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Continuity of Convolution of Test Functions
on Lie Groups

Lidia Birth and Helge Glockner

Abstract. For a Lie group G, we show that the map C>°(G) x C°(G) — C°(G), (,n) — v * 1,
taking a pair of test functions to their convolution, is continuous if and only if G is o-compact. More
generally, consider 1,5, € No U {oo} with t < r + s, locally convex spaces Ei, E; and a continuous
bilinear map b: E; X E; — F to a complete locally convex space F. Let : CL(G, E1) x Ci(G, E;) —
CL(G, F), (v,m) — 7 =} 1) be the associated convolution map. The main result is a characterization
of those (G, r,s,t,b) for which 8 is continuous. Convolution of compactly supported continuous
functions on a locally compact group is also discussed as well as convolution of compactly supported
L!'-functions and convolution of compactly supported Radon measures.

1 Introduction and Statement of Results

It has been known since the beginnings of distribution theory that the bilinear convo-
lution map 3: C°(R") x C°(R") — C°(R"), (v,m) — v*n (and even convolution
C>®(R™")" x CX(R") — C>=(R")) is hypocontinuous [39, p. 167]. However, a proof
for continuity of § was published only recently [29, Proposition 2.3]. The second au-
thor gave an alternative proof [22] that is based on a continuity criterion for bilinear
mappings on locally convex direct sums. Our goal is to adapt the latter method to the
case where R" is replaced with a Lie group and to the convolution of vector-valued
functions.

Let b: E; X E; — F be a continuous bilinear map between locally convex spaces
such that b # 0. Letr;s,t € Ny U {oo} witht < r+s. Ifr=s=¢r=20,letG
be a locally compact group; otherwise, let G be a Lie group. Let A\¢ be a left Haar
measure on G. If G is discrete, we need not impose any completeness assumptions
on F. If G is metrizable and not discrete, we assume that F is sequentially complete
or satisfies the metric convex compactness property (i.e., every metrizable compact
subset of F has a relatively compact convex hull). If G is not metrizable (and hence
not discrete), we assume that F satisfies the convex compactness property (i.e., every
compact subset of F has a relatively compact convex hull); this is guaranteed if F is
quasi-complete.! These conditions ensure the existence of the integrals needed to
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define the convolution v #;, n: G = F of v € CI(G, E,) and n € C{(G, E,) via
(v *p m)(x) == / b(y(y), n(yilx)) dXg(y) forx € G.
G

Then 7y x, n € CI*(G, F) (Proposition 3.2), enabling us to consider the map
(1.1) B: CIH(G,E)) x CX(G,Bx) = CUG,F),  (7,1) > 7 % 7.

The mapping S is bilinear, and it is always hypocontinuous (Proposition 3.7). If G
is compact, then f3 is continuous (Corollary 3.3). If G is an infinite discrete group,
then f is continuous if and only if G is countable and b “admits product estimates”
(Proposition 7.1), in the following sense:

Definition 1.1 Letb: E; x E; — F be a continuous bilinear map between locally
convex spaces. We say that b admits product estimates if, for each double sequence
(pi,j)i,jen of continuous seminorms on F, there exists a sequence (p;);en of contin-
uous seminorms on E; and a sequence (g;) jen of continuous seminorms on E; such
that

(Vi,j e N)(Vx € E\) (Vy € E;) p; j(blx, y)) < pi(x)q;(y).

Having dealt with compact groups and discrete groups, only one case remains:

Theorem 1.2 If G is neither discrete nor compact, then the convolution map 3 from
(1.1) is continuous if and only if all of the following are satisfied:

(i) Giso-compact;
(ii) ift = oo, then alsor = s = oo;
(iii) b admits product estimates.

We mention that (iii) is automatically satisfied whenever both E; and E, are norm-
able [23, Corollary 4.2]. As a consequence, for normable E;, E; and a Lie group G, the
convolution map 3: C°(G, E;) x C°(G, E;) — C°(G, F) is continuous if and only
if G is o-compact. In particular, the convolution map C°(G) x C°(G) — C°(G) is
continuous for each o-compact Lie group G (as first established in the unpublished
thesis [10], by a different reasoning), but fails to be continuous if G is not o-compact.

Further examples of bilinear maps admitting product estimates can be found
in [23]. For instance, the convolution map C*(G) x C*(G) — C*(G) ad-
mits product estimates whenever G is a compact Lie group. Of course, not ev-
ery continuous bilinear map admits product estimates, e.g., the multiplication map
C*°[0,1] x C*°[0,1] — C°[0,1] [23, Example 5.2]. In particular, this gives us
an example of a topological algebra A such that the associated convolution map
CX(R,A) x CX(R,A) — C>(R, A) is discontinuous. It is also interesting that the
convolution map C2°(R) x C(R) — C>(R) is discontinuous (as Theorem 1.2(ii)
is violated here). This had not been recorded yet in the works [22,29] devoted to
G=R"
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Irrespective of local compactness, we have some information concerning convo-
lution on the space M.(G) = li_n}MK(G) of compactly supported complex Radon
measures on a Hausdorff topological group G. Recall that a topological space X
is called hemicompact if X = U:’;lKn with compact subsets K; C K, C -
of X such that each compact subset K C X is contained in some K,. A locally
compact space is hemicompact if and only if it is o-compact. We call a Hausdorff
topological group G spacious if there exist uncountable subsets A, B C G such that
{(x,y) € A x B: xy € K} is finite for each compact subset K C G. A locally com-
pact group is spacious if and only if it is not o-compact (see Remark 5.5).

Theorem 1.3 Let G be a Hausdorff group and let B: M.(G) x M.(G) — M.(G),
(p, v) — p x v be the convolution map.

(1)  If G is hemicompact, then 3 is continuous.
(ii) If G is spacious, then [3 is not continuous.

Thus, for locally compact G, the convolution map 5 from Theorem 1.3 is contin-
uous if and only if G is o-compact. An analogous conclusion applies to convolution
of compactly supported L!-functions on a locally compact group (Corollary 5.6).
Hemicompact groups arise in the duality theory of abelian topological groups, be-
cause dual groups of abelian metrizable groups are hemicompact and dual groups of
abelian hemicompact groups are metrizable ([2]; see [1, 3,4, 25] for recent studies of
such groups).

We also discuss the convolution map C(G, E;) x C*(G,E,) — C'(G,F). Itis
hypocontinuous, but continuous only if G is compact (Proposition 8.1). As a conse-
quence, neither the action C2°(G) x E — E (nor the action C°(G) x E* — E*®
on the space of smooth vectors) associated with a continuous action G X E — E
of a Lie group G on a Fréchet space E need to be continuous (contrary to a claim
recently made [17, pp. 667—668]). In fact, if G is R and R x C*(R) — C*(R) is
the translation action, then C2°(R) acts on C*>°(R) by the convolution map, which
is discontinuous by Proposition 8.1 (or the independent study [32]). For details, we
refer the reader to [24, Proposition A].

The (G, 1,s,t, b) for which 5 admits product estimates are also known [23].

For recent studies of convolution of vector-valued distributions, we refer to [5, 6]
and the references therein. Larcher [32] gives a systematic account of the continuity
properties of convolution between classical spaces of scalar-valued functions and dis-
tributions on R”, and proves discontinuity in some cases in which convolution was
previously considered continuous by some authors (like [14,40]).

Structure of the article Sections 2 through 4 are of a preparatory nature and provide
basic notation and facts that are similar to familiar special cases and easy to take on
faith. Because no direct references are available in the required generality, we do
not omit the proofs (which follow classical ideas), but relegate them to an appendix
(Appendix C). Appendices A and B compile further preliminaries concerning vector-
valued integrals and hypocontinuous bilinear maps. On this footing, our results are
established in Sections 5 through 8.
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2 Preliminaries and Notation

In this section, we compile notation and basic facts concerning spaces of vector-
valued C"-functions. The proofs are given in Appendix C.

Basic conventions We write N = {1,2,...} and Ny := N U {0}. By a locally convex
space, we mean a Hausdorff locally convex real topological vector space. If E is such a
space, we write E’ for the space of continuous linear functionals on E. A map between
topological spaces is called a topological embedding if it is a homeomorphism onto its
image. If E is vector space and p a seminorm on E, we define

Bf(x)::{yeE:p(y—x)<r} and E‘f(x)::{yeE:p(y—x)gr}

forx € Eandr > 0. If X isaset and v: X — E is a map, we let ||y[/, 0 =
sup,cy p(7(x)). If (E, || - ||) is a normed space and p = || - ||, we write |||/ instead
of ||/ p.00» and BE(x) for Bf (x). Apart from p dyu, we shall also write p ®  for mea-
sures with a density. The manifolds considered in this article are finite-dimensional,
but not necessarily o-compact or paracompact (unless the contrary is stated). The
Lie groups considered are finite-dimensional, real Lie groups.

Vector-valued C"-functions Let E and F be locally convex spaces, U C E an open
set, and r € Ng U {oo}. Then a map v: U — F is called C" if it is continuous,
the iterated directional derivatives d'/y(x, y1, ..., yi) = (Dy,; - - Dy,7)(x) exist for
all j € Nsuchthat j < r,x € U and yy,...,y; € E, and, moreover, each of
the maps d(j)*y: U x E/ — F is continuous. See [18,27, 33, 34] for the theory of
such functions (in varying degrees of generality as regards E and F). If E = R",
then a vector-valued function +y as before is C" if and only if the partial derivatives
0%y: U — F exist and are continuous for all multi-indices o = (o, ..., a,) € Nj
such that || := a3 + - - - + o, < r. Since compositions of C"-maps are C’, it makes
sense to consider C"-maps from C"-manifolds to locally convex spaces. If M is a C'-
manifold and v: M — E a C'-map to a locally convex space, we write dv for the
second component of the tangent map Ty: TM — TE = E x E. If X is a vector field
on M, we define

(2.1) Dx(y) = Xy:=dvyoX.

Function spaces and their topologies Let r € Ny U {oo} now and let E be a locally
convex space. If r = 0, let M be a (Hausdorff) locally compact space, and equip
the space C°(M, E) := C(M, E) of continuous E-valued functions on M with the
compact-open topology given by the seminorms

|| ' ||P-,K: C(M7 E) — [07 OO[, Y ||7|K||p,007

for K ranging through the compact subsets of M, and p through the continuous
seminorms on E. If (E, || - ||¢) is a normed space, we abbreviate || - [|x := || - ||} - |, x-
To harmonize notation, write T°M := M and d% := ~ for v € C°(M,E). If
r > 0, let M be a C"-manifold. For k € N with k < r, set T*"M = T(T*'M)
and d*y = d(d*~'v): T*"M — E for C*-maps v: M — E. Thus T'M = TM
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and d'y = dy. Equip C"(M, E) with the initial topology with respect to the
maps d*: C"(M,E) — C(T*M,E) for k € Ny with k < r, where C(T*(M), E) is
equipped with the compact-open topology. Returning to r € Ny U {co}, endow
CL(M,E) = {y € C"(M,E): supp(y) C A} with the topology induced by C"(M, E),
for each closed subset A C M. Let (M) be the set of compact subsets of M. Give
CLM, E) == Ugexcn Ck(M, E) the locally convex direct limit topology. Since each
inclusion map Cix(M,E) — C"(M,E) is continuous and linear, the linear inclu-
sion map C.(M,E) — C"(M,E) is also continuous. Since C"(M, E) is Hausdorff,
this implies that CZ(M, E) is also Hausdorff. We abbreviate C"(M) := C"(M,R),
Cx (M) == Cg(M,R), and CL(M) = CL(M,R).

Facts concerning direct sums If (E;);c; is a family of locally convex spaces, we shall
always equip the direct sum E := @, E; with the locally convex direct sum topol-
ogy [12]. We often identify E; with its image in E.

Remark 2.1 If U; C E; is a 0-neighbourhood for i € I, then the convex hull
U := conv ( Uier Ui) is a 0-neighbourhood in E, and a basis of 0-neighbourhoods
is obtained in this way (as is well-known). If I is countable, then the corresponding
“boxes” @, Ui := EN[];; U; form a basis of 0-neighbourhoods in E (cf. [30]).
It is clear from this that the topology on E is defined by the seminorms gq: E —
[0, ool taking x = (x;);e; to ZieI qi(x;), for g; ranging through the set of continuous
seminorms on E; (because BY(0) = COHV(Uie ! B¥(0)).) If I is countable, we can take
the seminorms ¢(x) := max{q;(x;): i € I} instead (because B{(0) = @p,, B} (0)).

Lemma 2.2 Let (E;)ic; and (F;);cr be families of locally convex spaces and for i € 1
let \j: E; — F; be a linear map that is a topological embedding. Then

@D Xi: @E — DF, (xiier = (Ni(xi))ier

i€l i€l i€l
is a topological embedding.
Mappings to direct sums

Lemma 2.3 Letr € NgU {oco}. If r = 0, let M be a locally compact space. If r > 0,
let M be a C"-manifold. Let E be a locally convex space, and let (h;) ey be a family of
functions h; € C[(M) whose supports K; := supp(h;) form a locally finite family. Then
the map
®: C{(M,E) — GB}C?@(M,E), vy (hj-V)jes
jE

is continuous and linear. If (h;) je ; is a partition of unity (i.e, hj > Oand 3. hj =1
pointwise), then ® is a topological embedding.

