THETA FUNCTIONS AND ABELIAN VARIETIES
OVER VALUATION FIELDS OF RANK ONE 1.

HISASI MORIKAWA

Introduction. We shall denote by T the Z-module of integral vectors of
dimension 7, by T a symmetric complex matrix with positive definite imaginary
part and by 3 the variable vector. If we put q(m, n) =™ 1M and w(m)

=?*Y-Vm3(m, ne M) the fundamental theta function Eme"":‘m"ﬂ*z“":i‘ms is
nme
expressed in the form: d(glu) = > g(m, m)u(m) as a series in ¢ and =.

Other theta functions in the classic‘;‘fgtjeheory are derived from the fundamental
theta function by translating the origin and making sums and products, so these
theta functions are also expressed in the form: mezg})z emg(m, n”'m)u(m) as
series of ¢ and . Moreover the coefficients in the relations of theta functions
are also expressed in the form: mg&%nqu( m, »~'m) as series in g.

All the pdrts of theory of theta functions are formal except only one point:
The products of theta functions are also theta functions. This property of the
products of theta functions comes out as a result from the positive definiteness
of the imaginary part of 7. The positive definiteness of the imaginary part of
T is equivalent to the condition: |g(m, m)|<1 for m=0.

This situation suggests the possibility of replacement of the field of complex

numbers with a field complete with respect to a valuation of rank one.

§1. Summary and notations.

1.1. We mean by a valuation » of rank one of a field 2 a mapping v of
Q2 into the additive group of real numbers satisfying v(£y) = (&) + () and
v($+79)=min{v(¢), v(x)}(& 250 in Q).

We fix, once for all in the following, an algebraically closed field £ complete
with respect to a (non-trivial) valuation v of rank one. We also choose a field
K containing £ such that 1°K is algebraically closed and 2°K contains infinite

many elements x;, %, . .. such that there exists no relation > aGiei X
i1,..., irER"IZ
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- %7 =0 (a;, . ;,.€ 2, neZ); we call K the univarsal domain of 2. We fix,
once for all in the following, a mapping of K* x Q onto K*: (¢, a) - £%(K*
=K —{0};Q is the field of rational numbers) satisfying 1°£%y%= (&y)%, 2°£°2°
= g%t 3o(2a)b . pab o0 ] pogn_g xe £, 6°1™ " is a primitive m,-th root of
unity (m=p"my; (mo, p)=1) (&, 7€ K", a,6€Q; m,n, myZ). By the Zorn’s
Lemma we can always construct a mapping (£, @) - £* satisfying 1°, ..., 6°
By this mapping £ is maped onto itself.

We denote by Mq a space of r-dimensional rational column vectors {‘(xi,
e e, %)%, ..., 2, €Q) and denote by M the Z-module of all the integral
column vectors in Mq. For a r-square rational matrix « we mean by at the
Z-module {am|m e M}.

In the following we shall fix once for all a positive definite symmetric in-
tegral matrix S of degree 7 and an involutive Q-algebra Aq in the full matrix
ring Endg (Mg) with the involution *: a* =S‘aS™’, where we assume that Ag
contains the identity matrix. We denote by A the Z-algebfa consisting of all
the elements « such that «a ST'McS™'M. An element a in Ag is called sym-
metric if a®* =« and a symmetric element 8 is called positive if all the charac-

teristic roots of B are real positive.

We choose a particular Z-base (my, ..., m,) of S”'M such that Sm, =*(1, 0,
e 0, ..., Sm="0,...,0,1; (m....,m) is also a Q-base of Mq.
We write each vector m in Mg with components x,(n), . . ., %-(m) with respect

to (my, ..., m,) as follows: m= > x(m)m;.
i=1

1.2. A function ¥ on Mg valued in K* is said multiplicative if 7 satisfies
Z(m+1n) =7(m)X(n) and a function ¢ on Mg Mg is said bimultiplicative if
glm=+m, n4+n") =¢(m, n)e(m’, n)g(m, w)o(w/, ') (m, w/, n, ' €Mg). If ¢(m,
n) =¢(n, m), ¢ is called symmetric. If a symmetric ¢ has values in 2* and
v»(v(m, m)) >0 for every non-zero m in Mg, we call ¢ positive symmetric. All
the multiplicative functions on Mg valued in K* form a commutative group in
the natural way; We denote it by €(K) and denote by E(L) the subgroup of
€(K) consisting of all the multiplicative functions on Mg valued in a subfield
L of K. A multiplicative function is uniquely determined by the system of

values {/(m,), ..., %(in,)), because £%(¢{ € K*, ac Q) are definite elements in

r

Pr——
2%. So we may identify (L) with the direct product L* X - - - x L*. Similarly
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a symmetric bimultiplicative function ¢ on Mg valued in 2° is also uniquely
determined by ¢(m;, ), (1<i<j<7r).

