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Abstract

Suppose X is an isolated eigenvalue of the (bounded linear) operator T on the Banach space
X and the algebraic multiplicity of X is finite. Let Tn be a sequence of operators on X
that converge to T pointwise, that is, Tnx —* Tx for every x e X. If | | (7"- Tn)Tn\\ and
\\Tn(T - Tn)\\ converge to 0 then Tn is strongly stable at X .
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1. Introduction

The main theorem in this note was motivated by the theory of collectively
compact sequences of operators in numerical analysis. The applications and
methods given here are from functional analysis. Let A" be a fixed complex
Banach space and let T be a fixed (bounded linear) operator on X. Let
Tn be a sequence of operators on X that converge to T pointwise, that is,
Tnx —> Tx for every x e X. If T is compact and Tn is collectively compact
then P. M. Anselone showed that \\{T - Tn)Tn\\ — 0 and \\(T - Tn)T\\ ̂  0
[2, Corollary 1.9]. These limits are used to show the stability of isolated
eigenvalues of finite algebraic multiplicity. (See [2, Theorem 4.16].) Recently
M. Ahues [1] showed that the stability of the isolated eigenvalues of finite
algebraic multiplicity followed from the assumptions that T is compact and
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\\(T- Tn)Tn || ->0 , without assuming that Tn is collectively compact. In this
note we prove that the isolated eigenvalues of finite algebraic multiplicity are
stable provided that | | ( r - Tn)TH\\ -» 0 and \\Tn{T - Tn)\\ -» 0.

2. Main results

NOTATION. Suppose A is a nonzero eigenvalue of the operator T on
the Banach space X and suppose A is isolated from the remainder of the
spectrum of T. Let P be the spectral projection associated with T, that is,

where R(z) = (T- zl) ' and Y is a simple closed Jordan curve that isolates
A and has the origin outside. Let A be the union of Y and the domain inside
F , so that A is compact. The dimension of PX is said to be the algebraic
multiplicity of A for T.

The first lemma and its corollary permit us to consider (TH- zl)~x on Y.

LEMMA 1. Supposethat \\{T-Tn)Tn\\ — 0, \\Tn{T-TH)\\ -> 0 and Tnx -
Tx for every x e X. Then there exists an nQ such that Y is contained in
the resolvent set of Tn for n > n0.

PROOF. Since R(z) = (T - zl)~x is continuous on the compact set Y,
sup{||/?(z)||: z GY} is finite. Choose «0 such that

\\z-lR(z)(T-TH)Tn\\ < \z\-l\\R(z)\\\\(T- TH)TJ < \

and
\\z~XTn(T-Tn)R(z)\\<\

for every z eY and n > n0. It follows that / - z~x R(z)(T - Tn)Tn and
I - z~l Tn(T - Tn)R(z) are invertible for every z eY provided n > n0. The
easily verified equations

(•) / - z~lR(z)(T - Tn)Tn = R(z)[I - z~\T - Tn)](Tn - zl),

(**) I-z-lTn{T-Tn)R{z) = (Tn - zI)[I-z-\T-Tn)]R{z)

imply that (Tn - zl) is one-to-one and onto for every z e Y and n >
nQ. Thus, (Tn - zl) is invertible by the Open Mapping Theorem and Y is
contained in the resolvent set of Tn for n > n0.

Now we obtain some conclusions from the proof of Lemma 1 that are
more significant.
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COROLLARY. Assume the hypotheses of Lemma 1 and let Rn{z) denote
(Tn - zl)~x. Then for every x e X, Rn(z)x -> R{z)x uniformly for z e F
and there are constants M and n0 such that

sup{\\Rn(z)\\:zer,n>n0}<M.

PROOF. From the proof of Lemma 1 and the equation (*) we obtain

R (Z) = [/ - z~lR(z)(T- TJTf1 R{z)[I - Z~\T - T )]
oo 1

~lR(z)(T - Tn)Tnf]R(z)[I - z~\T -Tn)\.
L fe=l

It follows that

r oo
< \l+^\\z-'R(z)(T-Tn)Tn\

L k=i
\\R(z)[I-z \T-T

\z\ '\\T-Tn\\]:zeT,n>n0}.

