a.s.). For every X

€% such that X, = .r X(r)dr eV,
0

PXo(t < OO)
> Py, (there exists t > Ty(X,) such that X, ,e D(¢ — A, a/3))
(.6) = Py, (there exists ¢t = Ty(X,) such that Y,e D(¢ — A, a/6)

and Z, € D(¢ — ¢, a/6))
> }VTrﬁ Py(Z,, € D($ — 3, al6))

- P<{w(-) - L w(f)df} e D(g — 3, a/6)) —c¢>0,

where ¢ — A €% is defined by (¢ — A)o) = ¢(0) — A, ¢ = ﬂ #(o)do,

1 —
T(X,) = inf {t > 0; sup | j ' X,@als, 0, e — X,

< a/3 for every s > t}
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and

my =inf{t > N; Y,e D(§ — A, a/6)} .
The estimate (5.6) shows that
(5.7 p= sup Prt=0)<1—c<1.

Xoe¥; XoevV

Using the strong Markov property of X, (Appendix I), we have

p= sup lim qu(t > in,t = OO)

X0€€; XoEV Nooo

= sup lim Ey [Py, (t = o0);t > i)

X0€%; XoEV N-oo

<p sup limP,(t>7,)=p".

Xo€¥; XoEV N-o
This implies, by (5.7), that p = 0. Therefore, we have
(5.8) Pyt <o0)=1 for every X, e % .

Noting the strong Markov property of X, again, we have the conclusion.

(Q.E.D)

CoRrOLLARY 5.1. For each non-empty open subset O of R,

Py (X, (0);0€[0,1]} € O for some t, 1 0, n=1,2,--.)=1
for every X, €% .

Proof. Since the set {Xe%;{X(0);s€[0,1]} C O} is open in %, we
have the conclusion by Theorem 5.1. (Q.E.D.)

For A={A%._,eR, a>0, T>0 and ¢, a > c > 0, we consider the
following subset of %:

XeD(A, a) and for every te[0, T],

1
B(A, 0, Tyc) = {X={XP. e? LX (@a(t, 0, 2)dz > A" + ¢,

1
j X¥()q(t, 1, o)de < A® — ¢
0
Since, by taking c sufficiently small, the set @(A, a, T, ¢) contains some
non-empty open subset of ¥, we have the following corollary.

COROLLARY 5.2. For every A, a, T and X,€ ¥, there exists ¢ > 0 such
that

Py (X, €9, a,Tc) for some t,t o,n=1,2,...)=1.
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Remark 5.1. When d > 8, the process X, on R® is not recurrent, so
that we can show that the solution X, of (5.1) is also not recurrent as a
%-valued process.

Proof of Theorem 5.2. Since the equation (5.1) is invariant under the
parallel displacement, we may assume that x = 0e R®.. For A =(—1,0)
e R* and a > 1, we denote @(A, 1, T, c) simply by &(T,c), where T is a
constant determined later and ¢ is a positive number which is determined
by Corollary 5.2. Set

t = inf{t = 0; X,(¢) = 0 for some s¢[0, 1]},
and

p= sup Py(t= o).

Xo€O(T,c)

For every X, e @(T, c), we have
PXo(t < OO)
2 Pro{inf XM= 0, inf X020, sup X1 =0}
te[0,7] tef(0,T]

a€[0,1]

(5.8)
= Prf inf Xi0) 2 2}
o €[0,1]
X Prfinf X3.0) = — ¢, sup Xt <c.
tel0,7] te[0,T]

The factor p,(T) = Py {inf,¢(0.1; X7,:(0) = 2} can be estimated by the following
way.

p(T) = P(Y; > 3, inf Z}o) = — 1)

o€[0,1]

— P(Y} > 3)P< inf ZXo) = — 1) .
a€[0,1]

Since lim,_., P(Y} = 3) = 1/2 and since lim,_.. P(inf,¢p Z#(0) = — 1) >0
by Lemma 5.1, we can take T < oo such that p,(7) > 0. To estimate the
second term:

PAT) = Py { inf X302 — ¢, sup Xt Scf,
te[0,7] te[o,T]
we set
20 = 3 [ [ {at =5, 1.0 — (= Vgt — 5,0, NdBDEE, =12,
0J0

Then, two processes y,(f) and y,(f) are mutually independent. Noting that
X;A0) = yi(t) — y:(t) and X7 (1) = y,(¢) + Ya(t),
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pAT) = P{ sup |50 < c/2, sup 58] < /2]
tef0,T] tefo,T]

2
= [1 P{sup 1501 < ci2} > 0.
i=1 te[0,T]

Hence, we have p < 1. Noting that, by Corollary 5.2, N< 7, < oo (a.s.)
holds for 7y = inf {t = N; X, € &(T, c¢)}, a similar argument to the proof of
Theorem 5.1 leads us to the desired conclusion. (Q.E.D.)

Remark 5.2. A generalization of the equation (5.1) is the Langevin
equation on a Hilbert space H:

(5.9) ‘ dX, = dB, — AX,dt,

where B, is a cylindrical Brownian motion on H and A is an operator

on H which satisfies the condition (A.1) in §1. Concerning the equation

(5.9), we can show the following two facts.

(i) If the third eigenvalue 2, of the operator A is positive, then the
solution X, of (5.9) is recurrent as an H-valued stochastic process.

(i) If 4, = 0, then X, is transient (i.e., lim,... || X,|| = o a.s.).

The third eigenvalue of (1/2)4 is to be positive if it is regarded as an

operator on L%[0, 1], R?), therefore we see that the solution X, of the

equation (5.1) viewed as an L*([0, 1], R*-valued process is recurrent. This

fact however does not imply Theorem 5.1.

