
T. Funaki
Nagoya Math. J .
Vol. 89 (1983), 129-193

RANDOM MOTION OF STRINGS AND RELATED

STOCHASTIC EVOLUTION EQUATIONS*

TADAHISA FUNAKI

§ 0. Introduction

In this paper, we shall investigate the random motion of an elastic
string by using the theory of infinite dimensional stochastic differential
equations. The paper consists of three main parts and appendices. In
the first part (§2), we shall derive a basic equation which describes the
random motion of a string. Several properties of this equation will be
investigated in § 3, 4 and 5. In the third part (§ 6), we shall deal with a
stochastic differential equation on a Hubert space as a generalization of
the equation of the string.

For given two functions a: Rd -> Rd <g> Rd and b: Rd -> R\ let xt be a
diffusion process on Rd determined by the stochastic differential equation:

(0.1) dxt = a(xt)dwt + b(xt)dt,

where wt is a d-dimensional Brownian motion.
We shall introduce in § 2 the following C([0,1], Rd)-valued stochastic

differential equation (0.2) as an equation that describes a string which
moves in Rd being interfered with by the process xt.

(0.2) dXt{σ) = a(Xt(σ))dBt(σ) + b(Xt(σ))dt + ^£^Xt(σ)dt ,

σ e [0,1], K > 0 ,

where σ is a parameter of the string and Bt{σ) is a cylindrical Brownian mo-
tion on L2([0,1], Rd), i.e., (dBtldt)(σ) is a d-dimensional Gaussian white noise
with two parameters (t, σ) e [0, oo)χ[0,1]. The equation (0.2) should have
some boundary conditions corresponding to the state at edges of the string.

The idea behind the derivation of the equation (0.2) is to take the
scaling limit of a sequence of polygonal approximations. More precisely,
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130 TADAHISA FUNAKI

we approximate the string by a polygon and set on each corner a particle

which moves governed by the stochastic differential equation (0.1) with a

suitable scaling. In each step of the approximation, the interaction be-

tween neighboring two particles is always taken into account.

The Hamiltonian of an elastic string Xe C([0,1], Rd) with modulus tz

of elasticity which is located in the potential field U(x) (x e Rd) is given

by

(0.3) H(X) = P U{X(σ))dσ + — f
Jo 2 Jo

dσ.

With this H(X), a physical meaning of the equation (0.2) becomes clear

when a(x) = Id (d x d-identity matrix) and

2 2 V 3χ, dxj

In this case, the equation (0.2) is rewritten in the following form:

(0.4) dXt(σ) = dBt(σ) - 1 ™
ZZ oΛ(σ)

where δH/δX is the functional derivative of H(X). This is the infinite-

dimensional Einstein-Smoluchowski equation which is given by the limit

of the Ornstein-Uhlenbeck theory for the string with large friction, i.e.,

the limit of β -> oo in the following equation (0.5) which describes the

dynamics of the string with friction intensity β forced by white noise (see

Appendix III).

(dXt(σ) = Vt(σ)dt

( 0 5 ) \dVt(σ) = - A *H(χt)dt - βVt(σ)dt + βdBt(σ) .
V Δ θX.\(J)

We shall then study the properties of the equation (0.2) of the string

in the following four aspects.

(a) To look for the limit of the solution of the equation (0.2) as the

parameter K tends to infinity.

(b) To give a stationary reversible measure of the equation (0.2).

(c) To discuss the motion from some topological view points.

(d) To study the recurrent properties of the random motion of the string.

In § 3, we shall answer to the problem (a). The limit processes are

different according as situations of both edges of the string. Roughly
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RANDOM MOTION OF STRINGS 131

speaking, our results are the following. In the case where both edges
move freely and independently, the string shrinks to one point whose
motion is governed by the original stochastic differential equation (0.1);
in the case where one end is fixed at a point Ao e Rd while the other
moves freely, the string contracts to the point Ao; in the case where both
ends are fixed at two points Ao, Aι e Rd, respectively, the string converges
to the segment AOAX. We shall also discuss the deviations from the limit
processes.

In §4, assuming that a(x) = Id and b(x) = —FU(x)l2, namely, con-
sidering the equation (0.4), we shall give a stationary reversible measure of
this equation explicitly. This measure is the infinite-dimensional analogue
to that given by A. N. Kolmogorov [11] in the finite-dimensional case.
Using this expression of the stationary measure, in the case where the
potential function U(x) diverges on some closed region E in Rd and where
the both edges are fixed in D = Ec (the complement of the region E)r

we shall also construct a process that may be thought of as a stationary
solution of the equation (0.4). Since we can show that the string never

o

touches the domain E (the interior of E), this stationary solution induces
a probability measure P on the space C([0, oo), C([0, 1], D)). As a simple
answer to the problem (c), we shall give a decomposition of P according as
the fundamental group πx(D) of the region D. By using S. A. Molchanov's
results [17], we shall also be able to answer to the problem (a) in case a
divergent potential is given.

In § 5, the recurrent properties of two dimensional strings with free
edges will be discussed. Assuming that d = 2, K = 1, a(x) = I2 and b(x)
— 0, we will get the following two results.
( i ) The solution Xt of the equation (0.2) is recurrent as a C([0, 1], R2)-

valued process,
(ii) The string Xt(σ) sweeps away all points in R2 with probability 1.

Finally in § 6, we shall discuss, as a generalization of the equation
(0.2), the following semi-linear stochastic differential equation (0.6) on a
Hubert space H.

(0.6) dXt = a(Xt)dBt + b(Xt)dt - κAXtdt,

where a: H-+ <^{H) = {the set of all bounded linear operators on H}, b:
H-> H, Bt is a cylindrical Brownian motion on H and A is a self-adjoint,
non-negative operator which has pure point spectrum {λk}™=1; 0 ^ λx ^
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132 TADAHISA FUNAKI

λ2 <̂  such that λk ~ ck1+δ (c,δ>0) as k -> oo. Such an equation was

introduced and discussed by D. A. Dawson [6], With his results in mind,

we will give the limit or the scaling limit of the solutions indexed by K

of the equation (0.6) by letting *-• oo.

The author wishes to thank Professor T. Hida for valuable suggestions

and kind encouragement in preparing the manuscript.

§ 1. Preliminaries

(a) The continuity of sample functions of random fields with n para-

meters.

Let C(Rn) be a set of all real-valued continuous functions defined on

Rn. A sufficient condition for tightness of a sequence {XN}%=1 of random

elements of C(Rn) is given by the following proposition.

PROPOSITION 1.1. The sequence {XN} is tight if it satisfies these two

conditions:

(i) There exists ϊ > 0 such that

(i i) For each M < oo, there exist a, β and C > 0 such that

suvE[\XN(χ) - XΛy)\a] ^ C\x - y\n+?
N

for all x , yeRn: \x\, \y\^M.

For the continuity of sample functions of random fields defined on

Rn, the following result is known (see, e.g., Yu. N. Blagovescenskii and

M. I. Freidlin [3]).

PROPOSITION 1.2. Suppose that a real-valued separable random field

X(x) defined for xeRn satisfies the following two conditions.

( i ) There exists ϊ > 0 such that

( i i ) For each M < oo, there exist a, β and C > 0 such that

E[\X(x) - X(y)\°] ^ C\x - y\n+t

for all x, yeRn:\x\,\y\^M.

Then, X(x) has a version continuous in x.
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RANDOM MOTION OF STRINGS 133

(b) A cylindrical Brownian motion on a Hίlbert space.

Let H be a separable real Hubert space with inner product <, > and

norm || ||. Suppose a complete probability space (Ω, J^, P) and an increasing

family {& t\ t ^ 0} of sub-σ-fields of & be given. After M. Yor [19], we define

a cylindrical Brownian motion on H as follows.

DEFINITION 1.1. A family of random linear functionals {Bt; t ^ 0} on

H is called a cylindrical Brownian motion on H if it satisfies the following

conditions:

( i ) BQ(φ) = 0 and Bt(φ) is JVadapted for every φ e H.

(ii) For every φ e H(φ Φ 0), Bt(<$)\\φ\ is a one-dimensional Brownian mo-

tion.

We often denote Bt(φ) by (Bt, φ} or (φ, Bt}. Sometimes, Bt is called

a Siegel process (R. Holley and D. Stroock [9]) or a standard Wiener &"-

process in case H = L\Rn) (K. Itό [10]). When H = L\G\ G being a

domain in Rn, we shall denote (βt9 φ) by

f
JG

Bt(σ)φ(σ)dσ , φeH.

(c) Stochastic integrals with respect to the cylindrical Brownian motion.

For an ίf-valued ^-adapted measurable function f(t, ω) ((t, ώ) e

[0, T] X Ω) such that

we define a real valued stochastic integral </(£)> dBt} by
Jo

Σ \τ<f(t),φnydBt(φa),
n = \ JO

where {φn} is a complete orthonormal system in H. With this notation

we have

(1.1) </(<), dB(> I ] = E [ £ \\f(t)fdt\ .

If ϋ" = L2(G), then we shall denote the stochastic integral (fit), dBt) by
Jo

Γ f f(t9σ)dBt(σ)dσ.
Jo J<?
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134 TADAHISA FUNAKI

Let J£2(H) be the set of all Hilbert-Schmidt operators on H, and denote

the Hilbert-Schmidt norm by || ||2. For an Jδ?2(£Γ)-valued ^-adapted measur-
Cτ

able function F(t, ω), we define an H-valued stochastic integral F{t)dBt

Jo
by the following equality:

F(t)dBt, φ) = \[<F*(t)φ, dBt} for every φ e H,

where F* is the adjoint operator of F. Then we have

By analogy with the finite dimensional case (I.L Gihman and A. V.

Skorohod [8]), the following estimates hold for the stochastic integrals

with respect to the cylindrical Brownian motion.

PROPOSITION 1.3. ( i ) For p = 1, 2, , there exists a positive constant

C = C(p) such that

(1.3) JS[(£ (f(t)9 dA

and

(1.4) E [ ( £ </(«), dBtyyj ^CT»-1 £ E[\\f(t)\r)dt

for every H-valued ^t-adapted measurable function f(t, ω) which satisfies

dt <oo.

(ii) For each ^2(H)-valued ^t-adapted measurable function F(t, ω) which

satisfies

EiwFanndt
/o

the following estimates hold.

(1.5) E\\\[T F(t)dBt

(1.6) F(t)dBt |p] ^ CT** £ E[\\F(t)\\l"]dt.

Proof. We show only the estimates in (i), since those in (ii) can be
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RANDOM MOTION OF STRINGS 135

shown similarly. Using Itό's formula in the infinite dimensional case (M.

Yor [19]), we have

E[{ί<f(sl dB*>T]=**& -i} j / s E [ ( ί o < / ( ί / ) ' dBu>T "2||/(s)

for t < T.

By Holder's inequality,

< p(2p -

£ p(2p - l)£j[(£ </(β), dBs} yγ)/P £ E[\\f(s)tfψ»ds .

We, therefore, have (1.3) with C = {p(2p - 1)}P. The estimate (1.4) can

be derived from (1.3) by using Holder's inequality. (Q.E.D.)

(d) Stochastic differential equations on a Hίlbert space.

Consider the following non-linear stochastic evolution equation on H.

dXt = a(t, Xt)dBt + b(t, Xt)dt - AXtdt, t e [0, T]

where Bt is the cylindrical Brownian motion on H. We assume that A,

a and b satisfy the following three conditions.

(A.I) A is a non-negative, self-adjoint operator on H and has pure point

spectrum {λk}k=1; 0 <, λt <£ λ2 <S , such that λk ~ ck1+δ(c, δ > 0) as

k —• o o .

(A.2) α( , •) is a mapping from [0, ϊ7] X H into the set S?(H) of all bounded

linear operators on H and satisfies the following two conditions,

( i ) α*( , )0fc is a continuous mapping from [0, T] X H into fl" for

each k = 1, 2, ,

(ii) ||α*(ί, X)0Λ|| ^ -^(1 + ll^il) >

for every X, X1? X2 e H, te [0, T] and A - 1, 2, ,

where α*(£, X) is the adjoint operator of a(t, X) and φk is the

normalized eigenvector of A corresponding to the eigenvalue

(A. 3) 6( , •) is a continuous mapping from [0, T] X H into H and satisfies
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136 TADAHISA FUNAKI

\\b(t, X,) - b(t, X2)\\ ^ K\\XX - X2\\, K > 0 ,

for every Xl9 X2eH and t e [0, T] .

An H-valued J^-adapted process Xt is called a solution of the equation

(1.7), if it satisfies the following integral equation:

Xt = U(t)X0 + P U(t - s)a(s, Xs)dBs + Γ U(t - s)b(s, Xs)ds ,
Jo Jo

where {U(t), t ^ 0} is a semi-group on H generated by —A. The following

theorem was shown by D. A. Dawson [6].

THEOREM 1.1. There exists a unique solution Xt of the equation (1.7)

such that sup ί €[0,Γ ]£'[| |Z ί | |
2] < oo for each T < oo and Xt e C([0, oo), H)

In Appendix I, we shall discuss the case of H = L2(G, Rd) with a

bounded domain G in Rn. In this case, the solution Xt( ) of the equation

(1.7) determines an i?d-valued random field defined for (ί, σ) 6 [0, oo) x G.