The last supremum is finite because ||i?(z)|| is continuous on the compact
set F , 0 is not an element of F , and \\T- Tn\\ is bounded by the Uniform
Boundedness Theorem. This proves that

sup{||i?n(z)||: z e T, n > nQ} < M < oo.

For z 6 T and n > n0 we have R(z) - Rn(z) = Rn(z)(Tn - T)R(z).
Thus, for every x e X we get

\\[R(z) - Rn(z)]x\\ < \\Rn(z)\\\\(Tn - T)R(z)x\\ < M\\{Tn - T)R(z)x\\.

It is elementary that \\(Tn - T)R(z)x\\ — 0 uniformly for z e T [3, Theorem
3.2]. This proves the corollary.

Now we know that F separates the spectrum of Tn , denoted o(Tn), and
we may consider the spectral projections of Tn associated with T.

NOTATION. Define Pn, Xn and XQ by

It is well known that P commutes with T (Pn commutes with Tn) and the
spectrum of T restricted to the invariant subspace Xo lies inside A, that is,
o(T\X0) c A. (See [4, Theorem 20], for example.)

The following technical lemma plays a key role in the proof of the main
theorem.
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LEMMA2. Supposethat \\{T-Tn)Tn\\ - 0, \\Tn(T-Tn)\\ - 0 and Tnx -
Tx for every x € X. Then we have

\\Pn-Tn[(T\XQ)-l®0]P\\^0.

PROOF. We use the Taylor-Dunford operational calculus. (See [4, Theo-
rem 10], for example.) Note that

Pn - Tn[(T\X0)~
l ® 0]P = Tn{[(Tn\Xn)-

X © 0]Pn - [(T\Xor
l 0 0]P)

\2ni ' '-~ "ny~>rn(T-Tn)R(z)dz-

Thus,

\\Pn-Tn[(T\xy®O]P\\<^\\Tn(T-Tn)\\Sup\\z-lRn(z)\\\\R(z)\\.

The last supremum is finite according to the corollary to Lemma 1. Thus,
Lemma 2 is proved.

In the next corollary we state a consequence of Lemma 2 that is easier to
understand than the lemma itself.

COROLLARY. If the hypotheses of Lemma 2 hold then \\(P - Pn)Pn\\ -> 0 .

PROOF. Note that

(P-P)P = ̂ r f(R(z) - R (
mi JY

Thus,

\\(P-Pn)Pn\\<^-\\(Tn-T)PJsnp\\R(z)\\\\Rn(z)

and it clearly suffices to show that \\(Tn — T)Pn\\ —> 0 . In view of Lemma 2
it suffices to show that

\\(TH-T)TH[(T\X0) '©OlPU-0

and that is clear.

https://doi.org/10.1017/S1446788700030524 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030524


254 Richard Bouldin [5]

Now we make the notion of "stable eigenvalue" precise.
DEFINITION. We say that Tn is strongly stable at the nonzero isolated

eigenvalue X provided there is a neighborhood of X such that the following
hold whenever F is a simple closed Jordan curve in that neighborhood.

(i) Rn(z)x -> R(z)x for every z e T and xeX.
(ii) dimA^ = dimA^ for n > n{.

With the terms and notation that have been given, we can state and prove
the main theorem.

THEOREM. Supposethat \\(T-Tn)Tn\\ ^ 0, \\TH(T-TH)\\ - 0 and Tnx ->
Tx for every x e X. Then Tn is strongly stable at every isolated nonzero
eigenvalue X of T that has finite algebraic multiplicity.

PROOF. Recall that it was proved in the corollary to Lemma 1 that Rn{z)x
-* R{z)x for every z e Y and x € X. We shall show that Pnx -+ Px for
every x E X. Choose n0 according to the corollary to Lemma 1; for n > n0

and x e l w e have

_ j _
2n

±

f(Rn(z)-R(z))xdz\\
•*T II

Jr(Rn(z)(T-Tn)R(z))xdz

- Tn)R(z)x\\:zeT,n>n0)

It is elementary that the supremum above converges to 0 as n0 increases [3,
Theorem 3.2].