§6. Limit theorems for general stochastic evolution equations

As a generalization of the problem discussed in §3, we investigate
the limit process of the solution X of the following stochastic differential
equation (6.1) on a separable real Hilbert space H as x — oo.

(6.1) dX{ = a(X{)dB, + b(X{") — kAX{"dt .

In the above equation, the operator A is assumed to satisfy the assump-
tion (A.1)in § 1 and B, is the cylindrical Brownian motion. The coefficients
a and b are assumed to be independent of ¢ and to satisfy the assumptions
(A.2) and (A.3), respectively. In addition, we assume the following.

(A.4) There exists a positive constant K such that
e e < K, |6X)| <K  for every XeH,
where ||a|l¢ is the operator norm of a.

Let 2 and n be the principal eigenvalue of A and its multiplicity,
respectively. We denote by PL»/1 (1 < i < j < o) the orthogonal projection
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from H into its subspace spanned by {¢,}i.;,, where ¢, is givenin §1. We
denote P! and P*%>1 simply by P, and P;, respectively. We discuss
the problems in the following four cases, separately.

(Case 1) 2=10

(Case 2) 2>0, a(0)x0

(Case 3) 2>0, a(0) =0, b0)x0

(Case 4) 2>0, a( =0, b0)=0.

Case 1. For given X, H, consider the following stochastic differ-
ential equation:

(6.2) dY, = P,a(Y,)dB, + P,b(Y,)dt, Y, =PX,.

LeEmma 6.1. The equation (6.2) has a unique solution Y, which belongs
to C([0, ), P,H) (a.s.).

Proof. The coefficients P, and P,b of (6.2) are Lipschitz continuous
in the following senses, respectively.

IP,a(Y) — Pa(Y)lE
| I{P.a(Y) — Pa(T},

i
M

k

6.3) = 3 {P.a(¥) — P.a(Y)l .
= 33 {a*(¥) — a* (¥}
< nK'|Y, — Y,|F,

and

(6.4) IP,b(Y) — P,b(Y)| < K| Y, — Y.

Hence, by M. Yor [19], there exists a unique solution Y, e C([0, «), H)
(a.s.) of the equation (6.2). Since Y, = P,Y, holds, the solution Y, lives
in the space P,H. We therefore have the conclusion. (Q.E.D.)

Noting that the operator — rA generates a semi-group {U(kt); £ = 0},
X is a solution of the following integral equation:

X = UE)X, + | UGt ~ £)a(X2)dB, + || Ule(t — )b(X()ds
= X+ X9 + X33

(6.5)

LemMMA 6.2. For each p = 1, there exist C, C > 0 such that
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E[| X — Y|P"1 < Cle® +£7%e%), forte[0,00), £=1.
Proof. Set
I = E| X — Y.["177,
and
IP@) = E(|1 X5 - Y.,.071 (G=1,23),

where
Y,,=PX,, Y., = J Pa(Y)dB, and Y,, = f P,u(Y)ds .
0 0

As for the I (1),
(6.6) IP@) < exp {— 2,.2pct} | X7«

While, by using Proposition 1.3,

1) < 22-{E| [ (UGt - 5)) — PJa(x(*)dB,

.

+ B|| [ Phaxe) - avas, "]}

= 6 [{[ Buwe - ) — Paxe) 1 ds)
+{[ BuPtax) — avayizras)|
c {(I‘ ST K®exp {— 24u(t — s)}ds)p ¥ (ﬁ nK21<~>(s)ds)”}

0 k=n+1

< {w + (j: I<~>(s)ds>’°} .

In a similar way, we can estimate the I{”(¢).
Summing up the estimates on I¥() (@ = 1, 2, 3), we have

IA

1) < Ca{exp(—22n+llct) + f ’ I"”(s)ds} .
0

We therefore get the desired estimate with the help of Gronwall’s lemma
(see, e.g., H. Kuo [12]). (Q.E.D.)

The following estimate on a 1-dimensional stochastic integral was
shown by G. Newell (see D. A. Dawson [5]).
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LEMmMA 6.3. Let w, be a 1-dimensional Brownian motion. Consider a
stochastic integral

x(t) = J: e -9 p(s)dw, ,

for 2> 0 and for a real valued measurable function h(t) = h(t, ») which is
adapted to the Brownian motion w, and which satisfies

k()| £ M (a.s.) for every te [0, T] .
Then, there exists K, > 0 which is independent of A, T and M, such that
P( sup |x(2)| > x> < K, exp {— 1x*3M*(AT + 1)
te[o0,T]
for every x > MK,|v/ 2 , Tel0, o) .
Using this lemma, we can show the following.

LeMMA 6.4. (i) There exist C,C > 0 such that
P( sup ||[PEX) > M) < Ce-® | for M>0 and £>CM-™.
tef0,T]

(i) sup |PHX < K/(,.6) (a.s) .
tef0,T]
Proof. For simplicity, we denote (X, ¢,> (i =1,2,3, ke N) by X{ ;.
Setting C, = C pn1 B7*9)"! with some ¢, 0 <e<d (0 is the positive
number given in (A.1)), we have

P( sup | PEX13] > M)
tef0,T]

< i: 1.P( Sup]lXE'f%,kl > (Clk_(‘“))l/ZM)

T k=n+ te[0,T

IA

ST KT + 1) exp {— 24C.M?BKE )}
k=n+1

< Ce0u for some C,C >0,

whenever vCk~ ™9 M > KK,[v/2. holds for every 2 > n + 1. Therefore,
the estimate (i) holds for x such that

& > (KK,/M)Cit sup {E'*[2,} .
k2n+1

The estimate (i1) can be shown by
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IPEXS3) = |

P f 0 Ukt — s))b(X;~>)dsH
< j 0 exp {— 4, .48} Kds < K/(Ay it - (Q.ED.)

We are now ready to prove the following theorem.