We shall study the joint continuity of sample functions of the Xt(σ) in

§2. The stochastic differential equations of randomly fluctuating
strings

Let xt be a diffusion process on Rd determined by the following

stochastic differential equation:

(2.1) dxt = a(xt)dwt + b(xt)dt, t > 0 ,

where wt is a d-dimensional Brownian motion, and where a and b are

Rd (x) Rd- and Rd-vahieά Lipschitz continuous functions on Rd, respectively.

In addition, α is assumed to be bounded.

In this section, we derive the stochastic equation (0.2) of an elastic

string which moves in Rd being interfered with by the process xt. The

state space of continuous strings, denote them by X(σ), σ e [0,1], is a

function space # = C([0,1], Rd) topologized by the uniform-norm.

The state space is often specified to a subset of #, so that we are

led to consider the following three cases.

( I ) Both ends of the string move freely.

(II) One end of the string is fixed at a point AQ e Rd while the other

end moves freely.

(III) Both ends are fixed at points A09 Ax e Rd, respectively.
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RANDOM MOTION OF STRINGS 137

The initial state XQ e & of the string is assumed to satisfy the following

conditions in the cases (II) and (III).

(2.2)
fX0(0) = Ao, in the case (Π).

VXΌ(O) = Ao, X0(ΐ) = At , in the case (III)

In the case (I), nothing is assumed for XQ.

We are now ready to derive the equation by the polygonal approxi-

mation. Let {wt(k)}χ=1 be an infinite system of independent d-dimensional

Brownian motions. We determine, for a positive integer N, an N X

d-dimensional diffusion process {X£N)(klN)}%=1 by the stochastic differential

equation:

(2.3)

^k£N, κ>0 , ί > 0,

where

and where

The following boundary conditions are given according as cases (I)—(III).

(2.4)
N

in the case (I) .

, f >0,

in the case (II) .

= A
x
 , t > 0 , in the case (III).
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The physical meaning of the equation (2.3) is as follows. The move-

ment of the N particles {X(

t

N)(klN)}ζ=1 on the string is governed by a system

of stochastic differential equations which have the diffusion coefficient

VNa(x) and the drift coefficient b(x). The random fluctuation forces are

understood to be mutually independent. Two neighboring particles attract

each other by the force κN2\X[N\{k + Ϊ)/N) - XlN\k/N)\/2 (0 ̂  k ̂  N).

The constant K is the modulus of elasticity of the string.

We define Xψ\a\ σ e [0, 1], by

Xl»Kσ) = (Nσ-k + l)Xr(-jj) + (k -

A probability measure P{N) is introduced on C([0, oo), <g) by X[N\ since

the process lives in C([0, oo), <̂ ).

We now pause to consider the stochastic partial differential equation

of semi-linear type:

(2.5) dXt(σ) = a(Xt(σ))dBt(σ) + b(Xt(σ))dt + ±
A

a e [0,1], t > 0 ,

with the boundary conditions,

(2.6)

~ ϊ t ( 0 ) = —Xt(ΐ) = 0, in the case (I),
dσ dσ

Xt(0) = Ao , —-X"£(l) = 0 , in the case (II) ,
dσ

Xt(0) = Ao, Xt(ΐ) = A19 in the case (III),

where Bt is a cylindrical Brownian motion on L2([0,1], Rd), and where

AXt(σ) = {Δ(Xt(σ)r>}Uu X&) = TO)% and A(Xt(σ)F> = (dηdσ*)(Xt(σψ\

By a solution of the equation (2.5) with the boundary condition (2.6)

and the initial state Xo e <#, we mean a solution of the stochastic integral

equation:

Xt(σ) = XtΛ{σ) + Γ [p{t - s, σ, τ)a(Xs(τ))dBs(τ)dτ
(2.7) J o J o

f
o Jo

where XtΛ(σ) is the solution of the equation:
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(2.8) —XtΛ(σ) = ~
ot A

with the boundary condition (2.6) and with the initial state X0(σ), and

where p(t, σ, τ) is the fundamental solution of (κ/2)Δ with the boundary

conditions:

(2.9)

dσ
t, 0, τ) = 3P-(t9 1, r) = 0 ,

da

p(t, 0, τ) = ψ-(t, 1, τ) = 0 ,
dσ

p(t, 0, τ) = p(t, 1, τ) = 0 ,

in the case (I) ,

in the case (II) ,

in the case (III) .

We denote by Xt,2(σ) and Xt$z(σ)9 the second term and the third term

of the right hand side of the equation (2.7), respectively. When K — 1,

the fundamental solution will be denoted by q(t, σ, τ) instead of p(t, σ, τ).

By the argument in Appendix I, the equation (2.5) has a unique

solution Xt living in C([0, oo), ̂ ) (a.s.). We denote by P the probability

measure on C([0, oo), ̂ ) induced by Xt. In the rest of this section, as-

suming K — 1 for simplicity, we shall show that X[N) converges to the Xt

as N-> oo in the following sence.

THEOREM 2.1. As probability measures on C([0, oo),

weakly to P as N—> oo.

P^N) tends

To prove this theorem, first, we rewrite the equation (2.3) in an inte-

gral form. Let q(N)(t, k/N, l/N) (t^0,0^k,l^N+ΐ)be the fundamental
solution of (fcl2)Δ{N\ i.e., a solution of the equation:

'Λ-qwUjL9 ΛΛ = JL

(2.10) t > 0, 1 £ k, £ £ N,

with the boundary conditions,

t 0 -

(2.11)

N+l
N

J_
N

t > 0, 1 ̂  £ £ N, in the case (I),
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. °
t > 0 , 1 ̂  ί <; N, in the case (II),

ί > 0 , 1 ̂  i ^ iV, in the case (III) .

Noting that {< Bt(σ), \/NXίik_1)/Ntk/N)(σ) >}f=i is a system of N independent

d-dimensional Brownian motions, the process XlN) has the same distribution

as the solution of the integral equation:

X< Λ » = X[»M + f [q^{t - s, a, [τ])a(Xr([τ]))dBXτ)dτ
Jo Jo(2.12)

+ Γ ?qm(t - s,σ, [τ])b(XW([τWsdτ,
Jo Jo

where [σ] = [σ]<W) = k/N,

a, 4Λ = (Nσ-k t, A,

= (iVσ - k

and where

(2.13)

^ is a solution of the following equation (2.13).

with the boundary condition (2.4). We shall denote by X{$(σ) and X$}(σ),

the second term and the third term of the right hand side of the equation

(2.12), respectively.

For p > 0 and an .Revalued random variable X(t, σ) with a parameter

(t, σ) e [0, T] X [0,1], we set

| | X | | Γ f P = sup E[\X(t9σ)\ψ*.
(t,<oe[o,r]x[o,i]

When p, = 2, we denote | |Z| |Γ, 2 simply by \\X\\T.
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Using the estimates on qiN) and q which are summarized in Appendix

II, we have the following uniform estimate on the processes {XIN)}N=I

LEMMA 2.1. For each p > 0 and T < oo, we have

(2.14) sup ||X<"> ||ΓfP < oo , where N = {1, 2, . } .

Proof. Since

(2.15) X™(σ) = Γ [X0([τ]) - X<NKM)}qm(t, σ, [τ])dτ + X™(σ) ,
Jo

where
0 in the case (I),

in the case (II) ,

N+l

we can first show

(2.16) sup

.{(N+l- Nσ)A0 + NσA,} , in the case (III) ,

sup
[or]

Ί\Xlf(σ)\ = Q < oo .

Since the function a is bounded, Proposition 1.3 and the estimate (AIL5)

in Appendix II prove

4Ni)Π
(2.17) <^ C 2 < dsE\(\ \a(Xs([τ]))\2(qiN)(t — s, 5 W ) ) c ? r ) >

Uo LVJo \ V N // / J J

< Q J (7(̂ )1 2(ί — s) )ds\ = C < 00 for p e N .
= 3 l J o V ' N' N) i 4 '

In the above expression, \a\ stands for the norm of the matrix a, i.e.,

\a\2 = Σί,3a2ιj f° r a = ( îj) Noting that the Lipschitz continuity of the

function b implies the estimate:

we have
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By the estimates (2.16)-(2.18), we have

where a positive constant C6 is independent of N. We obtain the desired

estimate (2.14) by the help of GronwalΓs lemma for each positive even

number p. We can prove the estimate (2.14) for general p > 0 by using

the Holder's inequality. (Q.E.D.)

To show the tightness of the sequence {XIN)}%=19 we need the following

lemma.

LEMMA 2.2. For each i = 2, 3, T < <χ> and p eN, there exists C =

C(T, p) > 0 such that

(2.19)

/or eu6Γ3/ ί1? t2 e [0, T], (;„ σ2 e [0,1], iVe N.

Proof. For 0 ^ ^ ^ ί2 ^ T and σ19 σ2 e [0,1] such that σx = [σj, σ2 =

Proposition 1.3 and estimates (AII.5-6) imply

i, - 8,σu [r])Z,.stlϊ

(2.20) gw(t, - β, σ

g<W)(2s, σιy adds +

Γ(ίl+ί2)/2

- 2 q
J(ί2~ίl)/2

- ur + ki - ff.

For every 0 ^ σj <Ξ σ2 ^ 1, we have

- β, σt,

σ2)

(2.21)
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- [σ2]

- k]

1
N

This proves the estimate (2.19) for i = 2. The estimate (2.19) for i = 3

can be proved, in a similar way to the case of i = 2, with the help of

Lemma 2.1. (Q.E.D.)

The solution X ^ of the equation (2.12) converges to the solution Xt

of the equation (2.7) as iV-> oo in the following sense.

PROPOSITION 2.1. We have

lim \\X^ - X\\τ = 0 for each T < oo .
iV

Proof. By (2.15) and (AΠ.4),

(2.22) lim sup = 0 .

By the Lipschitz continuity and the boundedness of the function α,

^ C, Γdβ Γ t f t l ^ X ί - β, W, W)α(Z<«([r]))
Jo Jo

(2.23) - q(t - s, a, τ)α(X/r)) |2]dr

S C, f( ώ f {?<*)(( - s, [σ], [r]) - g(t - s, σ, τ)γdτ
Jo Jo

+ C2 f ds Γ ^ Π ^ W ( W ) - Xs(τ)f]q\t - s, σ, r)dr .
Jo Jo

The discussion in Appendix II guarantees that the first term of the last

line of (2.23) converges to 0 uniformly in (t, σ) e [0, T] x [0,1] as 2V-> oo.
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The expectation

can be estimated in a similar way to get the estimate (2.23). Summing
up, for each ε > 0, there exists NoeN such that

sup E[\Xr([σ]) - Xt(σ)n
[oi]

t - «)-'/* sup E[\Xί"\[σ]) - X.(σ)nds ,
o *e[o,i]

16 [0, T] , for every N^N0.

Using this estimate n times over, we have

\\Xm(l'ϊ> ~ X\\l ^ s g (C
i=0

([ ]) - X\\% ,

where Γ(x) is the gamma function. Noting that ||Z(JV)([ ])llr < °° and ||X||Γ
< oo, we have

I|XW([ ]) - XIII ^ εCt, C4 =

This proves

(2.24)

Noting the equality

we have, by the representation (2.15) and Lemma 2.2,

(2.25) lim || X<*>([. ]) - X"> ||Γ = 0 .
iV—oo

By the equalities (2.24) and (2.25), we finally conclude

lim||Xw -X | | Γ = 0. (Q.E.D.)
JV-oo

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Noting Lemma 2.2 and that X(

tf(σ) converges
to Xt,i(σ) uniformly in (t, σ) on each compact subset of [0, oo) x [0,1] as
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iV—> oo, we see that {P(iY)}#=i is tight as a system of probability measures

on C([0, oo) x [0,1], Rd). Proposition 2.1 implies that every finite dimen-

sional joint distribution of P ( i V ) tends to that of P. Since C([0, oo) x [0,1],

Rd) = C([0, oo), ̂ ) and these two spaces have equivalent topologies, we

have the conclusion. (Q.E.D.)

By Theorem 2.1, one may think of that the ^-valued stochastic dif-

ferential equation (2.5) describes a mathematical model of an elastic string

which moves in Rd being interfered with by the diffusion process xt. The

following sections will be devoted to the discussions of several properties

of the equation.

§ 3. The limit of the solution as the modulus of elasticity K -> oo

The solution Xt(σ) of the equation (2.5) depends on the parameter Λ;,

so that we denote the solution by Xt(σ; it). The purpose of this section

is to investigate the limit process of the Xt(σ; tc) as the modulus of elasticity

K of the string tends to infinity. In fact, we shall prove the following

results:

( i ) In the case (I), the string shrinks to a single point whose motion

is determined by the stochastic differential equation (2.1).

(ii) In the case (II), the string contracts to the point Ao.

(iii) In the case (III), the string converges to the segment AQA^

In the cases (II) and (III), we shall also study the deviation of the Xt(σ; K)

from the limit.

We denote by P ω the probability measure which is induced on

C((0, oo), ̂ ) by Xt(σ;κ) and also by Xtfi(σ;κ) each of the three terms in

the right hand side of the equation (2.7) instead of Xt,i(σ) (i = 1, 2, 3),

respectively.

To prove the above results we prepare two lemmas which give esti-

mates on Xt,i(σ; K) (i = 1, 2, 3). The Xί5i(σ; Λ;) has the following represen-

tation:

(3.1) Xt fa; Λ:) - f {XQ(τ) - X(τ)}q(κt, σ, τ)dτ + X(σ) ,
Jo

where

(3.2)

0

A>
- σ)A

0
 H

>

VσA
x
 ,

in

in

in

the

the

the

case

case

case

(I),
(Π),

(III).
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By this representation and the estimate (AIL 11) in Appendix II, we have

the following lemma immediately.