Lemma 2.4 Letr € NgU {oo}. If r = 0, let M be a locally compact space. If r > 0,
let M be a C"-manifold. Let E be a locally convex space, and let P be a set of disjoint,
open and closed subsets of M, such that (S)sep is locally finite. Then

P: CZ(Mv E) — @ CZ(Sv E)v 0 (’7|S)S€P
Sep
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is a continuous linear map. If P is a partition of M into open sets, then ® is an isomor-
phism of topological vector spaces.

Seminorms arising from frames If M is a smooth manifold of dimension m, we call
asetF = {Xi,...,X,,} of smooth vector fields a frame on M if X;(p), ..., Xu(p) is
a basis for T,(M), for each p € M. If § = {Y;,...,Y,} is also a frame on M, then
there exist a; j € C>°(M) for i, j € {1,...,m} such that Y; = > a; ; X;.

Lemma 2.5 Let M be a smooth manifold, let E be a locally convex space, k, ¢ € Ny, and
letFy, ..., Tk beframeson M. Lety: M — E be a C*-mapping such that X; - - - X;.7y €
C'(M,E) forall j € Ny with j < kand X; € F; fori € {1,..., j}. Then~ is C¥*.

Lemma 2.6 Let E be a locally convex space, let M be a smooth manifold, r € N, and
let F .= (F1,...,F,) be an r-tuple of frames on M. Then the usual topology O on
C"(M, E) coincides with the initial topology T with respect to the maps

,,,,,, 1 C'(M,E) — C°(M,E)co., v+ Xj... X107,

where j € {0,...,r} and X; € F; fori € {1,...,j}. As a consequence, for each
closed subset K C M, the topology on Ci (M, E) is initial with respect to the maps
Cy(M,E) = CL(M,E)co, v — Xj...X1.7y, where j € {0,...,r} and X; € F; for
ie{l,...,j}

Definition 2.7 Let G be a Lie group, with identity element 1. Given g € G, we
define the left translation map Ly: G — G, Ly(x) := gx and the right translation
map R,: G — G, Ry(x) := xg. Let B be a basis of the tangent space T(G), and let
E be alocally convex space. For v € B, let £, be the left-invariant vector field on G
defined via £,(g) := T\(L,)(v), and let R, be the right-invariant vector field given by
R(g) = T1(Ry)(v). Write

Fr:={L,:ve B} and Fr:={R,:ve B}
Let K C G be compact. Given r € Ny U {0}, k, ¢ € No withk+ ¢ < r, and a

continuous seminorm p on E, we define ||’y|\£‘p (resp., H7||ff‘p) for v € Ci(G,E) as
the maximum of the numbers

X -+ X170

for j € {0,...,k}and X;,...,X; € Fy (resp., Xi,...,X; € Fg). We also define
||7||2’[’p (resp., ||7kap) as the maximum of the numbers

|poc

fori € {0,...,k}, j € {0,....¢},and X;,....X; € T, Yy,...,Y; € Ty (resp,

Xi,..,X; € Frand Yy,...,Y; € Fp). Then || [If |- %, HHiép, and || - ”kfp

are seminorms on CK(G E) If E = Rand p = ||, we relax notation and
: RL .

also write || [[f, [ I55 11+ 7> and || [ instead of |- [[§,, [ II¥ 0 1| - Ili,» and
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II- ||féL »» respectively. The same symbols will be used for the corresponding semi-
norms on C/(G, E) (defined by the same formulas). For ¢ € Ny with ¢ < r, we shall
also need the seminorm || - || ; on CZ(G) defined as the maximum of the numbers
[X; ... X17|x|loo for j € {0,...,¢} and Xy, ...,X; € F;. For each compact set
A C G, we have [|7|[7 . < |||} for each vy € C}(G). Hence || - |7  is continuous on
C’,(G) for each A and hence continuous on the locally convex direct limit ClH(G).

To enable uniform notation in the proofs for Lie groups and locally compact

groups, we shall write || - Hop = |- HOP = HooP = |- = |-[[poif pisa
continuous seminorm on E and G is a locally compact group IfE=RandK C Gis
a compact set, we shall also write || - [|§ x := | - [|x.

In the situation of Definition 2.7, we have the following lemma.

Lemma 2.8 Foreacht € Ny U {oo}, compact set K C G and locally convex space E,
the topology on Ci(G, E) coincides with the topologies defined by each of the following
families of seminorms:

(1) the family of the seminorms || - Hip, for j € Ny such that j < t and continuous
seminorms p on E;
.o . . R
(i) the famzly of the seminorms || - ||,
seminorms p on E.
Ift < co andt = k+ 4, then the topology on C (G, E) is also defined by the seminorms
II- ||Hp, for continuous seminorms p on E (respectively, by the seminorms || - ||k£p

for j € N such that j < t and continuous

Useful automorphisms We record for later use several isomorphisms of topological
vector spaces.

Definition 2.9 1f G is a group, v: G — E a map to a vector space and g € G,
we define the left translate TgL(v): G — E and the right translate TgR(’}/): G — Evia

TgL(’y)(x) = y(gx) and T&f(’y)(x) = y(xg) forx € G.

Lemma 2.10 Letr € Ny U {oo} and let E be a locally convex space. If r = 0, let G be
a locally compact group; otherwise, let G be a Lie group. Let g € G. Then vy +— TL('y)
defines isomorphisms C'(G,E) — C'(G,E), Cx(G,E) — Cr—lK(G E) (for K C G
compact) and CL(G, E) — CL(G, E) of topological vector spaces. Likewise, v TR(’}/)
defines isomorphisms C'(G,E) — C'(G, E), Ci(G,E) — C} ,I(G E) (for K C G
compact) and CL(G, E) — CL(G, E) of topological vector spaces.

Lemma 2.11 Foreach ¢ € Ny such that { < r, v € CL(G), compact subset K C G
and g € G, we have ||TE ()1 v = [

Definition 2.12 1f G is a locally compact group, we let A be a Haar measure on G,
i.e., a left invariant, non-zero Radon measure (cf. Section 4). Welet Ag: G — 10, oo
be the modular function, determined by Ag(Ex) = Ag(x)Ag(E) for all x € G and
Borel sets E C G. It is known that Ag is a continuous homomorphism [16, 2.24]
(and hence smooth if G is a Lie group). If v: G — E is a mapping to a vector space,
we define v*: G — Evia

7H(x) = Al ().
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It is clear from the definition that (y*)* = ~.

Lemma 2.13 Let E be a locally convex space and r € Ng U {oc}. Ifr > 0, let Gbe a
Lie group; if r = 0, let G be a locally compact group. Then all of the following maps are
isomorphisms of topological vector spaces:

0:C'(G,E) — C'(G,E), ~+—~";
@K: C%(Ga E) — C[Z*I(Gv E)7 s ’Y*a

for K a compact subset of G; and
Oc: GG, E) — CUG,B),  yr—17",

Further facts concerning function spaces Whenever we prove that mappings to
spaces of test functions are discontinuous, the following embedding will allow us
to reduce to the case of scalar-valued test functions.

Lemma 2.14 For each C"-manifold M (resp., locally compact space M, if r = 0),
locally convex space E and 0 # v € E, the map

q)v: CZ(M) — CZ(M7E)7 (I)V(/Y) =V

is linear and a topological embedding (where (yv)(x) := v(x)v).
The following related result will be used in Section 7.

Lemma 2.15 Letr € No U {oo}. If r > 0, let M be a C"-manifold; if r = 0, let
M be a Hausdorff topological space. Then the bilinear mapping Wg: C'(M) X E —
C'(M,E), (y,v) — ~yv is continuous. If M is locally compact and K C M compact,
then Uy g: Cx (M) x E — Ci(M, E), (y,v) — ~yvis also continuous.

Lemma 2.16 Let E be a locally convex space, and r € No U {oo}. If r = 0, let M be a
locally compact space. If r > 0, let M be a C"-manifold.

(i) For each compact set K C M, there exists a family (\;)icy of continuous linear
maps A\i: E — F; to Banach spaces F;, such that the topology on Cy (M, E) is initial with
respect to the linear mappings Cx (M, ;) : Cx(M,E) — Cix(M, F;), v — X\; o7 for
i€l

(ii) If M is o-compact, then there exists a family (\;)icr of continuous linear maps
Ai: E — F; to Fréchet spaces F;, such that the topology on CL(M, E) is initial with respect
to the linear mappings CL(M, \;) : CL(M,E) — CL(M,F;), y — Ao~y fori € L

(iii) If M is paracompact and B C CL(M, E) is a bounded set, then B C Ci(M, E)
for some compact set K C M.

3 Basic Facts Concerning Convolution

Throughout this section, G is a locally compact group, with left Haar measure A,
and b: E; x E; — F a continuous bilinear map between locally convex spaces. As
in the previous section, we refer to Appendix C for all proofs. If G is not metrizable,
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we assume that F satisfies the convex compactness property. If G is metrizable and
not discrete, we assume that F is sequentially complete or satisfies the metric convex

compactness property. Given v € C(G, E,) and n € C(G, E;) such that  or 1 has
compact support, we define

Y G- E (74 m)) :=/b(7(y),n(y_1x)) D),
G

noting that the E-valued weak integral exists by Lemma A.1 as the map G — F,
y — b(y(y), n(y~'x)) is continuous with support in the compact set

(3.1) supp(y) N x(supp(n)) -

In particular,

(52) e = [ () da)
supp(7y)
If b is understood, we simply write v % 77 := 7 %}, 1. Consider the inversion map

j: G — G, g — g !

jc(Ag) is of the form

. It is well known (see [16, 2.31]) that the image measure

jc(Ac) = Ag(y™ ) dg(»).
Since y~'x = (x7'y) 7! = jo(Ly1(y)), we infer
jc(Li-1(Xg)) = je(A) = Ag(y ) dAg(y).

Now the Transformation Formula implies that?
(mn)(x):/GbowoonjG,mojGoLrl iAo
:/Gbo(voonjc,md((jGoqu)(AG))
:/GbowoonjG,n)d(Ac«*l)@Ac)
=/Gb(’y(xz_l)ﬂ7(2)) Ag(z™") dAg(2).
Thus
(3.3) (7 s )(x) = /G b(7(z ), Aalz™ () dAe(2)

for all v, n as above and x € G.

2 Apply continuous linear functionals and use [7, 17.3 and 19.3].
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Lemma 3.1 Let K,L C G be closed sets and let K or L be compact. For all v €
Ck(G, Ey), n € CL(G, Ey), we then have v x, n € Cxr(G, F), and

supp(7y *p 1) € supp(vy) supp(n) € KL.

The bilinear mapping 3: Cx(G,E;) x Cr(G,E;) — Cxi(G,F), (7,m) + 7 *p 1 is
continuous.

Let G be a Lie group now.

Proposition 3.2 Letr,s € Ng U {oo} and K, L C G be closed subsets such that K or
L is compact. Then y x, n € C{ (G, F) for all v € Ci(G, Ey) and n € C;(G, E,), with

(34) :RW]‘ te ':Rwle te 'Lvl : (,Y *p 77) = (:RW)’ t 'RW1 : ’Y) *b (LV,’ o 'Lvl : 77)

foralli,j € Ngwithi < sand j < r,andallv,,...,v;,w,...,w; € T\(G). More-
over, the bilinear map

/8: C;{(Ga El) X CE(G7 EZ) — CIrgrLS(G7 F)7 (’)/777) = Y *p n

is continuous.

If G is compact, then C"(G, E) = Ci(G, E) with K := G, for each r € Ny U {00}
and locally convex space E. Hence Proposition 3.2 yields the following corollary as a
special case.

Corollary 3.3 If G is compact, then the convolution map
ﬂ: Cr(GaEl) X CS(GaEZ) —>C[(G7F); (7?77) ==Y %M

is continuous, for all r;s,t € Ng U {oo} such thatt < r+s. [ |

To each continuous bilinear mapping b: E; x E, — F as before, we associate a
continuous bilinear map bV': E, x E; — Fvia

bY(x,y) :=b(y,x) for(x,y) € E, x E.

Lemma 3.4 Ifoneofthemaps~y € C'(G, E;) andn € C*(G, E,) has compact support,

*

then (77 *, )™ = n* *xpv ™.

Lemma 3.5 Assume that one of the maps v € C'(G,E;) and n € C°(G,E,) has
compact support. Let g € G. Then

W) 1y = (77() *p 15

(il) 7y *pm) =y (75 (0).

Lemma 3.6 Let (G,r1,s,b) be as in the introduction, K C G be compact, v €
Cx(G,E1), n € CAG,E,) and q, p1, p be continuous seminorms on F, E; and E,,
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respectively, such that q(b(x, y)) < p1(x)p2(y) for all (x,y) € E; X E,. Letk,£ € N
withk < rand{ <s. Then

1y 0 0lIE 5 < IR pu 171l prc0 A (KD,
Iy #1174 < 1711 pr.co 1117 5, A (KD,
RL
v 0 1ll g < 71K pu 1117 5, A (K-

For a definition and necessary background on hypocontinuous bilinear maps, the
reader is referred to Appendix B. In Appendix C, we also prove the following propo-
sition.