THEOREM 6.1. The process X converges to Y, as k — co in the fol-
lowing sense:

P< lim || X{® — Y,| = 0 uniformly in t on each compact

#(EN)-w

subset of (0, oo)) =1.
Proof. Noting that
X8, = I {a¥( X, dB,y and Y,,, = f {a*¥(Y)pr, dB,>

are {&,; t = 0}-martingales for each &, 1 < k2 < n, by Proposition 1.3 and
Lemma 6.2, we have

E| sup |X6%,0 — Y.l

te[0,T"

< (—3—) E(X®hs — Ypoel]
T 2
= ¢{f Buxe - ¥.177ds)

T — 2
< C,{ T+ x-ﬂecs)wds} < Cupt.

Hence,

5 P( sup 1K = Yoaal > 67%) S 50 FCo < oo,
k=1 te[0,T =1

and this shows, with the help of Borel-Cantelli’s lemma, that

P( sup |X{the — Yool <& a8 (e N) —> oo) =1,
te[o,T
for each k; 1<k <n.

Therefore, we have
©.7) P( sup |, X(3 = Yial —>0 as e(e N) —> oo) ~1.
telo,T

In a similar way, we can show that
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6.8) P( sup [P, X% — Y, —> 0 as s(e N) —> oo) 1.
te[0,T]
While, by Lemma 6.4-(), for sufficiently large &,

> P( sup || PLX(5] > ') <3 CetF < oo,
tef0,T]

E=KQ E=KQ

and this implies that
6.9) P( sup ||PLX5] —> 0 as k(e N) —> oo) 1.
te(0,7]
We also have, by Lemma 6.4-(ii),
(6.10) s;.1p |PEX )| —> 0 as £ —>oc0 (a.s.).
te[0,7]

Since X {9 tends to P,X, as £ — oo uniformly in ¢ on each compact subset
of (0, o), combining (6.7)-(6.10), we have the conclusion. (Q.E.D.)

Case 2. Let {Y, t > 0} be a family of independent H-valued random
variables whose characteristic functionals are given by

E[eed] = e llslirr  geH >0,
where
Hglll = 32 <a*O)g;, a*Ope>s, 6.3, b2/ + 1) .

We note that |||-||| is a Hilbert-Schmidt semi-norm on H.
The following theorem holds.

THEOREM 6.2. The process {/ & X{?;t > 0} tends to {Y,;t > 0} as £ — oo
in the following sense:

SWEXED, ey —> 3 Yy in law as £ —> oo,
=1 =1

for every neN, 4,eH 1<i<n) and
<y << - <, <oo.

To prove the theorem, we prepare an estimate on the X{.
LemMma 6.5. E[|XPF] £ Cle ™ + k™), £ = 1.
Proof. By (6.5), we have

ENX 1 < 310X, + B[ 1 Ut — )ax:e) s

+ B|([ i - spvexonas) |}
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t oo t 2
é 3{6—21;5”X0”2 + KZJ‘ Z e—22kt3ds + ‘K2<J~ e—:l&ds)}
0x=1 0
< C(e ™ + £7Y). (Q.E.D.)
Proof of Theorem 6.2. First, we have

IVEES + XD < Ve Xl + VEK [ eids —>0
0

as k—> oo, for each t > 0.

|

= +E [HL Ut — s)){a(X¥) — a(0)}dB,

Secondly, by Lemma 6.5,

dl

VEX — VF [ UGt - 9)a(0)dB,

2
|
< oK [ 37 e E(| X2, Flds
< eK°C Y, [ etanfereen 4 gtds —>0,
as k—>o0, for each t > 0.
The above two estimates imply that the limit process of {y/& X, t > 0}
is the same as that of {Y¥,¢> 0} with Y = y7 L U(k(t — $))a(0)dB,.

To prove the conclusion, since {Y{?, ¢ > 0} is a Gaussian system with mean
0, we may only show that the covariance function of {Y{”} converges to
that of {Y,}.

For 0<¢ £t, < o0 and 4y, ¥, € H,
BT, v)(YE, ¥)]
— & [ @ OUGE ~ 9, aHOUGE — vdds

3

— Z (lj + Zk)-l{e-—:lk(tz—tl) —_— e—x(21t1+2klz)}

- X (a* () @ Oe> (s B35 b B -

As ¥ — oo, the right hand side of this equality converges to 0 when ¢, % ¢,
and to |||v||f when ¢, =t, and ¥, = 4. We therefore have the conclusion.

(Q.E.D.)

Case 3. We shall show that the process £ X converges to the constant
vector A~'6(0) as £ — oo. To prove this result, we prepare the following
lemma.
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LemmA 6.6. The norm |[¢X{7}| converges to 0 uniformly in t on each
compact subset of (0, «0) as k(e N)— co (a.s.).

Proof. In the case 3, Lemma 6.4 holds by taking n = 0. Therefore,
we have the following two inequalities.

(6.11) For each ¢ > 0,

P( sup || X{3] > /:‘1/2“> < Ce % | for sufficiently large &,
tel0,T]
and

(6.12) sup | X3 = K/(Zx) (a.s.) .
tel[0,7]
Combining these two estimates with the following one on X{3:

(6.13) 1X3l < e | Xl ,

we get

P( sup || XP| > 2/:“/2”) < Ce 0, for sufficiently large & .
1

tele—1/2,T
By this estimate and the equality:
X5 = UGt — tDXD: + X2, >8>0,

where
X, = [ UGt — 9)a(X2,)d(B,... - B,
0

we have

te[2s—1/2,T)

P(_sup | Xial> )

< PO UG X Lunall > 54D + P sup [ REmsmumsn] > 5777512)

tef2—1/2,

< P(X0nal) > w7 [2) + P(_sup X0 > 2670)

te[s—1/2,T

+ P( sup | X@all > 7%)2, sup [ XP) < 2,;-1/2”)
te[0,T~x—1/2] telfe—1/2,T]
é (2/:1'258—1‘/?)20(6‘2”7 + lc'l) + Ce-ﬁ,,'n
+ 37 K, exp {— Cau® /(48K K+ )} (AsT + 1)
k=1

< C,exp (— Cu™), for sufficiently large « .
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Repeating a similar procedure once more, we can show that

P( sup | X > E'a’““)é C; exp (— C™),
te[3c~1/2,T]
for sufficiently large « .