LEMMA 3.1. There exists a positive constant C such that, for every

K ̂  1, t > 0 and σ e [0,1],

\Xt,i(*l *) - *ol £ Ce~βκt in the case (I) ,

and

\Xt,ι(<r; K) - X(p)\ < Ce~βκt in the cases (II) and (ΠI) ,

where

x0 = f X0(σ)dσ ,

and where β is a positive constant which appears in (AII.8).

This lemma implies that

(3.3) sup \Xhl(σ; κ)\ < oo .
(ί,σ,c)€[0,oo)χ[0,l]χ[l,oo)

LEMMA 3.2. For i = 2, 3, p > 0 and T < oo,

sup \\X.,i(- κ)\\τ p < oo in the case (I) ,

and

sup V K \\X.ίt(- fc)\\τ,P < °° in the cases (II) and (III) .

Proof. First, for p eN, we prove by using Proposition 1.3,

f
In the case (I), we have by (AIL 12),

Γ q(2fcs, σ, σ)ds < Cz Γ {1 + 1/V~2κs}ds
Jo Jo

(3.4) = C3{t

While, in the cases (Π) and (III),
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q(2κs, σ, σ)ds = q(u, σ, σ)du
(3.5)

where G is the Green function of (1/2)J with the boundary conditions
(2.9). Therefore, we have the desired estimates for ί = 2.

To derive estimates for / = 3,

(3.6) < E [(£ ds £ I b(Xs(τ *)) fdtj] X {£ ds £ q\tc{t - s\ σ, r)

£ C5(f g(2κs, σ, σ)^}^- 1 Γ fl + sup E[\X,(τ; κ)\2p])ds .
Uθ J Jo L r6[0,l] J

Noting (3.3) and estimates which are derived above for i = 2, we have

sup E[\Xt(σ;κψ] ^ C6 Γ{1 + sup E[\Xs(τ; κψ]}ds
σ€[0,l] JO re[0,l]

for t £ T and K ;> 1 .

By GronwalΓs lemma, we have

(3.7) sup | |X(. ;*) | | Γ i 2 p <oo.
κ>l

Inserting this estimate into the right hand side of the inequality (3.6), by
(3.4) and (3.5), we have the concluding estimates for ί = 3. (Q.E.D.)

To show the tightness of the family {X.( •;*;), K 2> 1}, we need the fol-
lowing lemma.

LEMMA 3.3. For i = 2, 3 and for each T < oo, peTV, ίΛβrβ exists a

positive constant C such that

(3.8)

/or ei ery ί1? ί2 e [0, T], (71? σ2 e [0,1], Λ: ̂  1 .

Proo/. For 0 ^ t x ^ t 2 ^ T and σ1? <y2 e [0,1], we have in a similar

manner to the proof of Lemma 2.2,

Γ Γ1 Ct2

^ CΛ\ q(2κs, σu σ,)ds + q(2κs, σ2ί σ2)ds

— 2 q(2fcs, σί9 σ2)ds \
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q(u9

ψσu

r

σi)du + ^\(u, σ29 σ2)du

- 2 q(u9σί9σ2)du) .

The expression in braces is equal to

G{2κtu σί9 σx) + G(2κtl9 σ29 σ2) - 2G(2κtl9 σί9 σ2)
Γ2κt2 Γ«(ίl + ί2)

(3.9) + q(u, σ29 σ2)du — 2 q(u9 σί9 σ2)du
J 2/cίi J 2βίi

+ 2 q(u9 σl9 σ2)du ,
Jo

where G(t; σ9 τ) is a function which is defined in Appendix II. By the

estimate (AIL 15) on G(t; σ9 τ), the absolute value of the sum of first three

terms in (3.9) is bounded by 6\σί — σ2\ for every K > 0. The estimate

(AIL 12) implies that there exists C = C(T) > 0 such that the absolute

value of the sum of remaining three terms in (3.9) is bounded by Cκ\lt2 — tx.

Therefore, we have the estimate (3.8) for ί = 2.

In a similar way, we have the estimate (3.8) for i = 3 by noting (3.7)

in the proof of Lemma 3.2. (Q.E.D.)

From now on, we shall discuss the problems in the case (I) and in

the cases (II), (III), separately.

Case (I). Let xt be the solution of the stochastic differential equation

(2.1) with a starting point x0. We define Xt(σ; oo) by

(3.10) Xt(σ; oo) = χt for (t9 σ) e (0, oo) x [0,1] .

Denote by P(oo) the probability measure on C((0, oo), ̂ ) induced by Xt(σ; oo).

We show that Xt(- Λ:) tends to Xt(- oo) as K —> oo in the following sense.

THEOREM 3.1. ( i ) For 0 < Tx < T2 < oo,

lim sup E[\Xt(σ; /c) - Xt(σ; oo)|2] = 0 ,
) [ Γ r 3 [ o i ]

where XX<x; oo) is defined as in (3.10) by the solution xt of the stochastic

differential equation (2.1) with a Brownian motion wt — (Bt(σ)9 X[0,i]((x)),

when a cylindrical Brownian motion Bt(σ) is given.

(ii) The probability measure P ω tends weakly to P(oo) as κ-> oo.

Proof. The process xt = Xt(β\ oo) satisfies the integral equation:
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xt = Γ X0(τ)dτ + f Γ a(xs)dB£τ)dτ + P Γ b(xs)dsdτ
Jo Jo Jo Jo Jo

= z %0 I %t,2 ~T~ *^ί,3

As for the process Xt(σ; tc)9

< P ds Γ #[|α(X,(τ; *))«(*(* - s), σ, r) - a(xs)l2]dτ
Jo Jo

( 3 n ) ^ 2 £ cfe £ {2?[|α(Xs(r «))| 2](^(ί - β), σ, r) - I)2

+ E[\a(Xs(τ;κ))-a(xs)\2]}d^

£ C, f( {q(2κs, a, a) - l}ds + C, f' sup £J[|Zs(r;«) - xsl
2]ds

Jθ Jθr6[O,l]

rg C2Λ-' + C, Γ sup E[\X$(τ; K) - xs\
2]ds .

Jo r€[0,l]

With the help of (3.7) with p = 1, we have the estimate for Xt)3(σ; tc):

(3.12) f ,
^ Q^-1 + C3 sup £[|Z s(r;«) - xs\

2]ds .
Jθ r€[0,l]

Again by (3.7), for each ε > 0, there exists £: 0 < δ < TΊ such that

sup JB[|ZS(Γ; tc) — xs\
2]ds ^ ε for every /c ^ 1 .

JO r€[0,l]

By Lemma 3.1, there exists κ0 > 1/e such that

s u p \Xt λ(σ\ tc) — x o | 2 ̂  £ j foϊ1
 Λ: ^ tc0 .

(ί,σ)6[δ,Γ2]x[0,l]

The above estimates prove that

E[|X£((j; it) - xt\
2] ̂ CB+CΪ sup E[|Xs(τ; tc) - xs\*]ds

J δ r€[0,l]

f o r t e [δ, T2] , κ ^ κ Q .

We therefore have

sup E[\Xt(σ; tc) - x,|2] ^ Cεe^^^ , ί e [δ, T2] , Λ: ̂  tc0 ,
σ6[0,l]

which implies the assertion (i).

In particular, we see that every finite dimensional joint distribution

of P ω converges to that of P(OD). Since the family of probability measures
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{PM; fc ^ 1} is tight by Lemma 3.1 and Lemma 3.3, we have the assertion

(ii). (Q.E.D.)

Cases (II) and (III). Set Xt(σ; oo) = X(σ) for (t,σ)e(0, oo) x [0,1],

where X(σ) is defined as in (3.2), and denote by P(oo) the probability measure

on C((0, oo), ̂ ) induced by Xt(σ; oo). In the cases (II) and (III), we can

easily show that Xt(-;κ) tends to X( ) as Λ;-» oo, as is prescribed below.

THEOREM 3.2. ( i ) For 0 < Tx < T2 < oo and p > 0, we have

lim sup E[\Xt(σ; K) - X(σ)\2p] = 0 .
«-»«> (ί,σ)€[Γi,Γ2]X[0,l]

( i i ) T/ie probability measure P u ) converges weakly to P ( o o ) a s A:—> oo.

Proof. The assertion (i) follows from Lemma 3.1 and Lemma 3.2, while

the assertion (ii) follows by noting Lemma 3.3. (Q.E.D.)

We shall also discuss the deviation of the Xt(σ; tc) from the limit X(-):

lim Yt(σ; ιc) ,
c-*oo

where

Setting

F e > ; *) = JT Γ f a(X(τ))q(.κ(t - s), σ, τ)dBs(τ)dτ ,
Jo Jo

we have the following.

LEMMA 3.4. For each t > 0,

( i ) lim sup E\\^TXtti(σ; *) - Ftf2((τ; ^)|2] = 0 ,
«—oo σ6[0,l]

(ii) Um sup E[WΊΓXt,£σ; κ)f] = 0 .
*-°o «6[0,l]

Proo/. Lemma 3.1, Lemma 3.2 and (AΠ. 12) prove

I a(Xs(τ *)) - α(l(r)) |«<rt«(i - s), σ,

* fS sup E[\a(Xs(τ; *)) - α(X(r))|2]^(2ys:(i - β), σ,
JO r€[0,l]

^ C2/c Γ{e-2^ + tc-%2tc(t - s))~1/2ds
Jo

-> 0 (as K -> oo) .
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This implies the assertion (i).
The estimate (AIL 11) on q shows that

£ C3κE [ [ [ ds £ IXs(τ K) - X(τ) | q(κ(t - s), σ, r)dr}*]

+ 2κ[[ ds £ I b(X(τ))\ q(κ(t - s), σ, τ)dτ

^ C%κ P ds P £[ |X s (r ; *) - X(r) | !]dr X Γ ds Γ <72(/s;s, σ, τ)dr

Jo Jo Jo Jo
+ C^fcl ds q(κs, σ, τ)dτ\

< C3G(σ, σ) Γ (e~2^s + Λ : - 1 ) ^ + C

--> 0 ( a s Λ: —• oo) .

We have therefore proved the assertion (ii). (Q.E.D.)

The next step is to show that Yt( Λ:) tends to a process Yt( ) which
is defined later. First, we consider a Gaussian ^-valued random variable
Y with mean 0 and covariance

— (aa*)(A0)G2(σl9σ2) in the case (II)
2

ds
Jo Jo

s, σ29 τ)dτ

in the case (IΠ) ,

where Y,®Y2 = ((Y, ® Y2)o ) = (Y\Yj) for vectors Y, = (Yi)U Y* =
and αα* = ((αα*)ί;) = (2*=i aik^jk) ?ov a matrix α = (α^). The definitions
of G2 and ̂ 3 can be found in Appendix II. Let {Yt; t > 0} be a family of
independent ^-valued random variables such that each Yt has the same
distribution as Y.

Remark 3.1. In the case (II), Y( ) has a realization: Y(σ) = α(
with a standard d-dimensional Brownian motion wσ, with a time parameter
a e [0,1], starting from the origin. While, in the case (III), if a(x) = a
(constant matrix) for [x e A^ΆU then Y(σ) = awσ with a d-dimensional
Brownian bridge wσ.

LEMMA 3.5. For every 0 < tx < t2 <> ^ tn and σt e [0,1] (ί = 1,

2, , τι), the joint distribution of {Yί<f2(^; A:)}?=I on (Rd)n converges to that

of {Yti(στ)}Uas ΛΓ-+OO.
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Proof. Since {Ytt2(σ; κ);(t9σ) e(09 oo) x [O91]} is a Gaussian system

with mean 0, it is enough to show the convergence of covariance functions.

It is of the form

(3.13) ΛίiΛί2 pi

= Λ: ds\ (αα*)(X(τ))g(A:(ί1 - s)9 σ19 τ)q(κ(t2 - s), σ2, τ)dτ .
Jo Jo

When tx ^ t2, by (AIL 8), the right hand side of (3.13) tends to 0 as K -> oo

and when tx — t2, it tends to E[Y{σ^) (g> Y(σ2)]. Therefore, we have the

conclusion. (Q.E.D.)

THEOREM 3.3. For every 0 < tx ^ t2 <L <L tn9 the joint distribution

of {YH( K)}U on tfn tends to that of {Ytt(-)}ΐ-i as /c->oo.

Proof. By Lemma 3.1, for each t > 0, we have

(3.14) lim sup WT(Xttl(σ; *) - X(σ))\ = 0 .
*-»oo σ6[0,l]

By Lemma 3.4, Lemma 3.5 and (3.14), we see that the joint distribution of

{Yti(σt; κ)}U tends to that of {Yti{az)}n

i=1 for every 0 < ί 1 ^ ί ϊ ^ -

σt e [0,1] (i = 1, 2, , ή). Taking tx = t2 = t in (3.8), we have

for i = 2, 3 .

Combining this with (3.14), we see that {Yt(- K); K ̂  1} is tight as a family

of ^-valued random variables for each t > 0. Therefore, we obtain the

conclusion. (Q.E.D.)

§4. Brownian strings in a potential field

In this section, we discuss the equation of a Brownian string in a

potential field U(x) (x e Rd), that is, the equation (2.5) with a(x) = Id and

b(x) = -FU(x)/2:

(4.1) dX£(<y) = dBt{σ) - —FU(Xt(σ))dt + —ΔXt{a)dt .
Δ Δ

We shall give a stationary measure of the equation (4.1) explicitly,

and we shall also investigate the equation in the case where the potential

function U diverges on some region in Rd.