Proposition 3.7 For all (G,r,s,t,b) as in the introduction, the convolution map
B: CI(G, Ey) x CiG, Ey) — CYG,F), (y,m) > =y %, 11 is hypocontinuous.

4 Facts on Measures and their Convolution

In this section, we fix our measure-theoretic setting and state basic definitions and
facts concerning spaces of complex Radon measure and convolution of complex
Radon measures. As before, proofs can be looked up in Appendix C.

The Setting If X is a Hausdorff topological space, we write B(X) for the o-algebra
of Borel sets (which is generated by the set of open subsets of X). A positive measure
1 B(X) — [0, 00] is called a Borel measure if (K) < oo for each compact subset
K C X. Following [8], we shall call a Borel measure ¢ on X a Radon measure if 1
is inner regular, in the sense that u(A) = sup{u(K): K C Acompact} for each
A € B(X). The support supp(u) of a Radon measure is the smallest closed subset
of X such that pu(X \ supp()) = 0. A complex measure p: B(X) — Cis called a
complex Radon measure on X if the associated total variation measure || (as in [37,
6.2]) is a (finite) positive Radon measure. In this case, we set supp(u) := supp(|u/).
The total variation norm of y is defined via ||u|| := |](X). We let M(X) be the space
of all complex Radon measures on X. Given a compact set K C X, we let Mg (X) be
the space of all ;1 € M(X) such that supp(p) C K. It is clear that the restriction map
(Mg(X), |- 1) = M(K), || -|]) is an isometric isomorphism, and hence Mg (X) =
M(K) == (C(K), || - [|op) is a Banach space (using the Riesz Representation Theorem,
[37, 6.19]). We give Mc(X) := [Jg Mg (X) the locally convex direct limit topology,
and note that it is Hausdorff (being finer than the normable topology arising from
the total variation norm). We let M(X), be the set of finite positive Radon measures
on X, Mg (X), be the subset of Radon measures supported in a given compact set K C
X, and M (X)4 := Ug Mg(X);. If G is a Hausdorff topological group, with group
multiplication m: G x G — G, we let 1 ® v be the Radon product measure of i, v €
M(G), (see [8, 2.1.11]). We define 1 ® v for pu,v € M(G) via bilinear extension;
then |p ® v| < |u| ® |v| (see, e.g., [26, (5.4)]). The convolution of u, v € M(G) is
defined as the measure p * v := m, (u @ v) taking A € B(G) to (u @ v)(m~'(A)) (cf.
[8,2.1.16]). Since

v =|m(pev)| < m.(lp@v]) <m(lul@[v]) = |ul v,
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one deduces that
v < (lul* v]) (G) = (lul @ 1)) (G x G) = [p/(@WI(G) = [|lu] ]|
We shall use that?

supp(p * ) C supp(p) supp(v) forall u, v € M.(G).

Lemma 4.1 Let X be a Hausdorff topological space and (A;) jc; be a family of Borel
subsets of X, such that Jx := {j € J: AjN K # @} is finite for each compact subset
K C X. Then the map

P: Mc(X) — P M(A)), pr— (1sn))jes
e

is continuous and linear.
Recall the notation p ® u for p dpu.

Lemma 4.2 Let X be a Hausdorff topological space that is hemicompact, and let K1 C
K, C --- be compact subsets of X such that each compact subset of X is contained in
some K. Let Ko := @. Given u € M(X), we have pu,, := 1g\x,_, © p € Mg, (X) for
each n € N, and the map

d: M (X) — @ MK,,(X)a n—r (/Ln)nEN
neN

is linear and is a topological embedding.

If X is a locally compact space, 4 > 0 a Radon measure on X, and K C X a
compact set, we define (L'(X, 1), || - ||z1) as usual and let Lk (X, 1) be the set of all
[v] € L'(X, u) vanishing p-almost everywhere outside K. We equip Lk (X, ) with
the topology induced by L'(X, u), and LL(X, p) := Uy Li(X, p) with the locally
convex direct limit topology. We abbreviate L (G) := LL(G, A\g).

Lemma 4.3 For each locally compact space X and Radon measure . > 0 on X, the
map

is continuous and linear, and so is W: L1(X, ) — M(X), v+ 7 © p.

As is well known, the definitions of convolution of functions and of measures are
compatible with one another (cf. [16, p. 50]).

Lemma 4.4 If Gisalocally compact group, with left Haar measure Ag, then (YO Ag)*
(N ®Ag) = (v xn) ® Xg forall y,n € C(G) (and, more generally, for v,n € L1(G)).

3Ifz € G\ supp(p) supp(v) =: U and x, y € G with xy = z, then x & supp(u) or y & supp(v).
Hence m™(U) N (supp(1) X supp(v)) = @ and |p x v|(U) < (Ju|* [v)U) = (|p| @ [v))(m~1(U)) <
(Il ® [VD(G x (G \ supp())) + (|u| @ [v])((G \ supp(p)) X G) = 0.
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5 Convolution on Non-o-compact Groups

We prove that convolution of test functions on a non-o-compact group is always
discontinuous (Proposition 5.3). Notably, this shows the necessity of condition (i) in
Theorem 1.2. It is efficient to discuss convolution of measures in parallel, and all our
results concerning it. Note that [11, Lemma] is essential.

Lemma 5.1 Let I be an uncountable set. Then there exists a function g: I x I —
10, 0o such that for each v: I — 10,00], there exist i, j € I such that v(i)v(j) >
8, j).

Lemma 5.2 Let G be a Hausdorff topological group and let W C M.(G) be a cone
(ie., [0,00[ W C W), equipped with a topology O making the map m,,: [0, 00[— W,
r — ru continuous at 0 for each u € W. Assume that there exists an uncountable set |
and families (Y;);e; and (Z;)ie1 of Borel sets in G such that

Ix = {(1,]) el xI: Y,ZJHK#@}

is finite for each compact subset K C G, and there exist non-zero measures [i;, V; €
M. (G)+ N'W such that supp(p;) C Y, and supp(v;) C Z,, foralli € 1. Then the
convolution map

B: (W,0) x (W,0) — Mc(G), (u,v) — pxv

is discontinuous (with respect to the usual locally convex direct limit topology on the
right-hand side).

Proof After passing to a positive multiple, we may assume that ||y, || = ||v;|| = 1 for
alli € I. Letg: I x I — ]0,00[ be as in Lemma 5.1. By Lemma 4.1, the restriction
maps combine to a continuous linear mapping M.(G) — @(i‘j) M(Y;Z;). Hence
the set '

€IxI

S:={neMIG) : (Vi,je D |ul(Yiz)) <gli,j)}
is an open 0-neighbourhood in M (G). We now show that

(5.1) BUXV)=UxV S

for any 0-neighbourhoods U C W and V' C W. Hence § will be discontinuous at
(0,0). Since U is a 0-neighbourhood and ,, is continuous at 0 for i € I, we find
g; > 0such that ¢;u; € U. Likewise, we find §; > 0 such that 6;,1; € V. By choice
of g, there exist i, j € I such that £;0; > g(i, j). Since (g;;) * (0;v;) € Mc(G)4 and
supp((eipi) * (0v)) C supp(u;) supp(v;) C Y;Z;, we obtain
|(eipei) * (Ojv)|(YiZ;) = (eipi % Ojv;)(YiZ;) = (ipi * 0;7)(G)
=il pi xvj = €i0; (i ® v;)(G x G)
=il 11i(G)vj(G) = €;0; > g(i, j).

Hence (gp;) * (0;v;) € S, establishing (5.1). [ |
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Proof of Theorem 1.3 (i) If G is hemicompact, define ® for X := G asin Lemma 4.2.
Fori,j € N, let f; j: Mg, (G) X Mg,;(G) — Mgk, (G) € M(G) be the convolution
map. Then f; ; is continuous, because || f; (11, V)| = || * v|| < [|u]| [|v]|. Abbreviate
S := @,y Mk, (X). Since each of the spaces Mg; (X) is normable, it follows that the
bilinear map f: S x § — M(G), f((7i)ien, (nj)jen) == Zi,jeN fi.j(~vi, m;) is contin-
uous [22, Corollary 2.4]. Hence the convolution map 8 on M.(G) is also continuous,
as it can be written in the form 8 = f o (& x ®).

(ii) If G is spacious, then there exist uncountable subsets A,B C G such that
{(a,b) € A x B: ab € K} is finite for each compact set K C G. After replacing A
and B by subsets whose cardinality is the smallest uncountable cardinal X;, we may
assume that there exists a bijection f: A — B. Then ({a}).ca and ({f(a)})sea are
families of (singleton) subsets of G such that {(a,a’) € AxA: {a}{f(a")}NK # &}
is finite for each compact subset K C G. Now define W := M.(G), with its usual
topology and note that the point measures ji, := 0, at a and v, := dp( at f(a’)
on G are contained in W N M,(G)+ and W N M (,7)} (G)+, respectively. Thus
Lemma 5.2 shows that (3 is not continuous. [ |

Proposition 5.3 Let (G,r,s,t,b) and B: CI(G, E;) x Ci(G, E,) — C{G,F) beasin
the introduction. If G is not o-compact, then 3 is not continuous.

Our proof of Proposition 5.3 uses a property of non-o-compact groups:

Lemma 5.4 Let G be a locally compact group that is not o-compact, and let U C G be
a o-compact, open subgroup of G. Then there exist disjoint uncountable subsets A, B C
G such that A and B have the same cardinality,

(5.2) (V(a,b),(a’,b’) € AXx B) aUbNa'Ub' # & = (a,b) = (a’,b’),

and (aUb) . p)caxs is locally finite.

Proof Letw be the first uncountable ordinal. Fix a well-ordering < on G. We prove
the following assertion P(6) for all ordinals 6 < w;, by transfinite induction:

P(6): There exist uniquely determined families (A,)q<p and (By)a<p of subsets
Aq, By € Gand a unique family (f,)q<p of bijections f,: A, — B, such that Ay =
By = 9, A, and B,, are countable for all « < € such that a # w;; moreover,

(53) (Va<8) (a+1<0)=

Apr1 = A, U{x,} withx, = min(G\ (U U A, U B, )),
Bos1 = BoU{ya} withy, = min(G\ (U UAy1 UB,)),
Ay = Uﬂ<a Agand B, = Uﬁ<oz Bg for all limit ordinals & < 6, and f, |4, = f3 for
al < a<é.
Here, the minima in (5.3) refer to the chosen well-ordering on G. Because A, and
B, are countable if « + 1 < 6, the group (U U A, U B, ) is o-compact and hence
not all of G. As a consequence, its complement G\ (U U A, U B, ) is non-empty
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and the first minimum in (5.3) makes sense. Similarly, the second minimum makes
sense.

To prove P(f) by transfinite induction, note that P(0) is satisfied if and only if
AO =By = fo = J.

If # is a non-zero limit ordinal and P(6’) holds for all ' < 0, write

((Ai/)age/, (Bil)ag(;/, (ff,)age/)

for the triple ((An)a<o’, (Ba)a<e’, (fa)a<s’) that is uniquely determined by P(0”). If
0" < @' < 0, the uniqueness in P(9"") implies that A?” " = A", B?"" = B’ and
f(f” = f(g/ forall « < 6. For a < 0, choose 8’ < 0 such that o < 6’; then
Ay = A’ B, := B, and f, := f’ are independent of the choice of #’ (as just
observed). We also set Ag := |J,_yAa> By :== U,-pBa and fy := J,-y fo- Then
P(0) holds.

Ifo =0 +1,let A, := Af’;, B, = Bi/, and f, := f/ for « < 6'. Define
Ay = A()U{xg/}withxg/ = m1n(G\< U UAy UBy/ >) Also, define By := Bg/U{ygl}
with y. := min(G \ (U U Ay U By/)). Then P(#) is satisfied. The inductive proof is
complete.

Now, set A := A,, and B := B,,. These are uncountable sets, as they can be
considered as the disjoint unions A = (J,, {*a} and B = |, {¥a}. Moreover,
fu, : A — Bis abijection, and (5.2) can be inferred from P(w;). In fact, assume that

% Uys Nx,Uys # 2.

Thus, there exist #, w € U such that x,uyg = x,wys. Let § := max{c, 8,7, 0}. If
B =60andd < 0, then H := (U U Ap+1 U By) would be a subgroup containing U
and all of x,, x, and y;. Hence yy = y3 = u_lxglwiy(; € H, contradicting (5.3).
Hence B = 60 implies § = 0 = B. Thus x,u = x,w in this case. If @ > =, let
I:= (U UA,). Then u,w,x, € I and hence also x, = x,wu~! € I, contradicting
(5.3). The same argument excludes the case o < 7, and thus o = .

Likewise, § = 0 implies 5 = J, from which o = +y follows as just shown.

If 5 < §and d < 6, we may assume that o = 6 (the case v = 6 is analogous). If
we would have v < «, then H := (U U A, U B,) would be a subgroup containing
{u, y3,%y,w, y5}. Hence x, = xa,wy(;yglu_l € H, contradicting (5.3). Thus a = 7.
But then uys = wy;s. Without loss of generality § < 4. If we would have 5 < 6,
then I := (U U Bs) would be a subgroup containing {u, y3, w}. Hence y5s = w™uy;
would be in I, contradicting (5.3). Thus (5.2) holds.