Taking ¢ such that 0 <e <1/6, the Borel-Cantelli’s lemma proves that

P(_swp [eXQI<sm as W(eN)—>oo)=1.
]

te(3c—1/2,T

This implies the conclusion. (Q.E.D.)

THEOREM 6.3. In the case 3, X tends to A-'b(0) in the following
sense:

P( lim [£X® — A-5(0)[| = O uniformly in ¢ on

£(EN)=o

each compact subset of (0, oo)) =1.

:Proof. The estimates (6.11)—(6.13) imply that
P X®| < Cle™ 4 g~*+¢)  for every t€[0,T], #(eN)—> o0)=1.
Therefore, we have
X3 — A7'B(0) |

< 2lkx9 — ,cjo Ut — s))b(O)ds”2

+2 ,cjo Ukt — ))b(0)ds — A"‘b(O)Hz

< 2(,s j‘ et K| X Hds)Z
0

2

+ 2

5 {[] rerieds — 22} 4(0), 834

k=1 0

< KCUWHe it + k7)) + 23] 25% 4 (B(0), $,)°
k=1

——> 0 uniformly in ¢ on each compact subset of (0, o)
as kK(eN)—> o0 (as.).

Noting Lemma 6.6, we have the conclusion. (Q.E.D.)
Case 4. In this case, we further assume the following condition.

(A.5) The coefficients @ and b are Fréchet differentiable at 0.
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Consider the following stochastic differential equation:

(6.14) dy, = P,a'(0)(Y)dB, + P,b'(0)XY)dt, Y,=PX,,
where o’(0)(-) and b(0)(-) are Fréchet derivatives at 0 of ¢ and b, re-
spectively.

LEMMA 6.7. The equation (6.14) has a unique solution Y, which belongs
to C([0, ), P,H) (a.s.).

Proof. The coefficients P,a’(0) and P,b’(0) are Lipschitz continuous
since, for Y, Y, ¢ H, we get

I P,a’(0)(Y,) — P.a’(OX Yy

(6.15) = 3 {a'(OXT) — @O T} F
=3 [tim L@ev) - a*euns | = k¥ - VI,
and
|PbOXY) — PHOXY)
(6.16)

= S K||Y, - Yol

\ngl L by — b))

We therefore have the conclusion in a similar way to the proof of Lemma
6.1. (Q.E.D.)
Setting Y = e*'X{® and Y{) = e*'X{") (i = 1,2, 3), we have the fol-

lowing estimate.

LEMmMA 6.8. sup E[|Y®F] <o

(t,8)€[0,TIx[1,00)

Proof. By (6.5), we have

B[ Y© ] < 3] U)X|F + SE [Hj Ukt — 8)ale-**Y)dB,

]
+ 3E [HL < U((t — s))b(e‘*”Yg‘))ds}ﬂ

< 31X+ 3K [ 35 e n 0B Y [lds
+ 3Kt || B[ Y[lds

<G+ j (t—9)<E[YPPlds, a=(@1+0"<1.

This implies the desired estimate. (Q.E.D.)

https://doi.org/10.1017/50027763000020298 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020298

178 TADAHISA FUNAKI

The asymptotic behavior of the process Y is given by the following
theorem.

THEOREM 6.4. In the case 4,
ENY? - Y.IF] —0
uniformly in t on each compact subset of (0, ) as k& — co.

Proof. Set I®(¢) = E[|Y{? — Y.|[] and I{°()) = E[|Y{) — Y..If1 G =
1,2,8). As for the I{”(2),

I < exp {— 2(. s — Dt} | X" .

Next, we have

10 = 28| [} Uttt - s)a(xso) — eP,a(X))dB, |

|

+ 2F [H j P{e=a(X®) — o/(0)(Y,)} dB,

é 2K2Mft i e—z(lk—l)»(t—s)ds

+ 2k U: ; [{e**a*(e*Y®) — a’(O)*(Ys)}P,¢k”2ds]
< f(®) + 4nK® L:E[ll YO — Y |Plds, t<T,

where

00

f) = 2, K*M{( — 2}

=n+1

+ 35 [ BllfeareY) — a0 (¥)jgilrlds .

A bound on I{(f) is similar to I{(¢), so that, summing up these estimates,
we have

IO(t) < Ce% + f(x) + C j:z(~><s>ds, t< T,

where the function f(r) behaves as f(k) — 0 (as £ — ). Gronwall’s lemma
implies that

I“)(t) < Ce-0xt + f(/c) + Cr eC(t—s)(Ce~C:s + f(x))ds
0
< Ce %t + f(r) + C%(Cr)* + F)e, t<T,
which proves the conclusion. (Q.E.D.)
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Appendix I

Here, we investigate the joint-continuity of solutions of stochastic
partial differential equations (SPDE).

(a) Known results on partial differential equations.

Let G be a bounded region in R™ surrounded by a smooth hyper-
surface 0G. We assume that G has a restricted cone property (e.g. S.
Agmon [1]). Let A be a closed operator on L*G) determined by the fol-
lowing conditions (i), (ii) and satisfying the condition (iii).