(a) The stationary measure of the equation (4.1).

As is stated in Introduction and will be proved in Appendix III, the
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equation (4.1) may be thought of as the Einstein-Smoluchowski equation
on the space <€. In the finite dimensional case, A. N. Kolmogorov [11]
characterized the equations of this type mathematically and gave their
stationary measures. By analogy with his results, we may expect that
the stationary measure of the equation (4.1) would be given by the fol-
lowing formal measure v on ^ :

(4.2) dv{X) = e-H^@(X) ,

where H(X) is the Hamiltonian (0.3) of string and 9{X) is the "Lebesgue
measure" on ^ (Feynman measure).

To state more mathematically, define, for each of three cases (I)—(III),
a d-dimensional process wσy σ e [0, ΛΓ1], as follows.

( i ) In the case (I), wσ is a Brownian motion whose initial distribution

is the Lebesgue measure on Rd.

(ii) In the case (II), wσ is a Brownian motion with a starting point Ao.

(iii) In the case (III), wσ is a pinned Brownian motion which starts from

Ao and arrives at Av

We denote by μ(κ) a non-negative measure on (^, <%($)) induced by the

process wc/lt (σ e [0,1]), where &(&) is the topological (/-algebra on <?. As

a mathematical realization of the formal measure in (4.2), we define a

non-negative measure p on (^, J*(^)) by

dv(X) = exp {- £ U(Xσ)dσ}dμw(X) .

Before we discuss the properties of v, we introduce some notations:

( i ) C0(Rdίl) = {Fe C(Rdίί); F has a compact support},

(ii) C,(ίf) = {fe C($); f is bounded},

C0(V) = {fe Cb(Ψ); / Ξ O O Π ^C

M with some 0 < M< 00},

where

tf, = {Xe V; \X(σ)\ ^ M for every a e [0,1]} ,

(iii) @N ={/6 CW; f(X) = F ( { X ( A ) } * J with Fe C0(R™)} ,

J V = 1

The potential function U will be assumed to satisfy the following
conditions.

ASSUMPTION 1. The function U belongs to C\Rd), PU is Lipschitz
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continuous and U is bounded from below.

Under this assumption, the equation (4.1) has a unique solution Xt(σ)
and we can prove the following theorem.

THEOREM 4.1. Under Assumption 1, for each of three cases (I)—(III),

the measure v is a reversible measure of the solution Xt of (4.1), that is,

(4.3) ί EXQ[f(Xd]g(X*)dv(XQ) = f EXo[g(Xt)]f(Xϋ)dv(Xo)

holds for every f, ge Co(

where EXo[ ] means the expectation with respect to the probability measure

induced on C([0, oo), <g) by the solution Xt of (4.1) with initial state Xo e <£.

Proof, We define a function U on RdN by

N
^ χ(

βR
dN

N /JJC=I

where Z ( V)(0) and X( Y)((iV + Ϊ)/N) satisfy the boundary conditions (2.4).
Using the function Π, the equation (2.3) for X[N) = {X^}(A/iV)}f=1 can be
rewritten into the following form:

\(4.4) dXψ{w) VWdw^ \

Define a non-negative measure vN on RΛN by

dvN(X<N)) = exp Γ - —

where dXiN) is the Lebesgue measure on RdN and CjV is an appropriate
constant which depends on N. Then, it is known that vN is a reversible
measure of (4.4), i.e.,

holds for every F, G e C0(i2 ί Λ Γ).

https://doi.org/10.1017/S0027763000020298 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020298


RANDOM MOTION OF STRINGS 155

We therefore have

exp {- -jL Σ

for every f, ge@N , N = 1, 2, ,

where -E^H means the expectation with respect to the probability measure
determined on C([0, oo), #) by X<*> as in § 2. Noting Theorem 2.1 and
that £/ is bounded from below, we get the equality (4.3) for /, g e 2 by
taking the limit of both sides in the above equality. Approximating the
functions in €<$>) by those in 2, we can easily show that the equality
(4.3) holds for every f, ge Cffi). (Q.E.D.)

Remark 4.1. ( i ) We can show that the equality (4.3) holds for every
f9 ge Cb(tf) in the cases (II) and (III).

(ii) Infinite-dimensional Einstein-Smoluchowski equations have been
studied by several authors, e.g., H. Doss et G. Royer [7], R. Lang [13] and
R. Marcus [15].

(b) The case with a divergent potential.
Here, we limit our discussions to the case (III). The potential func-

tion U is permitted to diverge on some region in Rd. Namely, U is a
continuous function from Rd into (— oo, oo]. Consider following regions
in Rd determined by U.

D = {xeRd; U(x)< oo}
DN = {xe Rd; U(x) < N}, N = 1, 2, . . . .

We set the following assumption on U.

ASSUMPTION 2. The function U is in C\D) and is bounded from
below. VU is Lipschitz continuous on DN for each N = 1, 2, . Two
points Ao and Ax belong to the region D and are able to be connected
with a continuous curve in Ό.

For a potential U which satisfies Assumption 2, we shall construct
a process that may be thought of as a stationary solution of the equation
(4.1). First, we take a sequence of functions {U(N)}N=1 on Rd which satisfy
the following three conditions.

https://doi.org/10.1017/S0027763000020298 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020298


156 TADAHISA FUNAKI

I( i ) U(N) satisfies Assumption 1 for each N = 1, 2,

(ii) U™(x) = U(x) for x e DN .

(iii) W\x) ^ t/(2)(x) < . . f TO
For each iV, by Theorem 4.1, there exists a stationary solution of the

equation (4.1) with U replaced by U(N) and its stationary probability

measure viN) is given by

= ^ exp {-

where Z^ is a normalizing constant. We denote by PiN) the probability

measure on C((— oo, oo), #) induced by this stationary solution.

To show the existence of a limit of the sequence {P{N)}, we need

another assumption on U.

ASSUMPTION 3. The sequence {UiN)} satisfies

sup f [l \FWN)(X(σ))\lodσdvW(X) <
NeN Jv Jo

We shall give an example of the potential U which satisfies this

assumption later (Example 4.1).

PROPOSITION 4.1. Under Assumptions 2 and 3, the family {P(N)}N=I of

probability measures on C((—oo, oo), ̂ ) is tight. The stationary distribution

v of any limit P = P(κ) of the sequence {PiN)} is given by

dv(X) = Z-1 exp {- £ U(X(σ))dσ}dμw(X) ,

where Z is a normalizing constant.

Proof Noting that U(N)(x) is increasing in N for each x e Rd, we can

easily show that v(N) tends weakly to v as N—> oo.

Under the probability distribution P{N\ the process Xt satisfies the

following integral equation for t ^ 0.

Xt(σ) = XtΛ{σ) + Γ [p(t - s, σ, τ)dBs(τ)dτ
Jo Jo

(2.7)' - I P fp(< - s, a, τ)VU^(Xs{τ))dsdτ
2 JoJo

= XM(σ) + X 4 » + Xt>z(σ) ,

where XtΛ(σ) is the solution of the heat equation (2.8) with a random
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initial state X0(σ) whose distribution on # is equal to viN). To show the

tightness of {PiN)}, we need uniform estimates on the moments:

for tl9 t2eRι , σ19 σ2 e [0,1] ,

where E(N)[-] means the expectation with respect to PiN). Since P(N) is

stationary, we may estimate M{N) only for 1 <ί tx < t2 <̂  T < oo. For this

purpose, we set

for ί = 1, 2, 3 .

First, by the representation (3.1) of XtΛ,

{X0(τ) — X(τ)}{p(tu σu τ) — p(t2, σ2, τ)}dτ

10Ί

ΓΓ|Z0(r)-X(r)|10cίrl
LJo J

X {p(tί9 σl9 τ) — p(t2, σ2, τ)}2dτ\ + C^σ, — σ2|
10 .

l_ J o J

In the above estimate,

< C2 sup f Γ |Z(r)|I0<ίr£ί^ff>(Z) + C2 Γ \X(τ)\wdτ < oo ,
iV Jί? JO Jo

and (AΠ. 10) proves

f {p(*i, ̂ i, r) - p(ί2, σ2, τ)}2dr
Jo

2, σu σ2)

Therefore, we have

(4.6) M^£ C^ - t2\ + ^ - σ2ψ .

Next, by Lemma 3.3,

(4.7) M ^ ^ Gflί, - t2r + 1(7, - σ2|
5} .

Finally, by Assumption 3, we get
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Γds Γ

X (pit, - S, ffi, τ ) Z l s S ί l , - p(<2 - S, <72, r))dr} 1 0J

(4.8) X {£ (pfc - s, σ,, τ)χ,,stι} - p(t2 - s, σ2, τ)ydτj

— Cl (Jo ^2S> σi' σi^S + Jo ^2S' σ2> ^ ^
- 2 p(25, σ1? σ2)ds\

J(ί2-ίi)/2 J

Combining the estimates (4.6)-(4.8), we have

with a positive constant C which is independent of N. Therefore, noting

that v{N) ->v (weakly) as N—> oo, we see that the sequence {P{N)} is tight

and that the stationary measure of any limit P of {PiN)} is equal to v.

(Q.E.D.)

We may regard a limit P = P(κ) of the sequence {PiN)} as a distri-

bution of a stationary solution of the equation (4.1) with a divergent

potential U. We give a decomposition of P associated with the 1-dimen-

sional homotopy class of the closure D of the region D in the following

manner.

Consider a subset of &:

<gφ\ Ao, A1) = {Xe<&; X(σ) e D for every a e [0,1] and

X(0) = A , X(ΐ) = AJ .

The set tfφ; Ao, At) can be decomposed into connected components <gt

Vφ; Ao, A,) =
ie*i

The set πγ above is the fundamental group of the connected component

of D which includes two points Ao and Ax. Since the support of the pro-

bability measure v is included in ^(D; A09 Aλ), we have the following de-

composition of P.
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THEOREM 4.2. The probability measure P has a decomposition:

P = Σ αΛ
ie >0

where at = v(^) and Pt = Pif(κ) is a conditional probability measure
P ( . I C ( ( - 0 0 , 0 0 ) , <<?,)).

Finally in this part, we give an example of a potential function U
which satisfies Assumption 3.

EXAMPLE 4.1. The following radial function U on R2 satisfies As-
sumption 3 for every K > 0.

- ro)"α for r > r0 ,

with some 0 < r0 < 00 and α > 2, where r = |x|.
Let μo

o\
τAΛκ) be a probability distribution of a 2-dimensional pinned

Brownian motion with speed 1/Λ: which starts from 0 at time 0 and arrives
at A at time τ. Noting that, with a standard Brownian motion w(σ), the
process X(σ) defined by

X(σ) = w(£) + - ^ ( - H ( ^ ) + A) , σ € [0, r] ,

has the distribution μl\τ

A^κ), we have the following lemma.

LEMMA 4.1. For each K > 0, p eN and each bounded set E in R2,
there exists C = C(tc, p) > 0

sup sup^;l,ω[|{σ e [0, r]; X(σ) e D(0, a)}\ < b]
τ€(0,l] A£E

^ C(ba-2)p for every a,b; 0 < 6 ^ α ̂  1 ,

, a) = {x e R2; \x\ < a}.

With this lemma, we show that the function U in Example 4.1 satis-
fies Assumption 3. For the function U, we consider a sequence {Ϊ7(ίl)}~=1

of functions which satisfy the conditions (i) and (iii) in (4.5) and the fol-
lowing (iv) and (v).

(U(x)9 xe\JRk

(iv) U^(x) = k=l
[constant, xe \J Rk\JDc,

k=n+2
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( v ) \FU™(x)\ ^ C^α + 1, xeRk9 1 £ k £ n

where

= {xeR2; r0 + 1 ^ |x| ^ r0 + - ^ — ) , A = 2, 3,
I A A — 1J

R

For our purpose, it is now enough to show that

(4.9) sup sup In{τ) < oo ,
TZ Î re[o,i]

where

J,(r) = Z,"1 JjFJ7«Γ(Z(τ)) exp [-

We first note that

Zn = [ exp f- Γ U^(X{σ))dσ\dμw{X)

(4.10) h I h J

^ Z = f exp Γ- £ l7(X(σ))dσjdμω(X) > 0 .

For r e [1/2,1], IJτ) can be estimated as follows.

Uτ) < Σ βuplFt/wp^Zί1 Γ exp f- Γ U^(X(σ))dσ\dμY0,ΛΛκ)(X)
fc=l AβBjc JV L JO J

X £ exp [- £ tf <*>(X(σ))<ψ^1>w(X) X /£W(X(τ) 6 Rk)

^ Z-i g (C^«+1)10 sup f exp Γ- fΓ U^{X(σ))dσ\dμχAΛκ){X) .
k = l AβBkJV L JO J

To obtain an upper bound of the last integral, we consider the following

two subsets of Ω = C([0, r], Rd):

Ωx = {Xe Ω; \{σ e [0, τ]; X(σ) e D(Ay

β 2 = Ω - Ωx .

Then,

£ exp [-

(4.11) = J f t exp [- £ ̂ w

exp [-
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The first integral in the right hand side of (4.11) is bounded by

exp [- (k - ΐ)"lkβ] ^ C2 exp [- Jfe-q .

While, the second integral is bounded by

sup μl'Xw[\W e [0, r]; X(σ) e D(0, l/k)}\ < l/#]
iO,\Ao\+ro + l)

kηwy.