If K C G is a compact set, let @ be the set of all pairs (a, 8) with a;, 5 < w; such
that x,Uys N K # &. To see that ® is finite, let us suppose that ® was infinite and
derive a contradiction.

Case I: Assume that © := {max{a, 5}: (o, 8) € @} is finite. Then (la) the set
C:={B < ay: (ap, B) € @} is infinite for some oy < wy, or (1b) the set D := {a <
Bo: (a, By) € @} is infinite for some Sy < wi. In case (1a), K meets x,,U y; for all
8 € C (which are disjoint sets), and hence the compact set x,; ' K meets Uy for all
B € C, and also these sets are disjoint. But the set U\ G of all right cosets of U is an
open cover of x;;'K by disjoint open sets, and hence {S € U\G: x'K NS # @}
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must be finite, a contradiction. In case (1b), K meets x,U y3, for all @« € D (which
are disjoint sets), and hence the compact set K yﬂ_ul meets x,U for all & € D, and
also these sets are disjoint. But the set G/U of all left cosets of U is an open cover of
KyQO1 by disjoint open sets, and hence {S € G/U: Ky‘go1 NS # @} must be finite, a
contradiction.

Case 2: Assume that © is infinite. For each § € O, pick (ag, Byp) € P such that
max{ayg, Bp} = 6. Also, pick zg € K N x,,Uyg,. Then (2a) C := {0 € ©: 0 = [y}
is infinite or (2b) the set D := {# € ©: 6 = «y > [y} is infinite. In case (2a), if
6,0’ € Cand 0 < 0’, then x,,Uys, C (U U Apry1 UBy:) =: Hand x,,, € H (as
agr < 67). Since Vs, = Yo & H by (5.3), we have H N Hys,, = <& and hence
XayUyp,U N, Uyp,, = O, entailing that z5 and zy/ lie in different left cosets of U,
i.e., zgUNzy:U = @&. Hence K meets infinitely many left cosets of U, a contradiction.
In case (2b), if 6,0’ € Dand 6 < 6’, then x,,Uys, C (U U Ay UBy/) =: H and
ys, € H (as By < 0'). Since x,,, = x¢9: ¢ H by (5.3), we have H N x,,, H = @ and
hence x,,Uys,U Ny, Uyp, = @, entailing that zg and zy- lie in different left cosets
of U. Hence K meets infinitely many left cosets of U, a contradiction. ]

Proof of Proposition 5.3 We write 3} in place of /3.

As b # 0, there exist non-zero vectors v € E;, w € E; and z € F such that
Bv,w) = z. Let ,: C'(G) — CI(G,E), D,,: C3(G) — Ci(G, E,) and ¥,: CL(G) —
CL(G, F) be the linear topological embeddings from Lemma 2.14. If c: R x R — R,
(s,t) — s -t is the scalar multiplication, then

Bpo (P, x ®,) =P, 0.

Hence f;, will be discontinuous if we can show that . is discontinuous. Let
0: M.(G) x M.(G) — M_.(G) be convolution of measures. Let U C G be a
o-compact open subgroup. As we assume that G is not o-compact, Lemma 5.4
provides uncountable subsets A,B C G and a bijection f: A — B such that
(aUDb)q.p)caxp is a locally finite family of disjoint open subsets of G. Define Y, := aU
and Z, := U f(a) for a € A. Then (Y,Z,) @ p)caxa is a locally finite family of disjoint
open subsets of G. The map ® from Lemma 4.3 (applied with p := Ag) is con-
tinuous linear and injective. We endow its image W := im(®) C M.(G) with the
topology making ® a homeomorphism onto W. For all a € A, there exist non-zero
functions g, € CX(G) and h, € C(G) with g,, h, > 0 pointwise and supp(g,) C Y,,
supp(h,) C Z,. Now the hypotheses of Lemma 5.2 are satisfied with p, := g, © Ag
and v, := h, ® A\g. Hence 0|y xw is discontinuous. But 8, = 6 o (P x P) (see
Lemma 4.4), entailing that also . is discontinuous. [ |

Remark 5.5 A locally compact group G is spacious if and only if it is not o-com-
pact. In fact, if G is spacious, then the convolution map 5: M.(G) x M.(G) —
M,(G) is discontinuous (see Theorem 1.3(ii)), whence G is not hemicompact (by
Theorem 1.3(i)) and hence not o-compact. If G is not o-compact, then G is spacious,
as a consequence of Lemma 5.4.

Corollary 5.6 Let G be a locally compact group. Then the convolution mapping
B: LYG) x LY(G) — LX(G) is continuous if and only if G is o-compact.
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Proof If G is o-compact, using the local compactness we find compact sets K, C G
such that G = U;ﬁl K, and K,, is contained in the interior of K,;;. Set K, := & and
abbreviate S := @, o Ly (G). Then the map

neN
P: LUG) = S, (7)== (Ix\k_,Vien

is linear, injective, and continuous (as in the proof of Lemma 4.2, using that
[1x\k Yl < [lvlle). Since [|y = nllp < [|v[|z[|7llz:, the restriction f;; of 8
to Ly (G) x L,1<j(G) is continuous for all i, j € N. As all of the spaces Ly (G) are
normable, [22, Corollary 2.4] shows that

f:SxS—=LUG), f((ien,n)jen) = Z fi.i¢vismj)

ijeEN

is continuous. Hence 8 = f o (® x @) is continuous as well.

If G is not o-compact, let : M (G) x M.(G) — M.(G) be convolution of mea-
sures. Let U C G be a o-compact open subgroup, (Y,)sca, (Zs)aca, g and h, €
C.(G) be as in the proof of Proposition 5.3. The map ¥ from Lemma 4.3 (ap-
plied with p := Ag) is continuous linear and injective. We endow its image W :=
im(¥) C M.(G) with the topology making ¥ a homeomorphism onto W. Now the
hypotheses of Lemma 5.2 are satisfied, whence 6| «w is discontinuous and hence
also 5 =00 (¥ x U), [ |

6 Convolution of C*-maps and C>-maps

In this section, we prove the necessity of Theorem 1.2(ii). Thus, we assume that (ii)
is violated and deduce that 8, := S is discontinuous. In view of Proposition 5.3, it
suffices to show this if (i) is satisfied.

Thus, let G be a o-compact, non-discrete, non-compact Lie group, and let g :=
Ti(G). If r = oo and s < oo, we have 3,(v,n) = (Bpv(n*,7*)* for (v,n) €
C(G, E) X Ci(G, Ey), where Bpv : Ci(G, E;) xC°(G, E;) — C>(G, F) and * stands
for the involutions on C(G, E;), C°(G, E;), and C°(G, F), respectively, which are
isomorphisms of topological vector spaces by Lemma 2.13. Hence discontinuity of
Bpv will entail discontinuity of fp. It therefore suffices to assume that r < oo and
s = oo in the rest of the proof.

We show that the convolution map 5: CL(G, E;) X C2°(G, E;) — C>°(G, F) is dis-
continuous. As in the proof of Proposition 5.3, we may assume that E; = E; = F =R
and that b: R X R — R is multiplication, for the proof of discontinuity. Let K C G
be a compact identity neighbourhood, and let M C G be a relatively compact, open
set such that KK C M. There exists a sequence (x;);ecn in G such that (x;M);ey is lo-
cally finite. For each i € N, let h; € CZ°(G) be a function such that supp(h;) C x;M
and h; = 1 on some neighbourhood of x;KK. Let 2 be the set of all v € C>*(G)
such that [|v]|f, xx = [hivllfxkx < 1 foralli € N (with notation as in Defi-
nition 2.7). Then Q is an open 0-neighbourhood in C°(G) (¢f. Lemma 2.3). If
B were continuous, then we could find 0-neighbourhoods V' C C/(G) and W C
C2°(G) such that S(V x W) C Q. There exist s € Ny and 7 > 0 such that
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{n € CX(G): |In||t < 7} € W. Also, for each i € N there exists o; > 0 such
that { € C,x(G): ||7[[F < 0;} C V. Thus 3(v,7) € Q, and hence

1yl < 1

for all v € CLx(G) and p € C(G) such that ||7||} < o and ||n||} < 7. Hence,
using Lemmas 2.11 and 3.5,

[y * 77||1‘L,KK = ||TXLI_—1(’Y * 77)||1‘L,x,1<1< = ||(T£_—1’Y) * 77||1‘L,x,-1<1< <1

for all v € Ci(G) and € C(G) such that ||7||f < o; and ||n||t < 7. But this
contradicts the following lemma. ]

Lemma 6.1 Let G be a non-discrete Lie group, let K C G be a compact identity
neighbourhood, and let r,s € Ny. Then the convolution map

(6.1) (CL(G), |- [[F) < (CF(G), || - |IF) — CR%(G)

is discontinuous, if one uses the ordinary Fréchet space topology on the right-hand side,
but merely the two indicated norms on the left.

Proof Suppose that the map (6.1) were continuous; we shall derive a contradiction.
Let ¢: P — Q C g be a chart for G around 1 such that ¢(1) = 0, P = P~', d¢|, =
idg, and ¢(x~1) = —¢(x) for all x € P (for example, a logarithmic chart). After
shrinking K, we may assume that K = ¢~!(A) for some compact 0-neighbourhood
A C Qwith [—-1,1]A C A. Notably, K C P. Let m > 0 be the dimension of G,
let Ay be a Haar measure on (g, +), and let \q|g be its restriction to a measure on
(Q, B(Q)). Then the image measure ¢.(Ag|p) is of the form p d)q|q with a smooth
function p: Q —]0,00[. Given v € C(G), let ¥ := v o0 ¢~ € C3°(Q). Then, for
ally,n € CF(G),

(6.2) (v *n)(0) = / F)(=y) p(y) dXg(p).
Q

IfY is a vector field on Gand § := d¢ oY o ¢! € C>®°(Q,R™) its representative
with respect to the chart ¢, then

(6.3) (Dyv)” = Dy,

where Dy () is as in (2.1), and Dy := d7 o (idg, ). Choose n € 2N so large that
m+r+s+2—2n < 0. Pickh € C°(g) such that h # 0 and h(x) = h(—x) for all
x € g. Thereisv € A\ {0} such that h(v) # 0. Then D}h # 0. To see this, find
¢ > lsuchthat ]—c,c[v C Qbut]—c,c[v Z A. Theng: ]—c,c[ = R, t — h(tv)isa
compactly supported non-zero function, whence g(”)(to) = 0 for some ty € |—c, c[,
and thus D} h(tyv) # 0. For t €10, 1], define %, 7, € C:¥(Q) C CS°(Q) via

Fi(x) == t"""h(x/t) and @ (x) := " h(x/t)

for x € Q. Define v, n; € CP(G) via (%) := F:(p(x)) and n;(x) = 7 (p(x)) if
x € P,and by v,(x) := n,(x) ;== 0ifx € G\ K.
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Claim ~, — 0in Ci(G) and n, — 0 in (CE(G),||-||}) ast — 0. However,
[l * nt||ff;£ — 0o ast — 0, whence y, x 1, /> 0in Cgy(G).

Therefore the map in (6.1) is not continuous, a contradiction.
To prove the claim, we first note that

j
(6.4) (D, ... DeAn)(x) = Y £ Igi(t,x)
i=1

for je N, &p,...,& € C*(Q,g) and x € Q, where

gi(t,x) = dVh(x/t,&(x), ..., &(x))
and g;(t,x) for i < jis a sum of terms of the form cl(”h(x/t7 fi(x), ..., fi(x)) with

suitable smooth functions f,..., i € C°°(Q,g). This can be established by a
straightforward induction, using the fact that the application of Dy to

x i dVh(x/t, fi(x), ... i)

yields*

Lt 0. 0.6)
+dDh(x/t, (Defi) (), -, i) + - +dPh(x/t, fix),. .., (Def) (%))

for £ € C*(Q,q). A similar description (With s in place of r) can be given for
Dy, ... Dg ;. We find it useful to abbreviate ') := dh and®

17 lop.oo = sup{[IR(y, )llop: ¥ € a}.

Note that h(i)(x/t, fi(x), ..., fi(x)) vanishes for x outside tA and hence for x & A,
and that its norm is bounded by

11 lop.oc | fillos =+~ 1 fllo

irrespective of t and x. A similar estimate is available for g;(¢,x). Also, ||F[/cc <
||h]|cot™". Hence, if j € {0,...,r}, we can find C > 0 such that

j
IDg, ... DAl < > _#77177C < jeC.
i=1

4Recall that dDh(x, - ): E* — Fis i-linear (see, e.g., [18,27,34]).

3 As usual, for normed spaces (Ei, || - |[1), - - -, (Ei, || - ||;) and (E, || - ||r) and a continuous i-linear map
B: Ey x --- X E; — F, we define ||B||op as the supremum of ||B(xi,...,x;)||r, where x; € E; with
llxjll; < 1forj=1,...,i.
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Asa consequence,

max [|0“%||cc — 0
la|<r

ast — 0 and thus 4, — 0 in C}(Q), entailing that 7, — 0 in Ci(G) = Cg(P).
Likewise, 1, — 0 in Ci(G), whose topology can be described by the norm || - ||, and
thus 7, — 0 in (CF(G), || - ).