(i) The domain of A is given by

2(A) = {pe H™G); B9 =0 on 3G, 1 <j < m},

where H*™(G) is the Sobolev space of order 2m and {8;}~, is a
normal system of boundary operators (J. L. Lions and E. Magenes
[14D).
(ii) A is a uniformly elliptic differential operator of order 2m (m e N):
Ad0) = 2 aDP0),  $ea(A),
Where V= (”17 st '9”7:)’ ‘”l =Y + .- + Yoy
- alvl
- (ao.l)»l . (aa")”" ’

(iii) The operator A is self-adjoint and non-negative.

= (", and «,eC;(G).

Under these conditions, the operator A has pure point spectrum {1,};-,
such that 4, ~ ck*™" (¢ > 0) as k— . The semi-group U({) on L¥G)
generated by —A is an integral operator with a symmetric kernel p(t, o, )
e LG x Q) for each ¢ > 0. The following estimate on p was given by R.
Arima [2].

< Ct- /@ exp (— C(lo — <[ [5)/em-b)

i

(AL1) ‘% p(t, 0, 7)

(to,2)e(0,T)XGXG, 1<i<n with C,C>0.

(b) SPDE with non-homogeneous boundary conditions.

Let A* (1 < i < d) be operators on L¥G) which satisfy the conditions
(1)-(iii) with the normal systems {8i}7-, (1 £ i < d) of boundary operators.
We define an operator A on H = LG, R?%) by

AX = (A'XY)., for X = (X%){.,e H = (L(G))* .
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We assume that 2m is larger than n. Then, the operator A satisfies the
condition (A.1) in §1.

Assuming that ¢ and b satisfy the conditions (A.2) and (A.3) in §1
with H = LG, R?), respectively, we consider the following initial-boundary
value problem for given initial state X(0) = X(0, -)e H and R?valued
boundary functions f; 1 £j < m).

dX(o) = (a(t, X)dB))o) + b(t, X))(0)dt — AX(0)dt

tel0,T1, oeG,
(AL2) Xi(0) = X(0, 0) geG,

B:X(0) =ffo), ¢€dG, 1<j<m, te(0,T],

where B, is a cylindrical Brownian motion on H and where §,X is defined
by

BX = (BX).  for X = (XL, .

An H-valued & ,-adapted process X, is called a solution of the equation
(AL2), if it satisfies the following integral equation:

X, =X, + j ‘Ut — s)a(s, X)dB, + f 0 Ut — s)b(s, X,)ds
0
= Xt,l + Xz,z + Xz,a .

(AL3)

In this equation, {U(¢), ¢ = 0} is a semi-group on H generated by —A and
X, is the solution of the following partial differential equation:
Dot (9) = —AX, @), 0€G, tel0,T],
Xo,l(o') = X(O’ 0) ’ ce@G )
BiX.i(0) =ffo), 0€dG, 1<j=m, te(0,T].

(AL4)

We assume the conditions on the functions {f,}7-, and X(0, -) to guarantee
that the equation (AL4) has a unique solution X,, which belongs to
C([0, T], H) (these conditions can be found, e.g., in R. Arima [2]). Then,
we can show the following existence and uniqueness theorem of the solu-
tion of the SPDE (AIL2).

LEmMMA AlLl. There exists a unique solution X, of the SPDE (AlL2)
such that sup,ep,r E[| X, |1 < co for each T < oo and X, € C([0, T, H) (a.s.).

Proof. Denote by Z, the solution of the equation (Al4) with X(0, -)
=0. Since d(t X) =a(t, X+ Z,) and b(t, X) = b(t, X + Z,) satisfy the
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conditions (A.2) and (A.3) in §1, respectively, by Theorem 1.1, the fol-
lowing SPDE with homogeneous boundary conditions has a unique solu-
tion Y,.

dY, = a@, Y,)dB, + b(t, Y)dt — AY,dt
Yo = X(O)
BiY(0) =0, gecdG.

We can easily show that X, = Y, + Z, is the unique solution of the SPDE
(AL2) such that sup,cp,r; E[|| X, |[] < oo for each T'< oo and X, € C([0, T'], H)
(a.s.). (Q.E.D.)

(c) Joint-continuity of the solution X,(s) of SPDE (AL2).
Here, we assume that ¢ is bounded, i.e.,

la@t, X)lew < K for every (¢, X)e[0,T] X H.

Under this assumption, we can show the following lemma by noting that

[T1v@Rds <
and

X,.eC(0,T],H) .
Lemma AL2. For each p > 0,

sup E[|X,[]"] < oo .
te[0,T]

Concerning the joint-continuity in (¢, ) of the solution X,(¢) of the
SPDE (AL2), we have the following result.

PropositioN ALl. (i) The terms X, (o) and X, (o) in (AL3) have
versions jointly continuous in (t,0)€ [0, T] X G. (ii) If X, (o) belongs to
C(0, T] X G, R%, then the solution X,(s) of the SPDE (AL2) is jointly
continuous in (¢,¢) € [0, T] X G.

Proof. Denote by pt,0,7) 1<i<d,tec|0,T], 0 rcG) the integral
kernel of the semi-group U,(¢) on LG) generated by —A’. We shall adopt
a description in component-wise, e.g.,

X, = Xi)l, B.=B), and at, X) = (a,¢ X))}

i,J=1

with a,,(t, X) € Z(LXG)). Then, noting that
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Xtu0) = 3 [ [ e = 5,0, aulo, X)ABY@:
= 5[], @t Xopst = 8,0, MBIz,
we have
E|Xt,i0) — Xt(0)l"]
= ¢ 2 [[B[{], @6 Xt = 5,05 iz
— pit. = 5,0, W@z} | as|
= C{[" pd2s, 0, 00ds + [ p(2s, 0, 00ds

(L1+1£2)/2 r
— 2 I pi(28, ay, 02)ds}

(t2—t1)/2
for0<t,<t,<T, 0,0,€cG and reN.
To bound the right hand side of the above estimation, we set
(L1+t2)/2

I'= U:jpi(2s; 0y, 0,)ds — I DpA2s,0,, 0;,)ds

(t2—t1)/2

) Jj=12.