Hence, for p large enough, we have

ί.(r) £ C4 Σ #0("+1){exp ( - *"-") + Ar**""} < oo for r e [1/2,1] .

For τ e [0,1/2], exchanging the roles of Ao and Al9 we have a similar

estimate. We therefore have the estimate (4.9) which implies that the

function U in Example 4.1 satisfies Assumption 3.

(c) The limit of PiAκ) as £-> oo.

Here, we assume that d = 2 and D is a non-convex connected open

polygon in R2. We denote by μiΛκ) and viΛκ) (ieπ^ the conditional proba-

bility measures μ(/c)( | ^ ) and ^ ( - l ^ ) , respectively. Let D be the universal

covering space of D and let p(t, x, y) (t > 0, x, y e D) be a transition proba-

bility density of the Brownian motion on D with absorbing boundary 3D.

We note that there exists only one shortest continuous path f(x, y) in D

which joins two points x, y e D. To investigate the limits of vuω and PiΛκ)

as K—> oo, we use the following lemma and its corollary which were shown

by S. A. Molchanov [17].

LEMMA 4.2. Assume that f{x,y) is transversal to 3D. Then,

p(t, x,y) = O (V-1 exp {- - L # x , y)2}) as t -* 0 ,

where k is a positive constant which depends on f(x,y) and p(-, •) is the

metric on D.

For K :> 1 and 0 < β < 1/2, we set

Ωx(κ) = {Xe V; dis (X(σ),dD) >Λ:~1/2 for every σ e [0,1]}

i22(/c, β) = {XeV; dis (Z(σ), r,(σ)) > /c~1/2^ for some σ € [0,1]} ,

where ϊ^ ) is the shortest continuous path in (6ι which has a represen-

tation in terms of length and satisfies 7^0) — Ao and 7t{l) = Ax.
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COROLLARY (1) H m ^ μίΛκ){Ωx{ft)) > 0, for each ieκγ.

(2) For each 0 <β < 1/2, μίΛκ)ψ2{ιc, β)) = o(e"<-2/3/2) as K -> oo.

By the estimates in this corollary, we see that μiΛκ) tends to δYi (the

^-measure concentrated on 7^) as K —> oo. To show that viΛκ) —> <5Γi holds as

Λ;-»OO, we need assume that U and the region D satisfy the following

two conditions.

(vi) U(x) ^ C (dis (x, dD))~% xeD with some O 0 a n d 0 < α < l

(vii) There exists a finite set {σu , σn} in the interval (0,1) such that

Uσj)edD for j = 1,2, . . . , Λ f

r,(σ) e 3ΰ for σ e [0,1] - {σu . , σn} .

Then, we obtain the following.

PROPOSITION 4.2. Under Assumptions 2, 3 and conditions (vi), (vii),

we Λai β

(1) y t ι ( β ) > δu as K > oo ,

(2) PiΛκ) > δx<Ti) as K > oo ,

where

X\:M = Tjίp) for every teR1 .

Proof. First, we estimate the normalizing constant ZίΛκ):

ZίΛκ) = £ exp [ -

We set β8(A:, j8) Ξ fl^) ΓΊ ^(A:, /3) with j8 = l/2(a + 1) (0 < β < 1/2). Then,

there exists a positive constant c such that the inequality

holds for XeQfa, β) and for σe [0,1]: \σ - σ,\ > Cfc~1/2+β for any j = 1,

2, , n. Therefore, for such X and σ we have

While, for σ e [0,1] such that \σ — σ |̂ < cκ~1/2+β with some j = 1, 2, , n,

the inequality

holds. Therefore, we get

TTίVΐ srWslsr <** (~^ J *-(l/2- β)oc _J_ »-«/2 + β -1/2\ Of* *-«2/2(α + l) -rrkτ»

KJ \U\.\p ϊiU/O ^ ^ L/j 1/t "T" Λ j — tuKjγtϊ, lUX
0
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Noting that

we have

ZίΛκ) ^ C2 exp {- 2Cιfc
aVHa+ί)} for sufficiently large K .

For each ε: 0 < ε < 1/2, since U is bounded from below, the above

two estimates prove

viΛκ)(Ω2(κ, ε)) = Zr\κ) f exp ί - P U(X(σ))dσ\dμίΛκ)(X)
Jfl2(«,o L Jo J

^ C3 exp {2<V2/2(a+1)} exp {- /r2ε/2} (Λ; -* oo).

By taking ε such that 1/2 > ε > a2l4(a + 1), we obtain

vί>ω(Ω2(fc, ε)) > 0 as K > oo .

This implies the assertion (1). The assertion (2) follows from the assertion

(1) immediately. (Q.E.D.)

§5. Two dimensional Brownian strings

In this section, we assume that d = 2, K = 1, a(x) = I2 and b(x) = 0.

The equation (2.5) becomes as follows.

(5.1) dXt(σ) = dBt(σ) + ±-ΔXt(σ)dt .

We discuss the equation only in the case (I), namely the case where the

equation has the Neumann boundary conditions at σ = 0 and 1. Let PXo

be a probability measure which is induced on C([0, oo), ̂ ) by the solution

Xt of the equation (5.1) with an initial state Xo e &. We now show the

following recurrent properties of the solution Xt.

THEOREM 5.1. The process Xt is recurrent as a ^-valued process, i.e.>

for each Xoe%? and non-empty open subset O of C,

PΣo(Xtn e O for some tn t oo,n = 1, 2, . •) = 1.

THEOREM 5.2. The string Xt(σ) sweeps away all points in R2, i.e., for

every xe R2 and Xo e &,

PXo(Xtn(σn) = x for some σn e [0,1] and tn | oo, n = 1, 2, •) = 1.

The integral form (2.7) of the equation (5.1) has already given the

solution Xt(σ) = {X%σ)γiml:

https://doi.org/10.1017/S0027763000020298 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020298


164 TADAHISA FUNAKI

(5.2) Xt(σ) = f Xa(τ)q(t, σ, τ)dτ + f f q(t - s, σ, τ)dBs(τ)dτ
Jo Jo Jo

= x,» + x,» •

The second term Xt,%(σ) can be decomposed as follows.

(5.3) X t » = <Bt(<τ), W < 0 > + P P {q(t - s, a, τ) - l}dBs(τ)dτ
Jo Jo

= y, + zχσ).
In this decomposition, two processes Yt and Zt( ) are mutually independent
and Yt is a 2-dimensional Brownian motion.

LEMMA 5.1. For each t > 0, Zeί î  be a probability measure on Ή ==•
C([0,1], J22) induced by Zt(σ) (σ e [0,1]), and let v be a probability measure

on Ή induced by \w(σ) — w(τ)dτ; a e [0,1]>, where w(σ) is a 2-dimensional
I Jo J

Brownian motion with a time parameter σ e [0,1]. Then, vt tends weakly
to v as t-> oo.

Proof. For σu σ2e [0,1], t>0, noting (AIL 13), we have

= 6< ds (q(t — s, σu τ) — q(t — s, σ2, τ)Ydτ\
(5.4) o

[ J l J ϋ J

, σd + G(σ2, σ2) - 2G(σu σ2)}2

σ2f

For t > 0,

(5.5) E[\Zt(0)Ώ = 2 Γ <fe f fa(ί - 5, 0, r) - l}2dr ^ A .
Jo Jo 3

Two estimates (5.4) and (5.5) imply that the family {vt, t > 0} of probability
measures is tight. To get the conclusion, noting that vt and v are both
Gaussian, it is enough to show that the covariance function of vt converges
to that of v as t -> oo. For σl9 σ2 e [0,1], i, j e {1, 2},

ds {q(t - s, σu τ) - ϊ}{q(t - s, σ2, τ) - l}dτ
o Jo

<u J 0
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as ί > oo .

Therefore, we have the conclusion. (Q.E.D.)

Now, we prove the theorems.

Proof of Theorem 5.1. We may assume that O is taken to be

D(φ, a) = ( ψ e ? ; sup| ψ(<y) - 0(σ)| < a)
I βe[o,i] J

with some 0 e C and a > 0. Fix a point A in i?2 and we set

V = £(A, α/3) = {A7 e R2; \A - A'\ < α/3},

and

t = inf{ί ^ 0; Z.eO}

ί = inf it ^0;Xt= Γ ZXr)dr e v\

tN = ini{t>N;Xte V} ,

where we tacitly understand that inf {empty set} = oo. Since Xt is a 2-

dimensional Brownian motion, we have N ̂  tN < oo (a.s.). For every Xo

€ ̂  such that Xo = f' X0(r)dr e V,
Jo

^ PZo (there exists t ̂  Γ0(Z0) such that Xt)2 e D(φ - A, α/3))

/5 6 ) ^ Pχo (there exists ί ̂  ro(-X"o) such that Y, € D(φ - A, a/6)

and Zt e D(φ - φ, α/6))

= c > 0 ,

where φ — Aetf is defined by (0 — A)(σ) — φ(σ) — A, φ Ξ φ(σ)dσ9

Jo

= inf (< > 0; sup I Γ X0(r)g(β, σ, τ)dτ - X,
I σ€[O,13 l Jθ

< α/3 for every s > t\
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and

mN = inf {t >N;YteD(φ - A, a/6)} .

The" estimate (5.6) shows that

(5.7) p =Z**V p*l* = ° o ) ^ l - c < l .

Using the strong Markov property of Xt (Appendix I), we have

p = sup lim PXo(t >tN,t= oo)

= sup lim EXo[PXtN(t = oo); / > tN]

£ p sup lim PXo(t > tN) = p2 .
XoQ'&Ί ΣoSV W—*oo

This implies, by (5.7), that p = 0. Therefore, we have

(5.8) PXo(t < oo) = 1 for every Xo e V .

Noting the strong Markov property of Xt again, we have the conclusion.

(Q.E.D.)

COROLLARY 5.1. For each non-empty open subset O of R\

PXo({Xtn(σ);σ e [0,1]} c O for some tn \ oo, n = 1, 2, . . ) = 1

for every Xo etf .

Proof. Since the set {Xetf; {X(σ); σe [0,1]} c 0} is open in #, we

have the conclusion by Theorem 5.1. (Q.E.D.)

For A = {A'}*=1 e R\ a > 0, T > 0 and c, a > c > 0, we consider the

following subset of ^ :

Φ(A, a, T, c) =X={Xί}Ue

Xe D(A, a) and for every t e [0, T] ,

, l,t)dτ< A2 -cΓ
Jo

Since, by taking c sufficiently small, the set Φ(A, α, T, c) contains some

non-empty open subset of #, we have the following corollary.

COROLLARY 5.2. For every A, α, T and Xo e #, there exists c > 0 such

ί n e Φ(A9 a, T, c) for some tn | oo, n = 1, 2, . .) = 1 .
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Remark 5.1. When d ^> 3, the process Xt on Rd is not recurrent, so

that we can show that the solution Xt of (5.1) is also not recurrent as a

^-valued process.

Proof of Theorem 5.2. Since the equation (5.1) is invariant under the

parallel displacement, we may assume that x = 0 e R2. For A = (— 1, 0)

6 R2 and a > 1, we denote Φ(A, 1, Γ, c) simply by Φ(T, c), where T is a

constant determined later and c is a positive number which is determined

by Corollary 5.2. Set

t = inf {t ^ 0; X,(σ) = 0 for some a e [0, 1]} ,

and

p = sup PXo(f = oo) .
xoeΦ(τ,c)

For every Xo e Φ(T, c), we have

PxSf < oo)

^ Pxί inf XrXσ) ^ 0 , inf X*(0) ^ 0 , sup X*(l) ^ o)
(5#8) Ue[o,i] ί€[o,r] ίe[o,r] J

^ P/o( inf X ? » ^ 2J
Ue[o,i] J

X Pj inf Z?,2(0) ^ - c, sup X*,2(l) ^ c) .

The factor p^T7) = P^Jinf^e^,!] Xτ,z(σ) ^ }̂ can be estimated by the following

way.

Pι(T) > P(YΪ^ 3, inf
\ [

inf Z}(σ) ^ -
6[0,l]

Since limΓ^TO P(Y} ^ 3) = 1/2 and since limΓ__ P( int e [ 0 ) 1 ] Z^(σ) ^ - 1) > 0

by Lemma 5.1, we can take T < 00 such that Pi(T) > 0. To estimate the

second term:

p2(T) = Pj inf X>f2(0) ^ - c, sup XJfί(l) ^ c) ,

we set

yM =\-\t\ {Q(t - s, 1, r) - ( - D W - β, 0, r)}d^(τ)dr , i = 1, 2 .
2 Jo Jo

Then, two processes y^t) and y2(ί) are mutually independent. Noting that

and Z?,2(l) = y i(ί) + y2(t),
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^ P{ sup \y,(f)\ ^ e/2, sup

p |
Ue[o,r]

Hence, we have p < 1. Noting that, by Corollary 5.2, N <LtN < oo (a.s.)
holds for ?̂  = inf {t ^> N; Xte Φ(T, c)}, a similar argument to the proof of
Theorem 5.1 leads us to the desired conclusion. (Q.E.D.)