Next, let X be the right invariant vector field on G with X(1) = v, and let Y be the

left invariant vector field with Y (1) = v. Let £ :== dgpoXo¢~'and ( := dpoY op~!
be the local representatives. By (6.2) and (6.3),

(YD (% 10)) (0) = (Dl * D )(0) = / (D2 (D) (—) ply) dAg(y).

Write

(DEF)(x) = th“ ‘gi(t,x) and (D}7)(x) = Zf“ Thi(t, x)

i=1

asin (6.4). Then
(DYDY (7 % 1)) (0) = gmrsta=2n (t"" / &t Y)ha(t, —y) p(y) dAg(y) + R(t))
Q

where R(¢) is the sum of the terms 2"~ =/t=" fQ gi(t, hi(t, —y)p(y) dXg(y) with
i,j€{l,...,n}and (i, j) # (n,n). For these (i, j),

t*’”/ gi(t, )hi(t, —y)p(y) d/\g(y)‘

Q

= |t~ / WO (y/t, A, i) h<”<—y/t7k1<—y),...,k,-<—y>)p<y)dxg<y>‘
Q

= / W (z, filtz),. .., fi(t2)) D (—z, ki (—t2), ... kj(—t2)) p(tz) dAg(2)
Q/t

- / W (z, filtz),. .., fi(t2)) D ( =z, ki(—t2), ..., kj(—t2)) p(tz) dXg(2)
A

< B op.oo B llopool fillso -~ 1 filloo Kt lloc - -~ 1K o | plalloo Aa(4)

(using the substitution ¥/t = z to obtain the second equality), where the final esti-
mate is independent of t. Since 2n — i — j > 1 and thus 27170 5 0ast — 0, we
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deduce that R(t) — 0. Similarly, substituting z = y /¢, we get

(6.5)
" /an(ta Yha(t, —y) p(y) dg(y)

=7 [ KO (31,609 €O K (/1,6 () ) l)
— /Q ; W (2,&(t2), ..., E(t2)) K" (—2,{(—t2), ..., {(—t2)) p(tz) dAg(2)
- /A W (z,&(t2), ..., E(t2)) W' (=2, {(—tz),...,((—t2)) p(tz) dNg(2)
which tends to
/A h(2,£(0),...,£(0)) h™ (=2,{(0),...,(0)) p(0) dAg(2)
:/Ah<">(z,v,...,v) K (—z,v,...,v) p(0) dXy(2)
— p(0) /A(Dch(z)) Yd\(2) = a >0

ast — 0. Note that the integrand in (6.5) is continuous for (¢, y) € [0, 1] XA, whence
Lemma A.2 applies. Since R(¢) — 0, there exists 7 € ]0, 1] such that |[R(¢)| < a/2 for
allt €10, 7]. Then (D§D¥ (7, * ,))(0) > t™**¥2=274 for all ¢ € ]0, 7], which tends
to oo as t — 0. Hence also ||, * n||h > [(D%D} (7 * 1))(0)] goes to oo as t — 0,
and the claim is established. [ |

7 Convolution on o-compact Groups

In this section, we complete the proof of Theorem 1.2. As we have already seen in
Sections 5 and 6 that conditions (i) and (ii) of the theorem are necessary for continu-
ity of 3, it suffices to consider the case that (i) and (ii) are satisfied, and to show that
B is continuous if and only if condition (iii) of the theorem is satisfied. In parallel,
we shall establish a result concerning discrete groups. To formulate it, let (G, r, s, ¢, b)
be as in the introduction. If G is discrete, then Cf(G, H) = @gEG H =: H© with
the locally convex direct sum topology, for each p € Ny U {oo} and locally convex
space H.

Proposition 7.1 If Gis an infinite discrete group, then the map (3: E(IG) X EgG) — F),
B(y,n) = v*pn is continuous if and only if G is countable and b: E| x E; — F satisfies
product estimates.

We need only prove Proposition 7.1 for countable G (as the discontinuity of /3 for
uncountable G was already established in Proposition 5.3).
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Lemma 7.2 Let G be a o-compact, non-compact, locally compact group and let V. C
G be a compact identity neighbourhood. Then there are sequences (g;)ien and (h;j)jen
in G, such that the family (g;Vh;V ) jene is locally finite.

Proof Since G is locally compact and o-compact, there exists a sequence (K;);en of
compact subsets of G such that G = UieN K; and K; C K.OH, for all 1 € N. We may

1
assume that K; = @. It suffices to find sequences (g;);en and (k;) jen in G such that

(7.1) g,'VI’leﬂKi\/j =

for all i, j € N, where i V j denotes the maximum of i and j. Indeed, if K C G is
compact, then K C K, for some n € N, and thus K N g;Vh;V = @ unless i, j €
{1,...,n — 1} (which is a finite set). To find such sequences, we make an arbitrary
choice of g;,h; € G. Now let n € N and assume that g;, h; have been chosen for
i,j € {1,...,n} such that (7.1) holds. Then the subset

n
pP.= H Knﬂv—lhj—lv—1

of G is compact. As G is non-compact, we find g,4; € G\ P. Also,

n+l
Q:=U V'g 'KV
i=1
is compact, whence we find 4,41 € G\Q. Then (7.1) holdsforalli, j € {1,...,n+1}.
We need only check thisifi = n+1lor j=n+1.1f j=n+1,thenh; = h,., € Q,
and thus g;Vh;V MK, = @. If j <nandi=n+1,theng = g,;1 € P, and hence
gthjV NK, = 9. |

We shall use the seminorm || - ||, ;1 on C2(G, E) (where p is a continuous semi-
norm on E), defined via ||y, := pr('y(y)) dAg(y). For each compact subset
K C G, we have [|[7]|, 0 < Ag(K)||7][p.00 for all v € CR(G, E). Hence || -, 11 is
continuous on C¥%(G, E) and hence also on C%(G, E).

Necessity of product estimates Let (G, 1,s,t,b) be as in the introduction. Assume
that G is not compact, and assume that the conditions (i) and (ii) from Theorem 1.2
are satisfied.® Also, assume that 3 is continuous. Pick a relatively compact, open
identity neighbourhood V. C G. By Lemma 7.2, there are sequences (x;);cn and
(¥j)jen in G such that the family (V; ;) jen: of open sets V; ; := x;Vy;V is locally
finite. Pick g;, h; € C7(G) such that

g hj >0, K :=supp(g;) € x;V, Lj :=supp(h;j) C y;V, and ||gi[|pr = ||hj|lr = 1.

Pick h; ; € C[(G) such that h; ; > 0, supp(h; ;) C V; ; and hi,j'K,-Lj =1.Fori,jeN,

let p; j be a continuous seminorm on F. Let Z be the set of all v € C(G, F) such that

(Vl,] eN) ||]’l,“’j : ’7”},{_}_[‘1 <1

OIf G is discrete, these conditions are equivalent to countability of G.
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Lemma 2.3 entails that Z is an open 0-neighbourhood in C:(G, F). As (3 is assumed to
be continuous, there exist open 0-neighbourhoods X C CI(G, E;) and Y C Ci(G, E,)
such that (X x Y) C Z. Using Lemma 2.15, for each i € N we find a continuous
seminorm p; on E; such that g,»Ef ‘(0) C X. Likewise, for each j € N there is a
continuous seminorm ¢q; on E, such that hjg?j(O) CY. Forv € Ef’ (0) and w €
B (0), we then have v := B(g;v, hjw) € Z, and thus IV pssmr = WNhij - Allpyr <1
(noting that supp(y) C K;L; on which k; ; = 1). Therefore,

1> [|yllp,,0 :/Pi,j('Y(x))d)\G(x)
G

- / / 2 (g (v b (" 0w) dre(y) dAc()
GJG

- / / GOy %) dA(y) dre(x)
GJG
= pij(bv,w)) llgilln |kl = pij(b(v,w)).

Hence b(BY'(0) x BY(0)) C B}/ (0), entailing that p; ;(b(x, y)) < pi(x)q;(y) for all
i, j € N. Thus b satisfies product estimates.

Sufficiency of product estimates As before, let (G, r,s,t,b) be as in the introduc-
tion, and assume that conditions (i) and (ii) of Theorem 1.2 are satisfied. Also,
assume that b satisfies product estimates (condition (iii)). We show that § is con-
tinuous. To this end, let (h;);cn be a locally finite partition of unity on G (smooth if
G is a Lie group, continuous otherwise), with compact supports K; := supp(h;). For
alli, j € N, the convolution map f; ;: Cg. (G, E;) x C§<](G7 E,) — CL(G, F) associated
with b is then continuous (see Lemmas 3.1 and 3.2). We claim that the hypotheses of
[22, Corollary 2.5] are satisfied. If this is true, then the bilinear map

f: @CL(GE) x @ Cx.(G,E) — CE(G, F)
ieN jen

taking ((7i)ien, (1;)jen) to Z(iﬁj)e]\q fi,i(7i,mj) is continuous (by the latter corol-
lary). Since the linear map ®: CX(G, E;) — ®iEN Ck.(G,Ey), v = (h; - 7)ien and
the analogous map ¥: C(G, E,) — P; en Ck. (G, E,) are also continuous, we deduce
that 8 = f o (® x W) is continuous.

To prove the claim, let Q; ; be continuous seminorms on C{(G, F) for all i, j € N.
Ift < oo, choose k, £ € Ngwithk < r, ¢ <sandk+ /¢ =1t Ift =r =35 = 00, let
k:=/{:=0.1fi < j, then there exist a continuous seminorm P; ; on F and 5; ; € N
such thats; ; < sand

(V7 € Ckx(G.P) Qi) < 1l .,

(see Lemma 2.8). If i > j, there exist a continuous seminorm P; j on F and r; ; €
N such that r; ; < rand Q;j(y) < H'y||§.’jL7Z‘PLJ, for all v € Cy, (G, F). By hy-

pothesis (iii), there are continuous seminorms p; on E; and q; on E, such that
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P; j(b(x,y)) < pi(x)qj(y) foralli,j € Nandallx € Ej, y € E;. Fori,j € N, let
P = ”ﬁp,‘ and Qj := || - quj. Fori,j € Nwithi < j,letg;; := \g(Kj)|| - Héj,qj-
Then

720 Qiitvxem < llysenlicy b, < VIR, Il 0 Ac(KD) = Pi(3)4i,i(n)

forall v € Cy (G, E;) and n € Cf<],(G, E,), using Lemma 3.6. If i, j € Nwithi > j,
let pi j := Ag(Kj)|| - ||5]‘~Pi' Fory € Cy. (G, Ey) and ) € Cx, (G, E2),

73) Qv < Iy s nllE s, < ISl Ae(K) = pis()Qi()

(using Lemma 3.6 again). By (7.2) and (7.3), the claim is established. [ |

8 Convolution of C"-maps and C’-maps
Proposition 8.1 Let (G,r,s,t,b) be as in the introduction, and
Bp: C(G, E) x C(G, Ey) — C'(G, F),
0p: C'(G, E;) x CXG,E;) — C'(G,F)

be the convolution maps taking (vy,m) to v *, n. Then By and 0 are hypocontinuous.
The map By, is continuous if and only if G is compact. Likewise, 0}, is continuous if and
only if G is compact. Moreover, the convolution maps

ﬁK: C]Q(Ga El) X CS(G) E2) — Ct(G7 F)a
GK: Cr(Ga El) X C;((Ga EZ) — Ct(Ga F)
taking (v, m) to 7y %, 1 are continuous, for each compact subset K C G.

Proof Since 0,(v,n) = By (n*,~v*)* for all (y,n) € C'(G,E;) x CiG,E,) and
Bu(y,m) = Opv (n*,v*)* for all (y,n) € CI(G, E,) x C*(G, E,), where the involutions
denoted by * are continuous linear maps (Lemma 2.13), the assertions concerning 6,
follow if we can establish those concerning 3 := fy.

We first show that Sk is continuous for each compact subset K C G. To this
end, recall that the topology on C*(G, F) is initial with respect to the linear maps
pw: C'(G,F) — C'(W,F), v — 7|w, for W ranging through the set of relatively
compact, open subsets of G (cf. [20, Lemma 4.6]). Since K~'W is compact, there
exists h € C°(G) with compact support L := supp(h) such that h|,_ = 1. For
v € Cx(G, E,) and n € C*(G, E,), we have

(% 7)(x) = / b(7(0), n(y~'%)) dAc(y) = / b(1(x),7(10) dAa(y)
G K
- / b(4(), (h- (') dAe(y)
K

= / b((x), (h-m(y~'x)) dAc(y)
G

= (v (h-m) (%)

https://doi.org/10.4153/CJM-2012-035-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2012-035-6

126 L. Birth and H. Gléckner
for all x € W, and hence

pw (Bx(v,m) = pw (Bc(v, h-m) = pw (v, h-n)),

using the convolution p: Ck(G, E) x Ci(G, E,) — C%,(G,F) C C'(G,F), which is
continuous by Lemmas 3.1 and 3.2. Since the multiplication operator

my: C(G,E,) — Ci(Ga E), m=——h-n

is also continuous (cf. [19, Lemma 3.9 and Proposition 3.10]), pw o Bk, and hence
Bk is continuous.