Then, we have

Il é U‘“ {pi(zs; 0'1, 0'1) - pi(2s9 ala 02)} dS
0

(tg—t1)/2 (t1+122)/2
+ U p:(2s, g, Uz)dsl + U pi(2s, 0, oz)ds}
0 t1
= Ill + Izl + Ial .

The first term I}! can be estimated as follows.

151
L<|
0

[ 52 paes, 00+ alo. — a) x (ot — oi)dalds

0 j=1

t1 1 ~

= J. Cylo, — Glldsj‘ s=+0/em exp {—C(lalo; — a)["/[s)V " V}da
0 0

< C,lo, — a,|7? j“ §-(ren/emrena e

- 0

where 1/p + 1/g =1, p, ¢ > 1. Taking g such that (n + 1)/2m — 1/2mgq
< 1, we have

I' < C.’)[dl - Uzll/p .

As for the second term I},
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—t1)/2

(22
MG s emds < Gty — e

Since the third term I} can be estimated in a similar way to I}, we have
the following bound on I': '

I' < Clo, — a.["” + |t — t,|' "V E™} .
The term I* can be estimated in a similar way to I'. Hence, we have

E[[Xzim(dl) - Xcig,z(o'z)lzr]
g C{Io'l _— o.zll/p _|_ |tl . tzll-n/(2m)}r .

Taking r sufficiently large, Kolmogorov’s regularization theorem (Propo-
sition 1.2) implies that Xi.(o) belongs to C([0, T'] X G) (a.s.). Therefore,
X, .(¢) belongs to C([0, T] X G, R? (a.s.). Using Lemma AlL2, we can also
show that X, .(o) belongs to C([0, T] X G, R? (a.s.). We therefore have
the assertion (i). The assertion (ii) follows from (i) immediately. (Q.E.D.)

Remark Al.l. Under the condition (2.2) on the initial state X, the
system (2.8) of heat equations has a jointly continuous solution X, (o).
Therefore, the equation (2.5) of the string has a jointly continuous solu-
tion X,(o) in (¢, 0) € [0, 00) X [0, 1].

(d) The strong Markov property of the solution of the equation (2.5).

Similarly to the finite dimensional case (e.g. H. P. McKean Jr. [16]),
the solution X,(¢) of the equation (2.5) has the strong Markov property
in the following sense.

ProposiTion AL2. Assume that Ye % satisfies the condition (2.2). If
t is an (¥ )-stopping time, then, conditional on t < oo and X, =Y, the
future X} = X(t + ©): t > 0 is independent of &, and identical in law to
the solution of the equation (2.5) with X, = Y.

Appendix II
We summarize several facts about the fundamental solutions
g™ (t, k/N, l/N) and q(t, 0, 7) of (1/2)4%" and (1/2)4, respectively.

(a) The fundamental solutions g®(¢, /N, I/N) and q(¢, o, 7) have the fol-
lowing representations, respectively.

k )-_—; 3 (.N)(i) (N)(L) N2
N ;51 N i N e )

’

¢
ATL 1 <N>(t,
( ) q N
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where

’

@ ) — . .
v (M)\-1/2 . ﬂ'(l - 1)k - ﬂ(l - 1)(k - 1) < 3
N @) {sm N sin N }, 2Zi<N,

2§”>=1—cosﬂi—-1'v;ll, 1<i< N, in the case (I),

and
(_N)(i> _ ( 2N + 1 lﬁ”’>_1/2{cos (i — 1/2)(2k + 1)
“\N 2N 2N +1
_ (i — 1/2)(2k — 1)
O TN+ 1 } ’
AN =1 cosl(gi:—Q, 1<i< N, in the case (Il),
2N +1
and
k ) _ ( N+1 N)"m ni(2k + 1) ni(2k — 1)
nf_ vy = A0 —_
’ <N N {COS T ) }
A" =1 — cos Nfi}i-l , 1<i< N, in the case (III) .
While
(AIL2) alt, 0,7) = 3 &0 e,
where
1 , i1=1,
$do) = {ﬁcosn(i— o, 2<i<oo,
A=0—-17, 1£i< oo, in the case (I),
and
£(0) = v 2 sinz(i — 1/2)c ,
A=0—-1/2¢, 1<i< o, in the case (II),
and

£,(0) = v/ 2 sinnio ,
4, =1, 1<i<oo, in the case (III).

We note that the right hand side of (AIL2) is a uniform convergent sum
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in (¢, 0,7) on each compact subset of (0, o) X [0, 1] X [0, 1].
The above representations give the following (AIL3)-(AILG).

(AIL3) q™(t, [a], [z]) = q(¢,0,7) uniformly in (¢, ¢,7) on each compact
subset of (0, o) X [0,1] X [0,1] as N — co.

(AIL4) j FIEDa™ G, [o], [dr — j ' F(0)q(t, o, D)de uniformly in (2, o) € [0, T
0 0
X [0,1] as N — oo for each fe C([0,1]) and T < co.

(AIL5) There exists a positive constant C = C(T) such that

k £>< e te(0, T
N N)S¢, teOT].

q‘”’(t,

(AIL6) There exists a positive constant C such that

: E g ( E g )}
() A — oM™ B
L{q (S’N’N) NS N N )%

< C(L;,—g)’ te[0, o).

(b) We often denote q(¢,0,7) by q,(t,0,7) (i =1,2,3) to clarify the
boundary conditions (2.9) of the operator (1/2)4 in the cases (I), (II) and
(II), respectively.

The following four estimates on g are well-known.