The full matrix ring Endg (Mg) operates on G(K) in the following way:
7%(m) = Z(am), (e € Endg (M), 7 G(K), meMq).

Using multiplicative functions, we can characterize the universal domain K
by the following conditions: 1°K is an algebraic closed field containing £ and
2° there exists infinite many elements wi;, w:, ... in &(K) such that there

exists no non-trivial relation Y Cn,
Myyenn, meEr~19R

€Q; heZ). Wesay wy, ..., w in E(K) to be independent over a subfield

.....

nth(m) e wn) =0 (e,

L of K if there exists no non-trivial relation . mzezrlmz cny,. () - - wilng)
=0 (en,..meL; heZ). If w in G(K) satisfies no non-trivial relation:
ns?__.: cnw(n) =0 (ceL; heZ), then we call w a variable element in €&(K)
overm};.

1.3. We choose a positive symmetric bimultiplicative function g on Mg
valued in 2°; Namely we choose a system g(m;, m;) (1<7<j<7) of elements
in 2 such that (o(g(m;, m;))) is a positive definite real matrix. We denote by

g(m) (meMg) the multiplicative functions defined by
(1) g(m) (n) = g(m, M) (neMy);
and we denote by 1(m)(m&Mq) the multiplicative function defined by

(2) 1(m) () = 1(m, n) = 1M,

Let uy, ..., ur be indeterminates over K. We define a multiplicative func-
tion # on Mg as follows:

(3) wu(m) = Izl (m= D x(m)m e Mg).
‘=1 1=1

We shall now define theta functions and abelian functions :

Definition 1. A matrix « in End, (S™'M) is called a multiplication of a
period (S7%, @) if g(a™m, n) =q(m, an) for m, n Mo, where a* = S‘a S All
the multiplications of (S, ¢) form a Z-algebra; We denote it by A(S7Y, ¢).

Definition 2. Let a be a positive symmetric element in A(S™!, ¢) and 7

be a multiplicative function on Mg valued in K. A formal power series ¢(z)

= me};__‘,lwcm w(m) in ..., %, wi', ..., u; ' is called a theta function of type
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(@, ¥) with period (S7% q), if ¢(u) satisfies
(4) @lg(mn) = g(m, am) ulam) Z(am)'¢(n), (me ST'M),

where g(m) u means the product of multiplicative functions g(m) and = If
all the coefficients ¢y (me S™'ME) belong to a field L, we call ¢(x) a theta
function with coefficients in L.

Definition 3. The quotient 7(u) = ¢(u)/¢(u) of theta functions ©(u), ¢ (%)
of the same type (7, ¥) with period (S7%, g) is called an abelian function with
period (S7%, g), where we restrict z in the positine integers (See Proposition 12).
If we can choose ¢(%) and ¢(#) whose coefficients belong to L, we call /(%)
an abelian function with coeflicients in L.

Since we shall see, in the following, that products of theta functions are
also theta functions, the quotient ¢(#)/¢(#) in Definition 3 has definite meaning.

In the present paper we shall prove the following results:

1° We denote by Mo(a, #) the vector space of theta functions of type
(@, 7) with coefficients in 2. Then we have

dimgMo(e, X) =det a for X € &(Q).

2° A theta function in Ma(a, Z) converges at every point u;=¢&1, . .., ur
=&, (5, ..., &%)

3° All the abelian functions with the period (S7% g¢) and with coefficients
in 2 form a field Kj,, such that K, ,/2 is separably and finitely generated.

4° A period (S7%, q) uniquely determines an abelian variety As, defined
over 2 such that the law of composition of As,, is induced from the composi-
tion in €(K) and the field of rational functions on As, over £ is canonically
isomorphic to Kj,g.

5° There exists a system of l-adic (resp. p-adic) coordinates of As, and
an isomorphism r of A(S”', ¢) into the ring of endomorphisms End; (As,4) of
Asg 4 such that

S—l
Mi(r(a)) = (S"‘ 0 )

0 SaS™!
and, if p=0,

My(r(a)) =SaS™! la e AST, @),
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where M (resp. M,) is the l-adic (resp. p-adic) representation of End (As,q)
by the system of l-adic (resp. p-adic) coordinates.