If'y € CZ(G, E1)> then 51)(77 ) = 5supp(7)(77 ) CS(G, EZ) — Ct(Ga F) is con-
tinuous. For € C'(G, E,), the map 5,(-,n): CX(G,E) — C"(G,F) is linear and
Bo( s mlep.ey = Br(-,m): Cr(G, Er) — C'(G, F) is continuous for each compact
set K C G. Hence, since CL(G, E;) = HEC,Q(G, E;) as alocally convex space, B (-, n)
is continuous. Thus, f; is separately continuous.

If B C CI(G,E) is a bounded set, then B C C}(G, E;) for some compact set
K C G (Lemma 2.16(iii)), and thus 8|pxc(G.5,) = Px|Bxcs(G,E) i continuous. Hence
By is hypocontinuous in the first argument (Remark B.1).

To see that [ is hypocontinuous in the second argument, let (););c; be a family
of linear maps \;: F — F; to Banach spaces F; such that the topology on F is initial
with respect to this family. Then the topology on C'(G, F) is initial with respect to
the mappings C'(G, \;) for i € I (see [20, Lemma 4.14] for manifolds; ¢f. [15, 3.4.6]
for topological spaces). Hence, by Lemma B.2(iii), we need only show that each of
the maps C'(G, A;) o B = SB,0p is hypocontinuous in the second argument. We may
therefore assume now that F is a Banach space. Then there exist continuous linear
mappings ¥ : E; — F; and 1,: E; — F, to suitable Banach spaces F; and F,, and
a continuous bilinear map ¢: F; x F, — F such that c o (¢); X 9,) = b. Since
By = Bc o (CLG,¢1) x C(G,1,)), we need only show that 5, is hypocontinuous
(see Lemma B.2(ii)). We may therefore assume that all of E;, E,, and F are Banach
spaces. Then Cy (G, E;) is a Fréchet space for each compact subset K C G, and hence
barrelled. Hence C.(G, E;) is also barrelled, like every locally convex direct limit of
barrelled spaces [38, I1.7.2]. As the first factor of its domain is barrelled, the separately
continuous bilinear map S;,: CX(G, E;) x C*(G, E;) — C'(G, F) is hypocontinuous
in the second argument [38, I11.5.2]. As we already established its hypocontinuity in
the first argument, /3, is hypocontinuous.

Finally, we show that /3, (and hence also 6,) fails to be continuous if G is not
compact. Pick u € E;, v € E; such that w := S(u,v) # 0. Let K C G be a com-
pact identity neighbourhood and let p be a continuous seminorm on F such that
p(w) > 0. Then W := { € C'(G,F): v(K) C B{(0)} is an open 0-neighbourhood
in C'(G, F). To see that 8, is not continuous, let U C C/(G, E;) andletV C C*(G, E,)
be any 0-neighbourhoods. Let (U;);c; be a locally finite cover of G be relatively com-
pact, open subsets. Since the topology on C*(G, E;) is initial with respect to the
restriction maps p;: C°(G, E;) — C*(U;, E2), v — ~|u, (¢f. [20, Lemma 4.12]), we
find a finite subset Iy C I and 0-neighbourhoods Q; C C*(U;, E,) for i € Iy such that

(8.1) N pi'(Q) CV.

i€l
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Since K := [J;¢, Uj is compact and we assume that G is not compact, the open set
G\ K is non-empty. We pick € C°(G) (resp., n € C°(G) if G is not a Lie group)
such thatp > 0,7 # 0 and supp(n) € G\K. Then, := anv € V foreacha > 0 (by
(8.1)). Define 7y, € CL(G, E;) via v,(x) := %7}(3(1)14. Since U is a 0-neighbourhood,
there is ag > 0 such that v, € U for all a > ay. Then

P((axem2)(1)) = ap(W)/Gn(y’l)n(y’l)dAc(y) = ap(w)|In|lz:,

where the right-hand side can be made > 1 for large a. Thus v, *;, 17, € W although
v, € U and n, € V. Hence 5,(U x V) € W. Since U and V were arbitrary, 3y, is
not continuous. n

A Background on Vector-valued Integrals

If E is a locally convex space, (X, 3, 1) a measure space [7], and v: X — E a function,
we call a (necessarily unique) element v € E the weak integral of v with respect to
(and write fx v(x)du(x) == v) if Ao~v: X — R is p-integrable for each A\ € E’
and A\(v) = fx A(y(x)) du(x). If p is a continuous seminorm on E, using the Hahn-
Banach Extension Theorem, one finds that

p(/’y(x) du(x)) < pXO[Yllp,00-
X

Lemma A.1 Let (E,| - ||) bealocally convex space, let X be a locally compact space, let
1 be a Borel measure on X (see Section 4), and let v: X — E be a continuous mapping
with compact support K. If K is metrizable, assume that E is sequentially complete or
satisfies the metric convex compactness property; if K is not metrizable, assume that E
satisfies the convex compactness property. Then the weak integral [\ ~(x) du(x) exists
in E.

Proof See [28, 1.2.3] for the first case, and [36, 3.27] for the two others. [ |
The next two lemmas can be proved exactly as [9, Proposition 3.5].

Lemma A.2 Let E be a locally convex space, let X be a topological space, let p be a
Borel measure on a compact space K, and let f: X x K — E be a continuous map.
Assume that the weak integral g(x) = fK f(x,a)du(a) exists in E for each x € X.
Then g: X — E is continuous.

Lemma A.3 In the situation of A.2, assume thatn € N, r € Ny U {o0}, X C R"
is open, the partial derivatives 0% f(x, a) of f with respect to the variables in X exist
for all « € N§ with |a| < r, and define continuous maps Oy f: X x K — E. Also,
assume that the weak integrals [ 0 f(x, a) du(a) exist in E for all o as before. Then
g: X = Ex— [ f(x,a)du(a) isC", and 9°g(x) = [, O f(x, a) du(a) for all v € N§
with |a| < rand x € K.

https://doi.org/10.4153/CJM-2012-035-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2012-035-6

128 L. Birth and H. Gléckner

B Hypocontinuous Bilinear Maps

Hypocontinuity As a special case of more general concepts, we call a bilinear map
B: E; x E; — F between locally convex spaces hypocontinuous if the following con-
ditions are satisfied:

(H1) For each 0-neighbourhood V' C F and bounded set B; C E;, there exists a
0-neighbourhood U C E, such that 8(B; x U) C V;

(H2) For each 0-neighbourhood V' C F and bounded set B, C E,, there exists a
0-neighbourhood U C E; such that (U x B,) C V.

In this case, [ is separately continuous (as By, B, can be chosen as singletons). If 5 is
separately continuous and satisfies (H1) (resp., (H2)), we say that 3 is hypocontinu-
ous in its first (resp., its second) argument.

Remark B.1 A separately continuous bilinear map 5: E; x E; — F between locally
convex spaces is hypocontinuous in its second argument if and only if its restrictions
Ble x: E1 X B — F are continuous for all bounded subsets B C E, (see, e.g, [21,
Proposition 16.8]; ¢f. [12, Chap. 111, §5, no. 3, Proposition 4]).

Simple observations concerning hypocontinuous bilinear maps will be useful.

Lemma B.2

(i) Let B: E; X E; — F be a bilinear map between locally convex spaces that is
hypocontinuous in its second argument. Let A: F — H be a continuous linear map to a
locally convex space H. Then A o B: Ey x E; — H is also hypocontinuous in its second
argument.

(ii) Let 5: Ey x E; — F be a bilinear map between locally convex spaces that
is hypocontinuous in its second argument. Let H,, H, be locally convex spaces and
W1: H — Ej, ¢t Hy — E, be continuous linear maps. Then [ o (¢, X 1) :
Hy x Hy — F is also hypocontinuous in its second argument.

(iii) Let E,, E; and F be locally convex spaces. If the topology on F is initial with
respect to a family (A;)ier of linear maps A;: F — F; to locally convex spaces F;, then a
bilinear map [3: E; X E, — F is hypocontinuous in its second argument if and only if
Aj o 8 is hypocontinuous in its second argument, for each i € I.

(iv) Let (E;)icr and (F;) jc; be families of locally convex spaces and let

B: (BE) x (F) —H
i€l j€J
be a bilinear map to a locally convex space H. Then [ is hypocontinuous in its second
argument if and only if 3; ; := B|,xr,;: Ei x Fj — H is hypocontinuous in its second
argument, for all (i, j) € I x J.

(v) IfE,, E; are locally convex spaces and 3: E; X E; — F is a continuous bilinear
map to a Fréchet space F, then there exist continuous linear maps 1, : E; — F; and
Wyt E; — F, to Fréchet spaces Fy, F, and a continuous bilinear map 6: F; x F, — F
such that B = 0 o (Y1 X ).

Proof (i) A o j3 is separately continuous, and A o S|g «p is continuous for each
bounded subset B C E,. Hence A o (3 is hypocontinuous in its second argument (see
Remark B.1).
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(ii) The composition v := S o (¢); X ;) is separately continuous. If B C H, is
bounded, then %, (B) is bounded in E,, entailing that

Yr,xB = BE xw(8) © (Y1 X 12]p)

is continuous. Hence 7 is hypocontinuous in its second argument (using Remark B.1
again).

(iii) If x € E;, then B(x, -): E; — F is continuous if and only if A; o B(x, -) :
E, — F; is continuous for each i € I. Likewise, 3( -, ) is continuous for y € E, if
and only if A; o (-, y) is continuous for each i. If B C E, is bounded, then S|g, x5
is continuous if and only if A; o S|, xp is continuous for each i € I. The assertion
follows with Remark B.1.

(iv) Write E := @, Ei, F := GajeIFf' Fori € I, let \;: E; — E be the usual
embedding. Also, let i1;: F; — F be the embedding for j € J. If 8 is hypocontinuous
in its second argument, then so is 3; ; = B o (A\; x p;), by (ii).

Conversely, assume that each j3; ; is hypocontinuous in its second argument. If
x = (x;)ie; € E, then x € @ielo E; for some finite set I, C I. The linear
map fS(x, -): F — H is continuous on F; for each j € ] (as it coincides with
> icl Bi,j(xi, -) there). Hence B(x, -) is continuous (by the universal property of
the locally convex direct sum). Likewise, 3(-,y): E — H is continuous for each
y € F, and thus 3 is separately continuous.

Let B C @jel F; be a bounded set and U C H be an absolutely convex 0-neigh-
bourhood. Then B C EBje]o F; =: X for some finite subset J; C J [30, IL.6.3]. Let
n be the number of elements of J;. Excluding only trivial cases, we may assume that
n > 1. For j € Jy, let mj: X — F; be the projection onto F;. Then B; := m;(B) is
bounded in F;. For each i € I, using the hypocontinuity of 3; ; we now find a convex
0-neighbourhood V; ; C E; such that 3; ;(V;; x Bj) C %U. Set Vi .= V;

i€h ije
Then 3(V; x Bj) = f3i j(Vi x Bj) C +U and hence, using that B C ien Bi

BV xB)C Y B(Vix B)C S U CU.

i€ €l

Now V' := conv(|J; 1 Vi) is a 0-neighbourhood in E. As every V; is convex, for each
x € V there are a finite set Iy C I, elements x; € V; fori € Iy, andt; > 0 fori € I
with >, ti =1landx =}, tix;. Hence, for each y € B,

Blx,y) = Zfzﬂ(xi,)’) € ZtiU cvu.

i€l i€l

Thus 5(V x B) C U. Hence 5 is hypocontinuous in its second argument.

(v) Let (sy)nen be a sequence of continuous seminorms on F defining its locally
convex vector topology. For each n € N, we then find continuous seminorms P,
on E; and Q, on E; such that s,(8(x,y)) < P,(x)Q,(y) for all x € E;, y € E,.
Then N; := {x € E;: (Vn € N) P,(x) = 0} is a vector subspace of E;, and
N, :={y € E;: (Vn € N) Q,(y) = 0} a vector subspace of E,. We equip E; /N; with
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the vector topology defined by the sequence (p,),en of seminorms given by p,(x +
N1) := P,(x), and let F; be the completion of E; /N;. Likewise, F, denotes the com-
pletion of E; /N,, equipped with the seminorms g, obtained from the Q,.. If x € N;
and y € E,, then s,(5(x,y)) = 0 for each n € N, and thus 5(x, y) = 0. Likewise,
B(x,y) = 0forallx € E; and y € N,. Asa consequence, B: (E;/N;) X (E,/N,) — F,
B(x+ Ny, y + N,) := B(x, y) is a well-defined bilinear map, which is continuous as

sn(B(x+Ni,y +Na)) =s5,(8(x,9) < Pu(x)Qu(y) = pulx + Ni)gu(y + Na).