(AIL7) For each T < oo, there exists a positive constant C such that
0 q(t,a,7) < C-12 for (t,0,7) € (0, T] x [0,1] x [0, 1] .

(AIL8) For each 0 < T < oo, there exist positive constants C and 8 such
that

qu(t’ a, T) - 5,;,11 é Ce-ﬂt
for (t,0,7)e[T, ) X [0,1] X [0,1], i=1,2, 3,

where d;,; is the Kronecker’s 4.
@y | qto,ddr <1,  (to)e(0, 00) X [0,1] .
0
(AT1.10) Foreach 0< T, T, < oo,

7q, (¢ 0,7)

dtoo S0

su
(t50,7) €[T1,T2]1x[0,11%[0,1]
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These estimates imply the followings immediately; there exists a posi-
tive constant C, such that

@IL1Y) [ ladt 0,0 — dulde < Ce#  for (h0)e(0,0) X [0,1],
and

(AIL12) qt 0,7 < G+ 6,,)
for (¢, 0,7) € (0, ) x [0,1] x [0, 1], i=1,23.

For each i =1, 2, 3, we set

Git; 0,9 = [ {as,0,9) — 3,.)ds
and
Go,7) = G(o0;0,1) .

Since G,(a, 7) (i = 1, 2, 3) are the Green functions of (1/2)4 with the boundary
conditions (2.9), they are given as follows.

Go,7) =2{c N7 — (0 — d*/2) — (r — 7*/2) + 1/3}
Gyo,7) = 2(6 A\ 7)
G3(05 1.) = 2(0 /\ T){l - (0' v T)} )

where ¢ At = min (s, 7) and ¢\/7 = max (s, 7). These equalities give that
(AIL13) Gyo,0) + Gz, ) — 2G(0,7) = 2|c — 7|{1 — ;3]0 — 7|}
and
(AIL14) |G(o, 1) — G(o,1,)| < 2|7, — 7o .
Since the Chapman-Kolmogorov equation of g implies
Gt;0,7) = G0, ) - | G, et 0, 7)dr
we have

(AIL15) |G(t;0,0) + G(t;7,7) — 2G(t;0,7)| < 6|0 — 7|

Appendix III

We consider the following two equations.

(AIIL.1) dX,(o) = dB,(o) + d(X(0))dt + -;—AXt(o)dt , c€l0,1], t>0,
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dX(0) = V(o)dt
(AIIL2) {dV.(o) = BdB,o) + BB(X,(0))dt + ZﬁdXt(a)dt — BVo)dt
sel0,1], t>0, g=1.

In the above two equations, B,o) is a cylindrical Brownian motion on
LX[0, 1], R*) and b(x) is assumed to be an R%valued Lipschitz continuous
function defined on RY. When b(x) = —FU(x)/2 with a potential func-
tion U(x), the equation (AIIL.1) was discussed in §4, while the equation
(AIIL.2) may be thought to represent the Ornstein-Uhlenbeck theory for
the string with the friction intensity S.

Here, we show first an existence and uniqueness theorem of the solu-
tion of the equation (AIIL.2) and secondly show that the solution X,(¢) =
X(P(o) of (AIIL.2) tends to that of (AIlL.l) as f— . For simplicity, we
discuss only in the cases (II) and (III) assuming A, = A, = 0.

The operator —d4 on the space L*([0, 1], RY) has pure point spectrum
{2)2,. Let ¢, be the normalized eigenvector corresponding to the 2,.
Setting x,(t) = (X(0), $.(0)) and v,(t) = {V,(0), $:(0)), the equation (AIIL2)
turns into the following system.

dx () = v(t)ds

(AIIL3) {dv,(t) = Bdw,(t) + pb(x)dt — -glixi(t)dt — Buh)dt
i=12---,

where

x, = (1, w,(t) = {Byo), $,(0))

and
b(x) = (B 1), 6@))  for ¥ = (8.
k=1
We introduce the following Hilbert space for each a € R':
H, = {v= @) eRY; ol = 31101 < oo} .
i=1

We denote by 77, (1 < m < n< o) the orthogonal projection of H, into
the subspace {v = (v), € H,; v, =0 if i <m or i > n}. We also denote =}
and z2,; simply by z" and =z,,, respectively. Then, we have the following.

Prorosirion AIIL.1. For every initial state (x,, v,) € Hy, X H_,, there
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exists a unique solution (x,, v,) of (AIIL3) such that sup,cp,r1 El||x. [} + ||l
< oo for each T < oo and (x,,v,) € C([0, ), H, X H_)) (a.s.).

Proof. We use the Galerkin method to construct the solution. For
given initial state (x,, vy) = ({x:(0)};2y, {v:(0)};2,), we determine the processes
(=", v™) = ({x" @)}y, (V(@)}iz) € Hy X H_, by solving the following sequence
of finite dimensional stochastic differential equations (ne N):

dx{(t) = v{"(t)dt
(ATILg |00 = pdw @) + pbix)dt — £ 2t — pu()dt

x7(0) = x,0), vPO0)=v(0), 1<i<n,
x°@) = %0, v =v0), jzn+1, tel0,T].

To prove the convergence of the sequence {(x{, v™)}r_,, we set, for m < n,

1t m,m) = E[sup {£ 12> — 215 + o — v )|

0=ssst

it m,m) = E|sup {Ejan(x — =) + 15700 — o)

0ss

and

It m,m) = E[sup {2 [lm, B mav )]

0

By using It6’s formula, we have

d[%/’li(x?"(t) — 2POF + @O — v OF]

— 20°(0) — VP EONBBAE™) — bt — B — vm(E)d)
< £ [ow) — baam) at
2
< BK | — amlidt,  fori<m,
which imply that
It m,m < K320 [ BBl — 4 [flds

(AILL5) !
< 2K, 2;1.[ I(s, m, n)ds .
7=1 0

Again by using Ité’s formula, we have
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a|E 1@y + eroy]
= 2v0{"(D){pdw(t) + Bb(x)dt — Bu{™(t)dt} + pdt
< 2pv(D)dw,(t) + _g_bz(x;w)dt + gdt  fori<n,
which prove that

Tt my 1) < Lz} + v

2
(ATILS) + E[ossu<p i j’;lzgl L 2,Bv§")(u)dw1(u)l]

n E[sup ST oA { I:%bf(x;”’)du n ,st}] .