Since Pnx —* Px for every x e X and PX is finite dimensional, we
conclude that ||(P - Pn)P\\ -* 0. It is easy to see that the gap between Xn

and Xo (see [6, page 197] for the definition of gap), denoted y(Xn, Xo),
does not exceed

The corollary to Lemma 2 and the preceding limit show that y(Xn, Xo) < 1
for all n sufficiently large. According to [6, Corollary 2.6], this implies that

and the theorem is proved.dim Xn — dim Xo

3. Applications and remarks

It is easy to see that if Tnx —> Tx for every x e X and Tn is collectively
compact then T is compact. We observed in the introduction that if Tn is
collectively compact then \\(T - Tn)Tn\\ -* 0. It is interesting to note that if
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Tn is collectively compact then \\Tn(T- Tn)\\ may fail to converge to 0. We
construct an example to illustrate this.

Let {e1, e2,...} be an orthonormal basis for the Hilbert space H and
define T and An by

and let Tn = T + An . It is easy to see that An is collectively compact, T is
compact, and Tnx -*• Tx for every x e X. Thus, Tn is collectively compact
and

Tn{Tn-T) = {T + An)An = TAn = An for n > 2.

Since \\AJ = 1 for every n , we have \\Tn(Tn - T)\\ = 1 for n > 2.
Thus, the main theorem in this note does not generalize the theory of

collectively compact sequences. Rather this note offers an alternative route
to the same conclusion. Our next proposition will make it clear that the
hypotheses of our main theorem do not require Tn to be collectively compact
or T to be compact.

PROPOSITION. Let T be an operator on the Hilbert space H with orthonor-
mal basis {e0, ex,...}. Suppose T is specified by giving its infinite matrix,
that is,

i,j=0

Define Tn by

Then Tn is strongly stable at every isolated eigenvalue of T with finite alge-
braic multiplicity.

PROOF. It is routine to see that Tnx -+ Tx for every x GX and

Tn(T-Tn) = 0 = (T-Tn)Tn.

So this proposition follows from our main theorem.
There are many consequences of the preceding proposition; the next corol-

lary is illustrative. Let L2 be the Hilbert space of "square integrable func-
tions" with respect to normalized Lebesgue measure on the interval [0, 2n].
If 4> is measurable and essentially bounded then the operator that multiplies
by cj> is the Laurent operator denoted by L, . Let H denote the Hilbert

s p a c e i n L 2 s p a n n e d b y { e ' n t : 0 < t < 2 n , n = 0 , 1 , 2 , . . . } a n d l e t P
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denote the orthogonal projection of L2 onto H2 . Recall that the Toeplitz
operator 7^ associated with <f> is defined by restricting PL^ to H2 , that is,

7^ = PL^H2 . If <f) belongs to H2 then T^ is said to be analytic Toeplitz
operator.

COROLLARY. Let T be an analytic Toeplitz operator on the Hilbert space
H and let {e0, e{, e2, ...} be the orthonormal basis indicated above. Then
T and its adjoint T* have no nonzero eigenvalues of finite algebraic multi-
plicity.

PROOF. Define a{j by

i,J=0

and define T by

i,J=0
Recall that the matrix for T is constant along the diagonals parallel to the
main diagonal and that the matrix for T is lower triangular when T is
analytic. (See [5, pages 135-140], for example.) Thus, the n x n matrix
for each Tn is lower triangular with constant diagonals. It follows that the
spectrum of T is {X, 0} where X is the constant enumerated on the main
diagonal. Thus, X is the only possible isolated eigenvalue of T. Since
the algebraic multiplicity of X for Tn is n, X cannot be a strongly stable
eigenvalue of T. Thus, T has no nonzero eigenvalues of finite algebraic
multiplicity.

The preceding argument applies equally well to T* except that its matrix
is upper triangular.

Clearly there is a result for Laurent operators analogous to the preceding
corollary. This application does not follow from the theory of collectively
compact sequences since the only compact Toeplitz operator is the zero op-
erator [5, page 137].
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