Remark 5.2. A generalization of the equation (5.1) is the Langevin
equation on a Hubert space H:

(5.9) dXt = dBt - AXtdt,

where Bt is a cylindrical Brownian motion on H and A is an operator
on H which satisfies the condition (A.I) in § 1. Concerning the equation
(5.9), we can show the following two facts,
(i) If the third eigenvalue λ3 of the operator A is positive, then the

solution Xt of (5.9) is recurrent as an ίf-valued stochastic process,
(ii) If λ3 = 0, then Xt is transient (i.e., l i m ^ \\Xt\\ = oo a.s.).
The third eigenvalue of (1/2)J is to be positive if it is regarded as an
operator on L2([0,1], R2), therefore we see that the solution Xt of the
equation (5.1) viewed as an L2([0,1], i?2)-valued process is recurrent. This
fact however does not imply Theorem 5.1.

§6. Limit theorems for general stochastic evolution equations

As a generalization of the problem discussed in §3, we investigate
the limit process of the solution X[κ) of the following stochastic differential
equation (6.1) on a separable real Hubert space H as K —> oo.

(6.1) dX? = a{Xy)dBt + b(X^) - tcAX^dt.

In the above equation, the operator A is assumed to satisfy the assump-
tion (A.I) in § 1 and Bt is the cylindrical Brownian motion. The coefficients
a and b are assumed to be independent of t and to satisfy the assumptions
(A.2) and (A.3), respectively. In addition, we assume the following.

(A.4) There exists a positive constant K such that
I!a{X)UH) ^ K , ||b(X)|| ^ K for every XeH,

where ||α||^(£r) is the operator norm of a.

Let λ and n be the principal eigenvalue of A and its multiplicity,
respectively. We denote by PL

r

UΩ (1 <; i ^ j ^ oo) the orthogonal projection
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from H into its subspace spanned by {φk}ί=i, where φk is given in § 1. We

denote P[Unl and P^+1'°°] simply by Pr and P±9 respectively. We discuss

the problems in the following four cases, separately.

(Case 1) λ = 0

(Case 2) λ > 0 , α(0) ^ 0

(Case 3) λ > 0 , α(0) = 0 , 6(0) * 0

(Case 4) λ > 0 , a(0) = 0 , 6(0) = 0 .

Case 1. For given XQ e H, consider the following stochastic differ-

ential equation:

(6.2) dYt = Pra(Yt)dBt + Prb(Yt)dt, Yo = PrX0.

LEMMA 6.1. The equation (6.2) has a unique solution Yt which belongs

to C([0, oo), PrH) (α.s.).

Proof. The coefficients P^c and P r 6 of (6.2) are Lipschitz continuous

in the following senses, respectively.

\\Pram-Pra(Y2)\\l

= Σ UPAYd - PAYdWl2

k = l

(6.3) = Σ \\{PMYd - PXYd)*Φ*II2

k=l

Σii{

^ nK'WY, - Y2\\\

and

(6.4) \\Prb(Yd - PMYύW ^ K\\ Yt - Y2\\ •

Hence, by M. Yor [19], there exists a unique solution Yt e C([0, oo), H)

(a.s.) of the equation (6.2). Since Yt = PrYt holds, the solution Yt lives

in the space PrH. We therefore have the conclusion. (Q.E.D.)

Noting that the operator — KA generates a semi-group {U(tct); t >̂ 0},

X[κ) is a solution of the following integral equation:

X? = U(κt)X0 + Γ U(κ(t - s))a(X^)dBs + f
(6.5) J o J o

xgϊ Xί3 x$
LEMMA 6.2. For each p >̂ 1, ί/iere exίsί C, C > 0 swc/i
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E[\\Xy - Yt\\"] £ C(e-B« + κ-»ect), for t e [0, oo), K ^ 1

Proof. Set

IM(t) = E[\\X? - YJψ" ,

and

/«(*) = ίJ[||Z« - y M p ] (i = 1, 2, 3),

where

y M = P r X 0 , Ytί2 = f Pra(Ys)dBs and
Jo

As for the I{'\t),

(6.6) Iί'\t) ^ exp {- ;B + 1

While, by using Proposition 1.3,

Ii*\t) £

^ C,

- a)) -

β)) -

C, {(Γ Σ K2 exp {- ai^ί - s)}dsj + ({' nK2I"(s)dsY\

In a similar way, we can estimate the Ii"\t).
Summing up the estimates on I\κ)(t) (i = 1, 2, 3), we have

!<•>(«) ̂  C3{exp(-2^n + l Kί) + «-' + J V '

We therefore get the desired estimate with the help of GronwalΓs lemma
(see, e.g., H. Kuo [12]). (Q.E.D.)

The following estimate on a 1-dimensional stochastic integral was
shown by G. Newell (see D. A. Dawson [5]).
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LEMMA 6.3. Let wt be a 1-dίmensional Brownίan motion. Consider a

stochastic integral

= [te-^-s%
Jo

for λ > 0 and for a real valued measurable function h(t) = h(t} ω) which is

adapted to the Brownίan motion wt and which satisfies

\h{t)\ ̂  M (a.s.) for every t e [0, T] .

Then, there exists Kx > 0 which is independent of λ, T and M, such that

p( sup \x(t)\ > x U Kx exp {- λx2ISM2}(λT + 1)
\ί€[0,Γ] /

for every x > MKjVΎ , Te [0, co) .

Using this lemma, we can show the following.

LEMMA 6.4. ( i ) There exist C, C > 0 such that

p( sup HP^Xίill > M W Ce~cm<, for M>0 and κ> CM~2.
\ίe[o,r] ' /

(ii) sup \\PJrXttW £ Kl(λn+1κ) (a.s.).
ί€C0,Γ]

Proof. For simplicity, we denote (X[% φk} (i = 1,2,3, ke N) by X[%k.

Setting Q = (Σ?= w + i^ " ( 1 + ε ) ) " 1 with some ε, 0 < ε < ^ (δ is the positive

number given in (A.I)), we have

( sup WPJrXftW >
\ίe[θ,r]

k=n+l \£e[0,Γ]

^ Σ K,{λkκT + 1) exp {- VC1M7(3JΓ7e1+I)}

^ Ce~GM2e, for some C, C > 0 ,

whenever VC1fe- ( 1 + e )M> KKjVλkιc holds for every k^n+1. Therefore,

the estimate (i) holds for it such that

K > (KKJMfC;1 sup {V+*lλk} .
Jc^n+l

The estimate (ii) can be shown by
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WPΪXftW = Pjr Γ U(κ(t - s))b(X?)ds
Jo

^ f exp {- λn^κs}Kds ^ Kl(λn+1κ). (Q.E.D.)
Jo

We are now ready to prove the following theorem.

THEOREM 6.1. The process X(

s

κ) converges to Yt as K -» oo in the fol-
lowing sense:

Pi lim \\X[K) — Yt\\ = 0 uniformly in t on each compact

subset of (0, OOM = 1 .

Proof. Noting that

Xΐl* = Γ <α*(^ίβ))Λ, dBt> and ΎtM = f <a*{Ys)φki dBs>
Jo Jo

are {J*v, t >̂ 0}-martingales for each k, I <^ k ^ n, by Proposition 1.3 and
Lemma 6.2, we have

Hence,

Σ P ( sup |x&, - y£>2,6|
4 > κ-A ^ f; v^c2«-2 < oo,

and this shows, with the help of Borel-Cantelli's lemma, that

p( sup \Xί%k - Yί>2,fc|
2 < fc-1'* zsκ(eN) > oo) = 1,

\ee[o,r] /

for each k; 1 ^ k ^ n .

Therefore, we have

(6.7) P( sup | |P rX$ - yM | | — * 0 as *( e N) —> oo) = 1 .

In a similar way, we can show that
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(6.8) Pi sup \\PrX% - y t |,|| • 0 as κ( e ΛO > °°) = 1
\ίe[o,r] /

While, by Lemma 6.4-(i), for sufficiently large κθ9

Σ P( sup HPJ-Zβll > *"1/4) ^ Σ C e - ^ 7 < oo ,
κ=κ0 \ίe[o,r] / *=*o

and this implies that

(6.9) p( sup IIP^X^H > 0 as κ( e N) > oo) = 1 .
\ίe[o,:ri /

We also have, by Lemma 6.4—(ii),

(6.10) sup HPJ-Xftll >0 as K > oo (a.s.) .
cor]

Since X $ tends to PrXo as Λ: —> oo uniformly in ί on each compact subset

of (0, oo), combining (6.7)-(6.10), we have the conclusion. (Q.E.D.)

Case 2. Let {Yt, t > 0} be a family of independent H-valued random

variables whose characteristic functionals are given by

E[ei<Y^>] = β - " " " | i ' 1 , φ e H , t>0,

where

III0III8 = Σ <α*(0)^, α*(0)^><ί5, φj)(φ, φM + λk) .

We note that 111 111 is a Hilbert-Schmidt semi-norm on H.

The following theorem holds.

THEOREM 6.2. The process yΎX[κ) t > 0} tends to {Y* ί > 0} as K -> oo

in the following sense:

Σ WTXg, ψi) — • Σ <Ytt, Ψi> ί n l a w a s κ — > °° f

for every neN , ψt eH (1 ̂  i ^ zi)

0 < A < ί2 < < tn < oo .

To prove the theorem, we prepare an estimate on the X[κ).

LEMMA 6.5. £J[||X^||2] ^ C(e~UKt + κ~ι\ K ^ 1.

Proof. By (6.5), we have
2] ^ 3{|| U(κt)X0\\\+
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+ K2 Γ Σ e-M""ds + [

Proof of Theorem 6.2. First, we have

Γ
Jo

as K > oo, for each t > 0 .

Secondly, by Lemma 6.5,

£ U(κ(t -

E[\\X(

t'2J]ds
JO fc = l

^ /s;ίΓ2C Σ Γ e- 2 * 8

k=l JO

(Q.E.D.)

ϊ ( t - s ) + ^^jcfe > 0 ,

as K > co , for each t > 0 .

The above two estimates imply that the limit process of {*/ΎX[κ\ t > 0}

is the same as that of {Y[κ\ t > 0} with Y[κ) = ^T Γ U(κ(t - s))a(0)dBs.
Jo

To prove the conclusion, since {Y(

t

κ\ t > 0} is a Gaussian system with mean

0, we may only show that the covariance function of {Y(

t

κ)} converges to

that of {Yt}.

For 0 < tt <̂  t2 < oo and ψl9 ψ2 e H,

u a*(0)U(κ(t2 - s))ψ2)ds
Jo

X <

As Λ:-> oo, the right hand side of this equality converges to 0 when tx ^ t2

and to HI ψi 1112 when tx — t2 and ψj = ψ2. We therefore have the conclusion.

(Q.E.D.)

Case 3. We shall show that the process κX\κ) converges to the constant

vector ^"^(O) as κ-> oo. To prove this result, we prepare the following

lemma.
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LEMMA 6.6. The norm | |Λ:X$|| converges to 0 uniformly in t on each

compact subset of (0, <χ>) as κ{ e N) —> oo (a.s.).

Proof. In the case 3, Lemma 6.4 holds by taking n = 0. Therefore,

we have the following two inequalities.

(6.11) For each ε > 0,

p( sup \\Xί:l\\ > κ-1/2+ε) ^ Ce'c'u , for sufficiently large K ,

and

(6.12) sup \\X\%\\^K\(λκ) (a.s.).

Combining these two estimates with the following one on X[%:

(6.13) HZ^II^β-^ll^oll,

we get

p( sup IIZ^II > 2A:"1/2+£) ^ Ce~5κ2ε , for sufficiently large K .

By this estimate and the equality:

X[% = U(κ(t - tJ)X& + Xl'2tutl, (t > tx > 0),

where

X\% = P U(κ(t - s))a(X£tl)d(Bs+tl - Btl),
Jo

we have

P( sup 11X̂ 11 > Λ : - 1 + 2 £ )

)XW1Λ,,|| > κ-^'β) + P( sup IIX^-^,,-,
\ί€[2ic-i/2,Γ]

f | | > ΛΓ1+V^/2) + P ( sup | |X«| | > 2«"1/2

P( sup | |1«- 1 / 2 | | > «-1+2t/2, sup | | Z « | | ^ 2 « - " 2 + s

\ίe[0,7'-*-i/2] ί6[*-^a,Γ]

^ C2 exp (— C2fc
2ε) , for sufficiently large K .
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Repeating a similar procedure once more, we can show that

P( sup \\X#\\ > κ-^A^ C3 exp ( - C3A:20 ,
\ί€C3c-l/2,Γ] /

for sufficiently large K .

Taking ε such that 0 < ε < 1/6, the Borel-Cantelli's lemma proves that

P( sup \\κXfi\\ < ΛΓ1/2+36 as tc( e N) — • «Λ = 1 .
\ί€[3κ-i/2,!Γ] ' /

This implies the conclusion. (Q.E.D.)

THEOREM 6.3. In the case 3, κX\κ) tends to A~lb(0) in the following

sense:

p( lim \\fcX(

t

κ) - A-^O)!! = 0 uniformly in t on

each compact subset of (0, oo) J = 1 .

Proof. The estimates (6.11)-(6.13) imply that

PfllX^H £ C(e~XKt + fc~1/2+s) for every t e [0, T] , κ( e N) • oo) = 1 .

Therefore, we have

+ 2

Π1 - * Γ U(rc(t - s))b(O)ds
Jo

K Γ U(κ(t - s))b(O)ds - A-'bφ)
Jo

+ 2

£ 2K2CV(e~XKtt + K-l/2+iXfc)-y + 2 Σ λϊ2e-2κλkt(b(0), φk)
2

> 0 uniformly in t on each compact subset of (0, oo)

as κ( e N) > oo (a.s.) .

Noting Lemma 6.6, we have the conclusion. (Q.E.D.)