0<sst t=m+1

The third term in the right hand side of (AIIL.6) is bounded by

(AILLT) E[sup 3 {g2 + 20([| v dww) ]

< 34+ 3| Bleme)ds.

i=m+1

While, noting that
20l < K+ 1=l
the fourth term is bounded by

@ms) 33 3 {[ LK@ + Bl s + )

i=m+

Summing up the estimates (AIIL.6-8), we have
Tt m, m) < Ci(m, §) + Cm)p || Bl s + 4 [ Ellw0.1ds
< Cm, ) + Comp [ Bllxolflds +4[ Ji6,mmds, 1< T,
0

where

Cm,f) = L lmaali + Izl + (5 + £ KT + pT) 35 37,

3

Cym) = _%.Kiz 2t

=m+1

This implies that
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ALY It m 1) = {Cm, §) + Cmp [ Bl xw ldsfer, 1< T
In particular, by taking m = 0, we get
JUt, 0, ) < e‘T{Cl(O, B) + 2C4(0) j’ J¥s, 0, ) ds} ,
0

which proves that

(AIIL10)  J% 0, n) < e7Cy(0, PO« = Cy(f) .

Substituting (AIIL.10) into the right hand side of (AIIL9), we have
(AIIL11)  J*(¢, m, n) < {Ci(m, B) + 2C(m)Cy(P)T}e!” = C(m, f) .
Since I(t, m, n) is bounded by

it m,m) + 2{ e mo 1)+ Ll 4 malta)
combining (AIIL.11) with (AIIL5), we have
1t, m, n) < 2Ci(m, B) + 2C,(m, B) + 4C(0) f I(s,m,n)ds, fort<T,

and this implies that
I(t, m, n) = {2C(m, p) + 2C(m, P!>, ¢t T.

We therefore have

lim B[ sup {£ 127 — amf + o — v ] = 0.
n>m ostsT L2

m—>co

This proves that there exists an H, X H_,-valued continuous process (x,, v,)
such that
lim E| sup {2 — 2 + o9 — vitaf| = 0.

n—+oo [Ost =T

We can easily show that (x,, v,) is the unique solution of the equation
(AIIL3). (Q.E.D.)

The solution (x,, v,) = ({x,()};=1, {v:(®)}i21) of the equation (AIIL.3) depends
on the parameter 8, so that we denote the solution by (x{", v{") = ({x{#(#)}:,,
{vi(B)},). Setting x,(f) = (X,(0), ¢.(¢)) again, the equation (AIIL.1) becomes
the following equation for x, = (x,(8));, € C([0, o0), H) (a.s.).
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(ATIL12) dx,(t) = dw,(t) + b(x,)dt — %Zixi(t) dt, i=12, ...
Assuming that the function b is bounded, we show that the x!* tends to

the x, as f— oo.

Proposition AIIL2. For every x(0) and v(0) e H,, the solution x{* of
(AIIL3) with the initial condition (x{”, v{") = (x(0), v(0)) converges to the
solution x, of (AIIL12) with the initial condition x, = x(0) as f— oo in
the following sense. For every ¢: 0 <e¢ < 1/d,

lim Efjx? — x[f] =0

B(E4g)~oo

uniformly in t on each compact set of (0, o), where the set A, is given by

Proof. We state only the outline. The equation (AIIL.3) can be
rewritten in the following integral equation.

#0() = (a, — a.){(@.e™* — a9z (0) + (> — e*-,(0)}
+ Bla, — a)! fo (€2+4-9 — o=ty (s)

+ B@, — @) [[ (ereenn — e (s
0
= 2f0) + 48O + 3RO, i=1,2 ., fx2,

where
0, = 0., f) = 3 (—p=VF = 2)
While, the equation (AIIL.12) is equivalent to the following.

5t) = e 0) + [ ee-ordw(s) + [[ e (e )ds
0 0
= 2,,(8) + x0,(8) + x40 i=12 ...

By estimating three terms
; E”x&?(t) - xi,j(t)lz] , J — 1’ 2’ 3 ,

independently, we finally arrive at the following estimate.
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Ell= — xJf] < f(8) + Ci{p" exp (—t) + " exp (— "))
+ G [ Blxp —xlads, t<T, e,

with f(B) = f(8; T, [|x(0) ||, [[v(0)|ly) and C, = C(T, || x(0) |, [|(0)[|,), where the
function f(p) satisfies that

fB—>0 as pled)—> .

Therefore, we have
El|x? — x|l < f(B) + C{p"* exp (—p°t) + B/ exp (—B"1)}
+ [ e22(f(®) + C(p" exp (—§s) + " exp (— pis)}ds

< C{pexp (—p7%t) + B/ exp (—B/*D)} + CLf(B) + B9,
t<T.

This implies the desired conclusion. (Q.E.D.)

Remark AIIL.1l. (i) E. Cabafa [4] discussed the Ornstein-Uhlenbeck
theory for the string mathematically, however, the equation of the string
studied by him was linear.

(ii) In E. Nelson’s book [18], one can find the proof to show that,
in finite dimensional case, the Einstein-Smoluchowski theory is given by
the limit of Ornstein-Uhlenbeck theory.
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