Since F is complete, B extends to a continuous bilinear map 0: F; x F, — F (cf.
[13, 111, §6, no. 5, Theorem 1]). Let ¢)1 : E; — F; be the composition of the inclusion
map E;/N; — F; and the canonical mapping E; — E;/N,. Define ¢,: E;, — F,
analogously. Then 5 = 6 o (¢ X 1),) indeed. [ |

C Proofs for Sections 2 through 4

Proof of Lemma 2.2 Since \ := ;¢\, is linear and continuous on each E;, it is con-
tinuous (by the universal property of the locally convex direct sum). Moreover, Als
injective, since each ); is injective. To see that A is an embedding,let U C D, E

E be a 0-neighbourhood. By Remark 2.1, there is a continuous seminorm p on E
of the form p(x) = )., pi(x;) with continuous seminorms p; on E;, such that
Bf (0) C U. Since \; is an embedding, there exists a continuous seminorm g; on F;
such that )\fl(B'f"(O)) C BY(0). Then q(y) := > ic14i(yi) defines a continuous
seminorm on @iel F;. We now show that A(E) ﬁB'f(O) - )\(Bf(O)) C A(U) (whence
A(U) is a 0-neighbourhood in A(E) and hence A open onto its image — as required).
In fact, \;(E;) N B¥(0) C \;(BY(0)). Hence

M) NBI0) = {7 € @AE): D aim) <1}

iel

= conv [ J(\(E;) N B¥(0)) C conv [J \;(BY(0)) C )\(Bf(o)) . n
i€l i€l
Proof of Lemma 2.3 If K C M is compact, then F := {j € J: KNK; # D} isa
finite set, and ®(Cy (M, E)) C EB]‘GF Ck, (M, E), identifying the right-hand side with
a topological vector subspace of € ie1Ck, (M, E) in the usual way. Since

@ Ci, (M, E) = [] Ci, (M, E)
JjEF JjEF

as topological vector spaces, the restriction ®x of ® to Ci(M, E) will be continuous
if we can show that all of its components with values in C X; (M, E) are continuous, for
j € F. But these are the multiplication operators Ci (M, E) — CK (M, E),y + hj-7,
whose continuity is well-known (¢f. [19, Proposition 3.10]).

If the h; form a partition of unity, let

S: @ Ck,(M,E) — C/(M, E), (%’)je}'—>27j
j€J Jj€T
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be the summation map, which is linear, and continuous because it is continuous on
each summand. Then So ® = ichr_(M’E). Hence ® has a continuous left inverse and
hence ® is a topological embedding. ]

Proof of Lemma 2.4 Because supp(7y|s) C S N supp(7y) is compact for each v €
CI(M, E), the map ® makes sense, and it is clear that ® is linear.

D is continuous: If K C M is compact, there is a finite set F C P such that K C
UserS. Then ®(Ci(M,E)) C @PgpCL(S, E), whence the restriction &g of ® to
Ck (M, E) will be continuous if we can show that all of its components with values in
CI(S, E) are continuous, for S € F. But these are the restriction maps Ci (M, E) —
CI(S,E), v — 7|s, and hence are continuous, because they can be written as a com-
position of the continuous restriction map Cx(M, E) — Cik4(S, E) (compare [19,
Lemma 3.7]) and the continuous inclusion map Cy¢(S, E) = CL(S, E).

If P is a partition of M into open sets, let W: @SEPCZ(S, E) — CI(M,E) be
the map taking an element 1 := (vs)sep of the left-hand side to the function v €
CI(M, E) defined piecewise via y(x) := 7s(x) for x € S. Then ®(¥(n)) = n, and
thus @ is surjective. Moreover, ¥(®(v)) = v fory € CL(M, E), whence @ is injective.
Hence ® is bijective, with ¥ = ®~!. By the universal property of the locally convex
direct sum, the linear map ¥ will be continuous if its restriction W to the summand
CI(S, E) is continuous, for each S € P. To check this property, it suffices to show
that the restriction Wx of W to Ci (S, E) is continuous for each compact set K C S.
But U is continuous, as it is the composition of the map Ci (S, E) — Cx(M, E) ex-
tending functions by 0 off S (which is known to be continuous)’ and the continuous
inclusion map Ci (M, E) — CL(M, E). |

Proof of Lemma 2.5 As the C¥*‘-property can be tested on the open cover of chart
domains, we may assume that M C R™ is open. The proof is by induction on k. If
k = 0, then v is C* by hypothesis (and ¢ = k + £). Now assume k > 0. Then v
is C'. For each X € J, the map X.7y is C*~! and Xj... X;.Xyis C’forall j € N,
such that j < k— 1 and X; € F4y fori € {1,...,j}. Hence X.yis C**~1, by
induction. Let J; = {X,...,X,} and write E; = 0/0x; for j € {1,...,m}.
Then E; = > a; ;X; with smooth functions a; ; € C>°(M) and thus 0v/0x; =
S i (Xiy) is CK=1 Since 7 is C! and its first order partial derivatives are
CH=1 ] the map v is C**. []

Proof of Lemma 2.6 Step 1. Let U be the set of all open subsets of M which are
diffeomorphic to open subsets of R” (where m is the dimension of M). For each
s € Ng U {oo}, the topology on C*(M, E) is initial with respect to the restriction
maps pj;: C*(M,E) — C*(U,E), v — v|u (see [20, Lemma 4.12]). Taking s = r,
we deduce the following.® If the lemma holds for each space C*(U, E), then © on
C"(M, E) is initial with respect to the maps

(C.1) Dyijy...x v © PU = pU © Dx;...x,-

7See [20, Lemma 4.24] if r > 0; the case r = 0 is elementary.

81f the topology on a space X is initial with respect to maps f;: X — X;, with i € I, and the topology
on X; is initial with respect to maps g; i : X; — X ; to topological spaces X; ;, for j € J;, then the topology
on X is initial with respect to the maps g; ; o f;.
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Taking s = 0, we deduce that T is initial with respect to the maps on the right-hand
side of (C.1). Hence O = T5.

Step 2. In view of Step 1, it only remains to prove the lemma assuming that there exists
a C"-diffeomorphism ¢: M — V onto an open set V. C R™. If X is a smooth vector
field on M, let us write X’ := T¢p o X o ¢! for the corresponding vector field on V.
Define ®;: C*(M,E) — C*(V,E), vy — yo ¢~ ! fors € Ny U {oo}. Ifs € NU {c0},
then @, (X.y) = X'.®,() for each vector field X on M and v € C*(M, E), whence

forall j € {0,...,r}and X; € F; fori € {1,...,j}. Hence, since &y and P, are
isomorphisms of topological vector spaces (cf. [20, Lemma 4.11]), the topology on

.....

Step 3. By Step 2, we may assume that M = V is an open subset of R™. We claim: If

also § = (91,...,G,) is an r-tuple of frames on V, then Tg C T5. Hence also Ty C
Tg (reversing the roles of F and §) and thus T3 = TJg. But it is known that O = Tg
if we choose G; := {8%1, e %} foralli € {1,...,r} (¢f [19, Proposition 4.4]).

Thus T3 = Tg = O, as required.
To establish the claim, recall that the multiplication operators

my: CO(V,E) — C(V,E), my(y):=f-~

are continuous for each f € C°(V) (¢f. [19, Lemma 3.9]). Let F; = {Y;1,...,Yim}-
Then each X € §G; is a linear combination X = Z;(":I aiY; x with coefficients a; €
C>(V). Hence, forall j € {0,...,r} and X; € Gy, ..., X; € Gj, it follows from
the product rule that Dx; .. x, can be written as a sum of operators of the form
myg . 0Dy, v, wherei € {0,...,j} ki,....,k € {1,....,m}, and fi,__x €

.....

,,,,,

Proof of Lemma 2.8 By definition, the topology on Cz°(G, E) is initial with respect
to the inclusion maps C(G,E) — C¥(G,E) with n € Ny. It hence suffices to
prove the lemma for ¢ € Ny. For (i), let F; := JF fori € {1,...,t} (with notation
from Definition 2.7). For the proof of (ii), let F; = Fy fori € {1,...,t}. In ei-
ther case, let F := (F1,...,F,). Because the topology on C%(G, E) is defined by the
seminorms || - ||, it follows with Lemma 2.6 that the topology on Ci (G, E) is de-
fined by the seminorms v — ||X;...X;.7|/p00 with j € {0,...,¢t} and X; € F; for
i€ {1,..., j}. The pointwise maximum of these (for fixed p) is || - [|{, in (i), || - ||,
in (ii), from which the descriptions in (i) and (ii) follow. We now prove the first half
of the final assertion (the second half can be shown analogously). Ifi € {0,...,¢}
and j € {0,...,k} are given, let F = (F,,...,F;) be the t-tuple whose first i en-
tries are Jy, followed by j entries I, followed by t — i — j arbitrary frames. Then
Lemma 2.6 implies that v — || Xi;;...X;.7||o,p is continuous on Ci (G, E), for all

https://doi.org/10.4153/CJM-2012-035-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2012-035-6

Continuity of Convolution of Test Functions on Lie Groups 133

X, € J1, ..., Xij € Fiyj. The maximum of all these seminorms fori < £and j < k
is || - ||£f »» which is therefore continuous. Hence, the topology defined by these semi-
norms is coarser than the given topology. On the other hand, taking F; := Fy for
ie{l,...,¢}andF; = Fyfori € {{+1,...,t}, Lemma 2.6 shows that the topology
on Ci (G, E) is defined by the seminorms v — [|X;...X;.7||p o, for j € {0,...,t},
continuous seminorms p on E and X; € J;. For fixed p, each of the latter seminorms
is bounded by || - ||if »- Hence the topology defined by the || - ||i/1,2 , is also finer than
the given topology, and thus coincides with it. ]

Proof of Lemma 2.10 We discuss only TgL, as T§ can be treated analogously. Since

left translation L,: G — G, Ly(x) := gx is a C'-diffeomorphism, the map
Z: C'(G,E) — C'(G,E), v — TgL('y) = 7 o L, is continuous and linear [19,
Lemma 3.7]. Hence its restriction =, x: Cx(G,E) — C;,IK(G7 E) is also continu-
ous, and so is the map =, .: C/(G,E) — C{(G,E), v T;('y) (as it is linear and
its restriction Zg ¢ to Ci(G, E) is continuous for each K). It is clear that each of the
preceding maps is bijective; the inverse map is given by Z-1, Zg-1 -1 and Eg-1 ,
respectively, and hence is continuous. ]

Proof of Lemma 2.11 If X is a left invariant vector field on G and v € C!(G), then
(X.(mgy)(@) = d(y o Ly)(X(a)) = dyT(Lg)(X(a)) = dyX(ga) = (X.v)(ga) for
a € Gand thus X.(7; (7)) = 7;(X.7). Hence

X . X1 (rg () g-1klloo = 175 X oo Xe M |g=1klloe = 1K) - - - X17[k oo

forall j € {0,...,¢} and X, ..., X; € J| (using the notation from Definition 2.7).
Now take the maximum over all j and Xi,. .., X;. [ |

Proof of Lemma 2.13 The map 16: G — G, x + x~ ' is C". Hence
(776)*3 Cr(Ga E) — Cr(Gv E)7 Y= 79N

is continuous linear [19, Lemma 3.7]. As f: G —]0,00[, f(x) :== Ag(x™!) is C",
we can consider the multiplication operator my: C'(G, E) — C"(G, E), ms(7)(x) :=
f(x)v(x), which is continuous linear (c¢f. [20, Proposition 4.16] if r > 0, and [19,
Lemma 3.9] otherwise). Thus © = m¢ o (1)6)* is continuous linear. Because ® o & =
id, we deduce that ® is an isomorphism of topological vector spaces. As a restriction
of O, the bijection Ok (with inverse O -1) is also an isomorphism of topological
vector spaces. Finally, the linear map ®, is continuous (as its restricions ®x to the
spaces Ci (G, E) are continuous) and hence an isomorphism of topological vector
spaces (as . o &, = id). |

Proof of Lemma 2.14 As @, is linear, it will be continuous on CL(M) = ligC}((M )
if its restriction ®x: Ci. (M) — Ci(M,E) C CL(M, E), v — v to Ci(M) is contin-
uous for each compact subset K C M. Let u: R X E — E be the scalar multiplica-
tion, and let h: M — R be a smooth map such that L := supp(h) is compact and
h|x = 1. Because p is smooth and (0, 0) = 0, the bilinear map C} (M, p): C} (M) X
C/(M,E) =2 Cj(M,R x E) — Ci(E),

(v,m) = po(y,n) =n
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is also smooth and hence continuous [19, Proposition 3.10]. Hence ®x(vy) = yv =
hyv = u(y,hv) is also continuous in 7. To complete the proof, pick A € E’ such
that A(v) = 1. Then CL(M, \): CI(M,E) — CI.(M), v — A o is a continuous
linear map (by [19, Lemma 3.3] and the locally convex direct limit property), and
CiM, \) o @, = idcr(um), because A o (yv) = +. Since P, has a continuous left
inverse, it is a topological embedding. ]

Proof of Lemma 2.15 We first observe that the map ©: E — C"(M, E) takingv € E
to the constant map ©(v): M — E, x — v is continuous. In fact, the linear map
©: E — C%M, E) is continuous, as

(WweE) [0k =I[0Wklpo < p¥)

for each continuous seminorm p on E and compact subset K C M. Since d*(O(v)) =
0 for all k € N with k < r, we see that O is also continuous as a map to C"(M, E).
We now use that C"(M, E) is a topological C"(M)-module under pointwise multipli-
cation. Scalar multiplication p: R X E — E being continuous bilinear and hence
smooth,

C"(M, p): C"(M) x C"(M,E) = C"(M,R x E) — C"(M, E),
(v,m) = o (y,m) =

is also smooth (see [20, Proposition 4.16] if > 0, [19, Lemma 3.9] if r = 0) and
hence continuous. Thus Vg(v,v) = vO(v) = C"(M, u)(y, ©(v)) is a continuous
function of (v, v). [ |

Proof of Lemma 2.16 (i) It is clear from the definition of the topology that any
0-neighbourhood U C Ci (M, E) contains an intersection U; N --- N U, of 0-
neighbourhoods of the form U; := {y € Cx(M,E): ||d"v|,,x < &} withn € N,
gi > 0, ¢; € Ny such that ¢; < r, a continuous seminorm p; on E and a compact
set K; € TUM. Let (Ep7 || - 1|,) be the Banach space associated with the continuous
seminorm p := p; +---+ p, on E, and let A\,: E — Ep be the canonical map.
Then V; := {y € Cx(M,E,): %Al -y, < €i} is an open 0-neighbourhood in
Cr(M, Ep), and hence sois V := V; N --- N V,. Since Ci(M, )\p)_l(V) C U, the
assertion follows.?