Case 4. In this case, we further assume the following condition.

(A.5) The coefficients a and b are Frechet differentiable at 0.
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Consider the following stochastic differential equation:

(6.14) dYt = Pra'(0)(Yt)dBt + Prb'(O)(Yt)dt, Yo = PrX0,

where α'(0)( ) and &'(0)( ) are Frechet derivatives at 0 of a and b, re-

spectively.

LEMMA 6.7. The equation (6.14) has a unique solution Yt which belongs

to C([0, oo), PrH) (α.s.).

Proof. The coefficients Prα'(0) and Pr&'(0) are Lipschitz continuous

since, for Yl9 Y2e H, we get

\\Pra'(0)m ~ Pra'(0)(Y*)\\l

(6.15) = Σ IKα'COXF.) - α'(0)(Y2)}*^||2

and

(6.16)

lim

\Prb'(O)(Jd - Prb'(0)(Y2)\\

7, - Y2||
2,

l im—(

We therefore have the conclusion in a similar way to the proof of Lemma

6.1. (Q.E.D.)

Setting Y(

t

κ) = eXκtX[κ) and Y# = e^'Xft (i = 1, 2, 3), we have the fol-

lowing estimate.

LEMMA 6.8. sup
(ί,/c)€[0,Γ]x[l,oo)

Proof. By (6.5), we have

<

E[\\ y^||2] ^ 3IIe^U(κt)X0

2"1

π
^ 3||Zol|2

Jo k=i

^ C, + C2 f « - β
Jo

This implies the desired estimate. (Q.E.D.)
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The asymptotic behavior of the process Y[κ) is given by the following

theorem.

THEOREM 6.4. In the case 4,

uniformly in t on each compact subset of (0, oo) as tc -> oo.

Proof. Set I«(ί) = E[|| Y« - Y(||
2] and ί « « ) = JS7[]| Y[% - yM |fl (i =

1, 2, 3). As for the /«(<),

ί >(ί) £ exp {- 2(a,+1 -

Next, we have

- s))α(Z<->) - e^ 'P^Xί

AnK
Jo

where

f(κ) = Σ κ*M{(λk - ΛM-1

k l

Σ FE[\\{e*°a*(e->"YS) - a'(
k = l Jo

A bound on Iiκ)(t) is similar to I(

2

κ)(i), so that, summing up these estimates,

we have

!<->(«) ^ Ce-^ f + /(*) + C f Hκ)(s)ds ,
Jo

^ Γ,

where the function f(κ) behaves as f(κ) —> 0 (as K -> oo). GronwalΓs lemma

implies that

JP>(f) ^ Cfe-Λί + /W + C Γe^->(Cβ"Λ + /W)cfe
Jo

^ Cβ"C κ ί + /(Λ:) + C*ect{CκYι + f(κ)ect, t^ T,

which proves the conclusion. (Q.E.D.)
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Appendix I

Here, we investigate the joint-continuity of solutions of stochastic

partial differential equations (SPDE).

(a) Known results on partial differential equations.

Let G be a bounded region in Rn surrounded by a smooth hyper-

surface dG. We assume that G has a restricted cone property (e.g. S.

Agmon [1]). Let A be a closed operator on L\G) determined by the fol-

lowing conditions (i), (ii) and satisfying the condition (iii).

( i ) The domain of A is given by

9{A) = {φeH2m(G); βjφ = 0 on 3G, l^j £m} ,

where H2m(G) is the Sobolev space of order 2m and {βj}J=i is a

normal system of boundary operators (J. L. Lions and E. Magenes

[14]).

(ii) A is a uniformly elliptic differential operator of order 2m (meN):

Aφ(σ) = Σ av(σ)Dvφ(σ) , φ e 2{A) ,

w h e r e v — {vu , vn), |y | = ^ + . . . + vn9

Dv = WΫ^Wτ' σ = = ( σ % 1 a n d a"eC"(G)-
(iii) The operator A is self-adjoint and non-negative.

Under these conditions, the operator A has pure point spectrum {λk}%=1

such that λk ~ ck2m/n (c > 0) as k-+ oo. The semi-group U(t) on U(G)

generated by —A is an integral operator with a symmetric kernel p(t, σ9 τ)

e L\G X G) for each t > 0. The following estimate on p was given by R.

Arima [2].

(AI.1)
3

P(t, σ, : CΓ ( w + 1 ) / ( 2 m ) e x p { - C(\σ - Γ |2^)V(2m-i)|

ί, σ, τ) 6 (0, T) X G X G , 1 ^ i ^ n with C, C > 0 .

(b) SPDE with non-homogeneous boundary conditions.

Let A1 (l<Lί<kd) be operators on L\G) which satisfy the conditions

(i)—(iii) with the normal systems {β'jYjLi (1 ^ i ^ d) of boundary operators.

We define an operator A on H = L2(G, i?d) by

AX = (A'XOf-i for X =
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We assume that 2m is larger than n. Then, the operator A satisfies the

condition (A.I) in § 1.

Assuming that a and b satisfy the conditions (A.2) and (A.3) in § 1

with H = L2(G, Rd), respectively, we consider the following initial-boundary

value problem for given initial state X(0) = X(0, •) eH and .Revalued

boundary functions fi (1 <; j <̂  m).

<AL2)

(dXt(σ) = (a(t, Xt)dBt)(σ) + b(t, Xt)(σ)dt - AXt(σ)dt

* e [ 0 , T ] , σeG,

X0(σ) = X(0, σ) σeG,

βjXt(σ) = fj(σ), σedG, l£j^m, te(0,T],

where Bt is a cylindrical Brownian motion on H and where β5X is defined

by

&X=(/3}X0ti for X=(X*)U.

An iϊ-valued .^-adapted process Xt is called a solution of the equation

(AI.2), if it satisfies the following integral equation:

<AL3) X' = X ί ' + £ U(t ~ s)φ' X°)dB° + £ U(t ~ s)6(s' X°)ds

In this equation, {U(t), t >̂ 0} is a semi-group on H generated by —A and

XtΛ is the solution of the following partial differential equation:

^ , σeG, te[0,T],

(AI4) •<
^ > ; X0tl(σ) = X(0,σ), σeG,

i 3 , X ί » = / / σ ) , σedG, l^j^m, te(0,T].

We assume the conditions on the functions {fj}J=ι and X(0, ) to guarantee

that the equation (AI.4) has a unique solution XtΛ which belongs to

C([0, T], H) (these conditions can be found, e.g., in R. Arima [2]). Then,

we can show the following existence and uniqueness theorem of the solu-

tion of the SPDE (AI.2).

LEMMA ALL There exists a unique solution Xt of the SPDE (AL2)

such that sup ί €[0 ,Γ ] -EfHXJI2] < oo for each T < oo and Xt e C([0, T], H) (α.s.).

Proof. Denote by Zt the solution of the equation (AI.4) with X(0, •)

ΞΞ 0. Since a(t, X) = a(t, X + Zt) and b(t, X) = b(t, X + Zt) satisfy the
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conditions (A.2) and (A.3) in § 1, respectively, by Theorem 1.1, the fol-

lowing SPDE with homogeneous boundary conditions has a unique solu-

tion Yt.

\dYt = ά(t, Yt)dBt + b(t, Yt)dt - AYtdt

o = X(θ)

[βjYt(σ) = 0, σedG.

We can easily show that Xt — Yt + Zt is the unique solution of the SPDE

(AI.2) such that sup ί€C0,Γ ] # [ | | ^ |p] < °o for each T< oo and Xt e C([0, T], H)

(a.s.) (Q.E.D.)

(c) Joint-continuity of the solution Xt(σ) of SPDE (AI.2).

Here, we assume that a is bounded, i.e.,

\\a(t, X)\U(H) < K for every (t, X) e [0, T] X H .

Under this assumption, we can show the following lemma by noting that

and

XtΛ e C([0, T], H).

LEMMA AI.2. For each p > 0,

sup E[\\Xtn < oo .
ί€[0,Γ]

Concerning the joint-continuity in (t9 σ) of the solution Xt(σ) of the

SPDE (AI.2), we have the following result.

PROPOSITION A l l . (i) The terms Xtf2(σ) and Xt,3(σ) in (AI.3) have

versions jointly continuous in (t, σ) e [0, T] X G. (ii) // Xt,i(σ) belongs to

C([0, T] x G, Rd), then the solution Xt(σ) of the SPDE (AI.2) is jointly

continuous in (t, σ) e [0, T] x G.

Proof. Denote by p^t, σ,τ) (l£ί<,d,te [0, T], σ, τ e G) the integral

kernel of the semi-group Ut(t) on L\G) generated by — AK We shall adopt

a description in component-wise, e.g.,

*«., = (XU)U, Bt = (Bΐ)U and a(t, X) = (a{

with atj(t, X) e &(U(G)). Then, noting that
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= Σ Γ f P& ~ s>σ' Γ><o^s>
= Σ Γ f (a%(s, Xs)p{(t - s, a,

.7=1 J O J G

we have

Σ - 5, σlf .)

~ 8, σly

i)/2

- 2
J (ίa-ίi

for 0 ̂  ̂  <: ί2 ̂  Γ , σl9 σ2eG and r e N .

To bound the right hand side of the above estimation, we set

/»(ti+ί2)/2

p,(2s, σlf σ^ds - P,(2s,V1, σ2)ds , j = 1, 2 .
J(ί2-ίi)/2

Then, we have

Γ <; Γ {pX2s, σi9 σx) - A(2S, σ1? σ2)}ds2s, σi9 σx

(ίa-ίi)/2

o
9 σlf σ2)ds

I /•(«! +ίa)/2

pt{2s, σl9 σ2)ds
I J ί i

The first term Jj1 can be estimated as follows.

J L ( lf ̂  + α(σ2 - σ,)) X W -

Γ s-^+ 1 ) / ( 2 w ) exp {-
Jo

o j=ι dτ3

ύ Γ C31̂ 2 - *
Jo

< Γ1 l/r — π \ι/p I Q-(« + l)/(2m) + l/(2mq)rJq

Jo

ds

where 1/p + 1/g = % p, q> 1. Taking <? such that (n + l)/2m — l/2mg

< 1, we have

As for the second term J21,

https://doi.org/10.1017/S0027763000020298 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020298


ί
(ίί

o

RANDOM MOTION OF STRINGS 183

•2~ti)/2

ς-n/(2m)rJ<5 <T C \f — f |l-«/(2m)

Since the third term Ii can be estimated in a similar way to Ii, we have

the following bound on P:

r £ CM - σ2r + K - *2p-*/(2w)}.

The term P can be estimated in a similar way to P. Hence, we have

Taking r sufficiently large, Kolmogorov's regularization theorem (Propo-

sition 1.2) implies that Xi,2(σ) belongs to C([0, T] X G) (a.s.). Therefore,

XtΛσ) belongs to C([0, T] X G, Rd) (a.s.). Using Lemma AI.2, we can also

show that Xt,,(σ) belongs to C([0, T] X G, i?ώ) (a.s.). We therefore have

the assertion (i). The assertion (ii) follows from (i) immediately. (Q.E.D.)

Remark ALL Under the condition (2.2) on the initial state Xo, the

system (2.8) of heat equations has a jointly continuous solution Xtfί(σ).

Therefore, the equation (2.5) of the string has a jointly continuous solu-

tion Xt(σ) in (t, σ) e [0, 00) x [0,1].

(d) The strong Markov property of the solution of the equation (2.5).

Similarly to the finite dimensional case (e.g. H. P. McKean Jr. [16]),

the solution Xt(σ) of the equation (2.5) has the strong Markov property

in the following sense.

PROPOSITION AI.2. Assume that Yetf satisfies the condition (2.2). If

t is an (^^-stopping time, then, conditional on t < 00 and Xt — Y, the

future Xt = X(t + t): t > 0 is independent of 2Ft and identical in law to

the solution of the equation (2.5) with Xo — Y.

Appendix II

We summarize several facts about the fundamental solutions

q^N)(t, k/N, l/N) and q(t, σ, τ) of (l/2)J(iV) and (1/2)J, respectively.

(a) The fundamental solutions q{N)(t, k/N, l/N) and q(t, σ, τ) have the fol-

lowing representations, respectively.

±
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where

) | (sin π(ί ~ 1)k - sin

T
- cos

= 1 — cos ^ — - , 1 <. i ^ N, in the case (I),

and

( 2N+1 >(*)V1 / 2LΛα π(i - l/2)(2Jfe + 1)
= i Λ) ' I < COS

V 2JV / X 2N + 1
// 1 /9V0ί> 1 \ ϊ

2iV+ 1 1 '

= 1 - cos " ^ ' ~ ±; , l^i^N, in the case (Π),

and

( h \ ί 1\I _J_ 1 \~1/2Γ τriί9h JL ~i\ *rUOh Λ\ Λ

iv \ I 1.1 ~~\~ ±. ^ (iV) I J dH/\Δjl\/ ~\~ xy ytCΛ^u/v ^~~ x y I

^ = l - cos — — — , l^i^N, in the case (IΠ) .

While

<AΠ. 2) q(t, σ, τ) = fj f .(*)? i(r)β- " 2 ί ' t / 2,

where

«<-> = ( ' . i = 1

(v 2 cos ττ(i — l)cr, 2 <̂  £ < oo ,

λt = (i — I)2 , 1 ̂  ί < oo , in the case (I) ,

and

ξt(a) = VT sin π(i - l/2)σ ,

;.. = (i - i/2)2, 1 ̂  i < oo , in the case (II) ,

and

ξi(σ) = \f~2 sin πiσ ,
Xt =z i2

 9 l <; £ < oo , in the case (III) .
We note that the right hand side of (AII.2) is a uniform convergent sum
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in (t, σ, τ) on each compact subset of (0, oo) x [0,1] X [0,1],

The above representations give the following (AIL3)-(AIL6).

(AII.3) q{N){t, [σ], [τ]) -» q(t, σ, τ) uniformly in (t, σ, τ) on each compact

subset of (0, oo) x [0,1] X [0,1] as N-+oo.

(AII.4) f f([τWNKt, [σl [τ])dτ -> f' f(τ)q(t, σ, τ)dτ uniformly in (t, σ) 6 [0, Γ]
Jo Jo

X [0,1] as N-+ 00 for each fe C([0,1]) and T < 00.

(AII.5) There exists a positive constant C = C(T) such that

(AII.6) There exists a positive constant C such that

P P \l/2

^ ^ - J , * e [ 0 , o o ) .

(b) We often denote q(t, σ, r) by qt(t, σ, τ) (ί = 1, 2, 3) to clarify the

boundary conditions (2.9) of the operator (1/2)4 in the cases (I), (II) and

(III), respectively.

The following four estimates on q are well-known.

(AII.7) For each T < 00, there exists a positive constant C such that

0 £ q(t, σ, τ) £ Ct~1/2 for (ί, σ, τ) 6 (0, T] X [0,1] X [0,1] .

(AΠ.8) For each 0 < T < 00, there exist positive constants C and β such

that

for (ί, σ, τ) e [T, 00) x [0,1] X [0,1] , i = 1, 2, 3 ,

where <5ί>y is the Kronecker's δ.

(AΠ.9) Γ q<ί, σ, τ)dτ ̂  1 , (ί, σ) 6 (0, 00) X [0,1] .
Jo

(AΠ.10) For each 0 < Tu T2 < 00,

sup dtdσ
\t,σ,τ) < 00 .
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These estimates imply the foUowings immediately; there exists a posi-

tive constant CΊ such that

(AII.11) Γ \qt(t9 σ, τ) - δuι\dτ ^ Cxer*% for (t, σ) 6 (0, oo) X [0, 1] ,
Jo

and

Qί(t9 σ, τ) £ W2 + ίM)
for (ί, σ, τ) e (0, oo) X [0,1] X [0,1] , i = 1, 2, 3 .

For each i = 1, 2, 3, we set

J; σ, τ) = \ {q^s, σ, τ) - δiΛ}ds
Jo

and

Since Gt{a, τ) (ί = 1, 2, 3) are the Green functions of (1/2)Δ with the boundary

conditions (2.9), they are given as follows.

G1(σ9 r) = 2{σ A τ - (σ - <72/2) - (r - τ2/2) + 1/3}

G2(σ, τ) = 2(σ A τ)

G,(σ, τ) = 2((T Λ τ){l - (σ V τ)} ,

where σAτ = min (σ, r) and σVr = max (σ, r). These equalities give that

(AII.13) Gt(a, σ) + Gt(r, r) - 2Gf(*, r) = 2|<7 - r|{l - ί l i 8 |σ - r|}

and

(AII.14) |G(σ, rt) - G(σ, τ2)\ ̂  2|rx - r2| .

Since the Chapman-Kolmogorov equation of q implies

G(t; (7, r) = G(σ, τ) - f G(r', τ)g4(ί, σ, τf)dτf ,
Jo

we have

(AII.15) \G(t; σ, σ) + G(t; τ, τ) - 2G(t; σ, τ)\ £ 6\σ - τ\ .

Appendix III

We consider the following two equations.

. 1 ) dXt(σ) = dBt(σ) + b(Xt(σ))dt + 1 Δ X t ( σ ) d t , σ e [ 0 , l ] , ί > 0 ,
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dXt(σ) = Vt(σ)dt

dVt(σ) = βdBt(σ) + βb(Xt(σ))dt + l-ΔXt(a)dt - βVt{σ)dt

σ e [0, 1] , t > 0 , β ^ l .

In the above two equations, Bt(σ) is a cylindrical Brownian motion on

L2([0,1], Rd) and b(x) is assumed to be an unvalued Lipschitz continuous

function defined on Rd. When b(x) = —FU(x)/2 with a potential func-

tion U(x), the equation (AIII.l) was discussed in §4, while the equation

(AIII.2) may be thought to represent the Ornstein-Uhlenbeck theory for

the string with the friction intensity β.

Here, we show first an existence and uniqueness theorem of the solu-

tion of the equation (AIII.2) and secondly show that the solution Xt(σ) =

X(

t

β)(σ) of (AIII.2) tends to that of (AIII.l) as β-> oo. For simplicity, we

discuss only in the cases (II) and (III) assuming AQ = A1 = 0.

The operator — Δ on the space L2([0,1], Rd) has pure point spectrum

{Λ}S=i Let φi be the normalized eigenvector corresponding to the λt.

Setting xt{t) = <Xt(σ), φ^σ)) and υ^t) = (V£σ), φi(σ)), the equation (AIII.2)

turns into the following system.

(AIII.3)

dxt{t) = vt{t)dt

dv.it) = βdWi(t) + βb^dt - Aλ.χ.(t)dt - βv£t)dt

i = 1, 2, ,

where

and

We introduce the following Hubert space for each a e R1:

TJ ί ( \°° ΏN. II 112 V 1 To- 2 ^ \

We denote by 4 (1 ^ m ^ n ^ oo) the orthogonal projection of Ha into

the subspace {v = (ι;<)Γ-i € fl"β; ι;4 = 0 if i < m or ί > ^}. We also denote πl

and τr^+i simply by πw and τrm, respectively. Then, we have the following.

PROPOSITION AIII.l. For every initial state (x0, v0) e Ho X ff.j, ίΛβrβ
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exists a unique solution (xt, vt) o/(AΠL3) such that swpteί0^ E[\\xt\\l + | |ϋί| |ij

< oo for each T < oo and (xt, υt) e C([0, oo), Ho X ίf-i) (α.s.)

Proof. We use the Galerkin method to construct the solution. For

given initial state (xQ, v0) = ({xt(0)}~=1, {^(0)}Γ=i), we determine the processes

(xίn\ v™) = ({xi*Kt)}ΐ-i, K°(ί)}f-i) eH0X H.x by solving the following sequence

of finite dimensional stochastic differential equations (neN):

(AIΠ.4) .

{dxf\t) = υ<?

dυ?\t) = βdwt(t) + βbάx^dt - Aλ^iήdt - βv™(t)dt

x<* >(0) = xt(0), υ?K0) = υt(0) , l ^ i < n ,

xf(t) = xM> vTXt) = Vj(O), J^n + 1, te[0,T].

To prove the convergence of the sequence {{x^\ υf })}Γ=i> we set, for m<n,

lit m ΊΊ\ — # Ί Q π n f P II r ( w ) — r ( m ) l l 2 4- II z;(n) — 7;(w)ll2 11

i\i, m, n) — £L/\ s u p < -—- [|xs — x s ||0 -f- || vs — vs \\_1 > ι ,

J\t, m, ή) = E\SVLV f A \\πm(x™ - x™)\\l + \\πm(v™ ~ ^)i! 2-i)

and

By using Itό's formula, we have

^ βK\\x™ - x(

t

m)\\ldt, for ί £ m ,

which imply that

J\t, m,n)£KΣ & Γ βE[\\x™ - xίm>
(AIΠ.5) ί = 1 J o

[t (s, m, ή)ds .

Again by using Itό's formula, we have
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= 2υf\t){βdwι{t) + βbt{xr)dt - βυ?\t)dt} + fdt

2βv?){t)dwi{t) + Lb\(x^)dt + β2dt for i £ n ,

which prove that

J\t, m, ή) £ h\πmxX + \\zΛυ,\U

(AIΠ.6) + £ f s u p i Σ λ;1 [ 2βv(tKu)dwi{u)\\

+ £[~sup Σ K

The third term in the right hand side of (AIII.6) is bounded by

4 sup Σ fe1 +

^ β* Σ ^r1 + Σ 4ΛΓ1 f ^ [ ( ^
i = m+l i = m+l JO

While, noting that

the fourth term is bounded by

(AIII.8) Σ V i f AJf(1 + JB[||x?>|0)dβ + /

Summing up the estimates (AIIL6-8), we have

J\t, m, ή) < Cfyn,β) + C2(m)β f E[\\x™\\l]ds + 4 f E[\\πl+1vln)tι]ds
Jo Jo

^ CAm, β) + C2(m)β ίJ E[\\ x?> ||?]ds + 4 f' J\s, m, n)ds , t
Jo Jo

where

= A ||^mΛb||J + \\πnυ0\\li + (β2 + ξ-KT
2 \ 2

C2(m)=iί:
2

This implies that
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(AIII.9) J\t, m, ή) ̂  jc^m, β) + C2(m)β J* £[ | | *«»> Iβjefe

In particular, by taking m = 0, we get

t9 0, n) ̂  ^ [ d ί O , ]8) + 2C2(0) £ J2(s, 0,

which proves that

(AIILIO) J\t, 0, n) ^

Substituting (AIILIO) into the right hand side of (AIIL9), we have

(AIΠ.11) J\t, m, n) ^ {C>(m, β) + 2C2(m)Q(β)T}eiT ~ C4(m, β) .

Since I(£, m, n) is bounded by

J\t, m, n) + 2{j2(ί, m, τι) + A \\πmx0\\l + \\πmυ0\\l^ ,

combining (AΠI.11) with (AIII.5), we have

I(t, m, ή) ^ 2d(w, j8) + 2C4(m, ]8) + 4C2(0) f' /(s, m, n)ds , for t ^
Jo

a n d t h i s i m p l i e s t h a t

I ( ί , m, n ) ̂  β Q O n , j8) + 2C 4(/n, iS)}β4<72<°>Γ , t^T.

W e t h e r e f o r e h a v e

sup ( A | | ^ - x l̂lS + || υ™ - v^fj] = 0 .
n>m

This proves that there exists an HQ X fiΓ_rvalued continuous process (xt, vt)

such that

lim^fsup {A||x^ - xJlo2 + ||ι;{»> - υjλ] = 0 .

We can easily show that (xt9 vt) is the unique solution of the equation

(AIII.3). (Q.E.D.)

The solution (xt9 vt) = ({*i(ί)}Γ»i, {̂ (OjΓ-i) o f the equation (AIΠ.3) depends

on the parameter β9 so that we denote the solution by {x[β\ v[β)) = ({Xiβ)(t)}°°=u

{^}(ί)}Γ-i) Setting xXί) = (Xt(σ), φi(σ)} again, the equation (AIII.l) becomes

the following equation for xt = (x,(J))Γ-i € C([0, oo), H) (a.s.).
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(AIII.12) dx.it) = dwt{t) + bt{xt)dt - i - ^ x ^ Λ , ί = 1, 2, .

Assuming that the function b is bounded, we show that the x\β) tends to

the xt as β -» oo.

PROPOSITION AIII.2. For βuery x(0) <md z (O) e Ho, the solution x[β) of

(AIII.3) with the initial condition (x(

o

β\ v(

o

β)) — (x(0), v(0)) converges to the

solution xt of (AΠI.12) with the initial condition x0 — JC(O) as β -> oo in

the following sense. For every ε: 0 < ε < 1/d,

lim E[\\xl» - xt\\Z\ = 0
( Λ )

uniformly in t on each compact set of (0, oo), where the set Λs is given by

As = {β> 0; |/3 - 2^| > eVJ for every i = 1, 2, . .} .

Proof. We state only the outline. The equation (AIIL3) can be

rewritten in the following integral equation.

+ β(a+ - a.)-1 Γ(eβ+(ί-> - eα-(ί-s>)d^(s)
Jo

+ β(a+ - a.)-1 f(e a+< (- !) - «?«-<•->)&,(*<«)&

Jo

= xjf^ί) + xl>m + xj§(ί) , i = 1, 2, , ]8

where

α± = α±(i,j9)= ^(-β±

While, the equation (AIII.12) is equivalent to the following.

Xi(t) = e-itt/t3φ)+ [' e-w-wdwtiέ) + ΐ e-^-'^b
Jo Jo

= xiA(t) + xUt) + xUt) , i = 1, 2, .

By estimating three terms

x^t) - xitβ)f] , 7 = 1, 2, 3,

independently, we finally arrive at the following estimate.
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E[\\4β) - x,m < f(β) + W 2 exp i-pH) + βw exp (-

+ C, P E[\\x^ - xMds , t£T, /3 e Λ. ,
JO

with f(β) = f(β; T, \\x(0)\\o, l|v(0)||0) and C, = C{T, ||JC(O)||O) |fz<0>|k>>, where the

function f(β) satisfies t h a t

f(β) > 0 as β( e A.) > oo .

Therefore, we have

{β + Ctβ^expi-β^s) +
o

exp (-β2Ή) + β1/16 exp (-^ί)} + C2(f(β) + β'ι/ξ) ,

t£ T.

This implies the desired conclusion. (Q.E.D.)

Remark AIII.l. (i) E. Cabana [4] discussed the Ornstein-Uhlenbeck

theory for the string mathematically, however, the equation of the string

studied by him was linear.

(ii) In E. Nelson's book [18], one can find the proof to show that,

in finite dimensional case, the Einstein-Smoluchowski theory is given by

the limit of Ornstein-Uhlenbeck theory.
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