(ii) Since M is o-compact, there exists a locally finite C"-partition of unity (h;) jen
on M such that each ; has compact support K; := supp(h;) (take a partition of unity
subordinate to a relatively compact open cover using Theorem 3.3 and Corollary 3.4
in [31, Chapter IT] if r > 0, [15, Theorem 5.1.9] if r = 0). Then ® from Lemma 2.3 is
a topological embedding. Thus, for each 0-neighbourhood U C CIL(M, E), there
exist 0-neighbourhoods U; C C§<j(M, E) such that <I>’1(65]EN Uj) CU. Asa
consequence of (i), each U; contains a set of the form CIQ]_ (M, u]-)_l (V;) for some
Banach space E;, continuous linear map p;: E — Ej, and 0-neighbourhood V; in
CIQ) (M, E;). Then F := HjeN E;is a Fréchet space, and A := (i) jen: E — Fis con-
tinuous linear. Let w;: F — E; be the projection onto the j-th component, and let

9CI’<(M, Ap): Ci(M,E) = Ci(M, EP), 7+ Ap 0 7 is also continuous [19, Lemma 3.3].
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Wj = Cg (M, 7;) "' (V;). Because ¥: CL(M, F) — D jen Ck, (M. F), v = (hj7) jen
is continuous linear (Lemma 2.3), the set P := ¥ —! (@jeN W) is a 0-neighbourhood
in CI(M, F), and hence Q := C/(M, A\)~!(P) is a 0-neighbourhood in C’(M, E) (us-
ing [19, Lemma 4.11]). If v € Q, then k(A o y) € W; for each j € N, and hence
mjo(hj(Aow)) € V. Since mj o (hj(Ao~)) = hj(ujoy) = pjo (hjy), we deduce
that hjy € U; and thus v € U. Thus Q C U, and the assertion follows.

(iii) Let B C CL(M, E) be bounded. As M is locally compact and paracom-
pact, it admits a partition P into o-compact open sets [15, Theorem 5.1.27]. Let
®: CI(M,E) — @DgcpCL(S,E) be as in Lemma 2.4. Then ®(B) is bounded, and
hence ®(B) € @SEPO CI(S,E) for a finite set Py C P. After replacing the S € P,
by their union, we may assume that B C C.(S, E) (as a consequence of Lemma 2.4,
CI(S, E) can be regarded as a topological vector subspace of C.(M, E)). Hence, we
may assume that M is o-compact. Let Ki,Kj, ... be compact sets such that M =
U.2, K, and each K,, C K9, ,. Then C.(M, E) is the locally convex direct limit of
Ck, (M,E) C C,(M,E) C - -, where

Ck (M,E) = {~v €Ci, (ME): (Vxe M\K,) y(x) =0}
isa closed vector subspace of Cy (M, E), and Cy (M, E) induces the given topology
of Ck (M, E), for n € N. Hence B is a bounded set in Cg (M, E) forann € N
[38,11.6.5]. |

Proof of Lemma 3.1 If (v *, 17)(x) # 0, then by (3.1) there is y € supp(n) such that
xy~! € supp(7). Hence x € supp(y)y C supp(7)supp(n). Now assume that K
is compact. Because the integrand in (3.2) is continuous as a map taking (x, y) €
G x supp(7) to F, the continuity of 7y %, 1 follows from Lemma A.2. If M C G is
compact and q a continuous seminorm on F, there are continuous seminorms p;
on E; and p; on E, such that q(b(v,w)) < p,(v)p2(w) forall v € E;, w € E,. For all

x € M, we infer that

g+ () < / 21 () p2 (1)) dAc()
K

< A BVl pr oo Il =101 2,00

Thus

(C.2) (v *p 77)|M||q7oo < /\G(K)H'Y”phoo||77|K*1Msz,OOv

and hence f is continuous.
If L is compact, we have (y#,1)(x) = [, b(v(xz™"), Ag(z~")n(2)) dA(2) by (3.3),
from which continuity of %, follows. Finally, /3 is continuous as || (y*57)|m||g.00 <

A1 mz=1lpr 00 111l p2.00 | A L~ floo- u

Proof of Proposition 3.2 We may assume r,s € Ny and proceed by induction, start-
ing with r = 0. If s = 0 as well, see Lemma 3.1.

Now lets > 0. Ifxy € G,let V C Gbe an open neighbourhood of x; with compact
closure V. If K is compact, set M := K. If K is not compact, then M := VL 1is
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compact. In either case, (v %, 7)(x) = [}, b(v(y),n(y~'x)) dAg(y) forallx € V.
Hence (7 #, )|y is C*, by Lemma A.3, and thus 7y *;, 77 is C°. The lemma also entails
that

Lo (5 m)(x) = / b(v(), dn(T(L,-) (£, () ) dA6(y)
M

— / b(v(y),dn(T(L, ) TL)M)) dAc(y)
G

= / b(v(y), (Lyym(y~'%)) dAc(y) = (7 % (Lyy-m)) (1),
G
using that T(L, 1) T(Ly)(v;) = T(Ly-1 0 Ly)(v1) = T(Ly-1,)(n1) = £y, (y~'x). Since
Ly,ne Cfl (G, E,), we obtain, by induction on s,
(C.3) Ly Ly (yspn) =Ly, - Ly, (Y2 Lyyym) = v %5 (L4, - - Ly,.1).

Now assume that r > 0. If s = 0, then (3.3) enables Lemma A.3 to be applied,'®
and thus v x, 7 € C"(G, F). Moreover, repeating the arguments leading to (C.3) with
right translations, we deduce from (3.3) that

:RW}_ e :RWI’(’Y *p 77) = (:RW]_ e :RWI ry) *p n

IfyisC and nisC*, then L, - -- L, (v *p 1) = v *p (Ly, - - - £y,.77) is C" by the case
s = 0, and (3.4) holds. Thus v *; 1 is C™**, by Lemma 2.5. In view of Lemmas 2.6
and 3.1, the right-hand side of (3.4) is continuous as a map Cy (G, E;) x Ci(G, E;) —

CY% (G,F), for all v;,...,v; and wy,.. .,wj. Hence j3 is continuous as a map to
Ci (G, F), by Lemma 2.6. [ |

Proof of Lemma 3.4 Substituting z = xy and using the left invariance of Haar mea-
sure, we obtain

()" (6) = Aglx Dy 5 M) = Aglx) /G b(+() iy x) dAa(y)
=86 [ b6 nE) deta

- /G b (11 (2), 7 (1) dAal2) = (7" s ) (). .

Proof of Lemma 3.5 (i) With z — g~y and left invariance of ¢, we get

(Ti(y*pm) (%) = (v % m)(gx) = /Gb(’y(y),n(y’lgx)) d\c(y)

— [ brtga) nte 0 deta) = (7)) (0,
G

For x € V as above, we can replace the domain of integration by a compact set again.
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(ii) For x € G, get
) = () = [ (0007 59) dAa()
G
= [0y ) det) = (1 Fm) 0. m

Proof of Lemma 3.6 Let I and J; be as in Definition 2.7. Ifi € {0,...,k}, j €
{0,...,0},Xy,...,X; € Frpand Yy,...,Y; € Jp, then

< X1 XA ooV - ¥yl e A (K)

< Il p, 1117, A (K

by (3.4) and (C.2). All assertions now follow by passage to maxima over suitable 7, j
and the corresponding vector fields. ]

Proof of Proposition 3.7 Let us write 3, for 5.

Step 1: Assume that G is o-compact. Then the topology on C:(G, F) is initial with re-
spect to maps of the form C.(G, );) for certain continuous linear maps \;: F — F; to
Fréchet spaces (Lemma 2.16(ii)). Hence, by Lemma B.2(iii), 3}, will be hypocontin-
uous if we can show that CL(G, \;) o B, = B\0p is hypocontinuous for all i € I.
Thus, we may assume that F is a Fréchet space. Then b = c o (¢ X ;) with
certain continuous linear maps ¢1: E; — F; and ¢,: E;, — F, to Fréchet spaces
and a continuous bilinear map ¢: F; X F, — F (see Lemma B.2(v)). Thus 8, =
Be o (CL(G,¢1) x CiG,1),)), and we need only show that /. is hypocontinuous
(Lemma B.2(ii)). Hence E; and E, are Fréchet spaces, without loss of generality.
Then CI(G, E,) and C(G, E,) are locally convex direct limits of Fréchet spaces and
hence barrelled [38, II.7.1 and 11.7.2], whence 3 will be hypocontinuous if we can
show that it is separately continuous (by [38, II1.5.2]). For fixed n € C(G, E,), let
L := supp(n). The map G(-,n): CX(G, E,) — CL(G,F) being linear, it will be con-
tinuous on C/(G, E;) = hg Ci(G, E,) if we can show that its restriction to C (G, E;)
is continuous for each compact set K C G. But this is the case, since the convolution
map Ci(G, E;) x C;i (G, E;) — Ci, (G, F) C CL(G,F) is continuous, by Lemmas 3.1
and 3.2. By an analogous argument, 3(v, -): C3(G, E,) — C.(G,F) is continuous
for each v € CI(G, E}).

Step 2: Let H C G be a o-compact open subgroup, let G/H := {gH: g € G} be the
set of left cosets and H\G := {Hg: g € G} the set of right cosets. Since G/H is a
partition of G into open sets, we can identify C(G, E;) with @MGG/H CI(M, E,), by
Lemma 2.4. In particular, we can regard C.(M, E;) as a topological vector subspace
of CI(G, E;) (extending functions by 0). Likewise, C{(G, E,) can be identified with
@Dnemc Ci(N, Ez). By Lemma B.2(iv), B will be hypocontinuous if we can show that
its restriction to Sy n: CL(M, E;) x C3(N, E;) — CL(G, F) is hypocontinuous for all
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M € G/H and N € H\G. Write M = mH and N = Hn with suitable m,n € G.
Using Lemma 3.5, we can write

(C4) Bun =TE 1 oTR 0 By o (th x ),

where 75: CI(M, E;) — CL(H,E,), 78: C3(N, E;) — Ci(H, E), T*,: CL(H,F) —
C!(N,F) and Trﬁ_lz CL(N,F) — Ci{(mN,F) C CY(G,F) are the respective transla-
tion maps, which are continuous as restrictions of translation maps on spaces of test
functions on G (as in Lemma 2.10). Since By y: CL(H, E;) x C{(H, E;) — CL(G, F)
is hypocontinuous by Step 1, using Lemma B.2(i) and (ii) we deduce from (C.4) that
also each of the maps Sy v is hypocontinuous. This completes the proof. ]

Proof of Lemma 4.1 As ® is linear, it will be continuous if its restriction ®x to
Mg (X) is continuous for each compact set K C X. By the hypotheses, ®(Mg (X))
is contained in the finite direct sum €P i€k M(A;), whence ®x will be continuous
if we can show that its components with values in M(A;) are continuous, for all
j € Jk. But these are continuous, as they have operator norm < 1 (noting that

luelmeapll = [1l(A) < pl(X) = |u])- ]

Proof of Lemma 4.2 If K C X is compact, there is n € N such that K C K,,. Then
d(Mg (X)) C @j<n Mg, (X), whence the restriction ®x of ® to Mg (X) will be con-
tinuous if we can show that all of its components with values in M, (X) are continu-
ous, for j € {1,...,n}. Butthese take u € Mg(X) to 1x,\k,_, ©, and hence are con-
tinuous, as they have operator norm < 1 (since [ 1x\x,_, © pl| = [1g\k,_, O pl(X) =
(kg © [UDX) = [p[(K; \ Kj—1) < |p[(X) = [[p]].) Thus each @k is con-
tinuous, and hence so is ®. Now consider the map S: P,y Mk, (X) — M(X),
(tn)nen — Zz’;l 4, which is continuous as it is continuous on each summand and
linear. Then S o ® = idw,(x). Thus ® has a continuous left inverse, and hence ® is a
topological embedding. ]

Proof of Lemma 4.3 The linear map ® will be continuous if its restriction ®x to
Ck(X) is continuous for each compact set K C X. The latter holds, since

| @x| = v @ ull = (7 © ) X) =yl < pE)|7]oo-

Likewise, the restriction Wx of ¥ to L (X) is continuous because || T ()| < [|7||z:-
|
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