6° Let 44 be the commutor algebra of Aq in Endq (Mgq), i.e. the Q-subal-
gebra {8 Endq (Mg) |aB = Ba for every « in g}. Then A has also the in-
volution *: a*=S'aS™". If 4§ is generated by symmetric elements in 43, then
there exists a positive symmetric bimultiplicative function g on Mg x WMq valued
in 27 such that the ring of multiplications N(S7%, ¢) of (S7’, ¢) coincides with A.

§2. Formal theta functions.

2.1. Let £ be a symbolic symmetric bimultiplicative function on Mg x Mq,

ie. Q is a symbol satisfying the following relations :

(5) Q(m+n, m' +n') =Q(m, m)QA(m, v)Q(n, m') Q(n, n')
(6) Q(m, n) =L, m), (m, m, n, n'efRQ).

Furthermore we assume

(7) Q(a™m, n) =Q(m, an)

(m, neMq; a € ay.

We call © the symbolic bimultiplicative function associated with Sand 4. Later
we shall specialize Q to a positive symmetric bimultiplicative function ¢ valued
in 2%,

We define the multiplicative function Q(m) by Q(m) (1) = Q(m, n)% (m, n
e My).

The formal theta function is defined by

(8) #(Qluw)= > Q(m, m)u(m).
mes-IR
For vectors 8, ) in Mg we shall define the formal theta function with charac-
teristic [, ] as follows:
(9 908, H1(Q]w)= S Q(m+g m+8)u(m+8)1(Hh, m+9).
mes—yp
Then, by simple culculation, we have the following formulae :

(10) I8, H1(Q2) = F(D1T(@) 1(H)2e) (8, 8) () 1(H, 9),

(1) 909, HUTIT(m) 1n)u)
=20m, ) a(m) TN e, W) 1), —m)Ae, HI(Q %), (m, ne STIMY,
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(12) 06, HUQ Q@) 1(HN %)
=9[a+8, §+51(Q] %) O, ) u(e) 11, H+H) 7L (@, i € M),

13) o+ m, h+nl(Qle) =90a, H1(Qlx)1(g, n), (m, ne ST'M),
(14) 3¢, 1 (D) =3[ -0, - H1(Dln).

The formal theta function of order a (« is a positive symmetric element

in 4) with characteristic [, §J is defined as follows:

15) 306, 91 (2w

= > Q(m+6, a(m+8)) u(a(m+6))1(k, a(m+8)).
mes-ip

Then, by simple calculation, we have

(16) J.[8, H1(QIQ(m) 1(n)u)
=2(m, am) u(am)'1(n, a8)1(h), —am)3La, HI(Q %)
(m, ne ST'M).

For symbolic Q0 we shall define a theta function of type (a, ¥) as a power
series ¢(u) =mssz_}x§mcm w(m) in w;, ..., u, ui', ..., u;' with coefficients in
a field such that ¢(Q(m)x) = Q(m, am)  ulam) % (am) ¢(x) (me ST'M).

We denote by {8:=0, 8, ..., 4oy} a system of representatives of
a”'STIM/STIM in a”'ST'M, where d(a) =deta. We shall now prove that
{Fa[8;, 01(Q|7n), . . ., Fu[Ba(), 01(Q|Zu)} form a base of theta functions of
type (a, 7).

ProrosiTioN 1. Let ¢(u) = . ?imcmu(m) be a formal theta function of type
<

(a, X). Then we have

(17) Q(m+8, alm+8)) " Z(a(m+6)) " caanegy
=0(8;, a8) 7 7(a8)  cag, (MESTM),

d(a)

(18) ¢(u) = Z‘,ID(Q,', a8) " 7 (a8) " cag, 3aL8i, 01D Zu).

Proof. For any element n in ST we have

o(QMu)= > cemQ(n, m)*u(m)
meSiop

ale)
=21 3 caanegy O, a(m+6,)) ula(m+6))
1=1 MMESYR
d(a)

= QM an) A (a) Tulan) S S cameg) ula(m46)).
i=1 mEST19p
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This shows
DU’I, an)'ll(an)“lca(m.ng,.-, = Q(n, a(m +Qi‘))2(:a(m FGi) e
Putting m =0, we have
T, am " (an) Feamigy = D0, @8)’ Cacniegy-
Since a* = a and Qla™m, n) = T(m, an), it follows

Cln+a;, a(n+8)) " Z(aln+68)) eamegy
=Q(n, an) ' Qn, ad) Q8 a8) " L (an) T 2 (a8) T Canrgy
= 0(8;, ad) L (a8)  Cag,.

This implies

da(e)

e(w)= > cmum(m) =22 > Cla(m+8), m+8)Z(a(m+6;))
meS-yp L

i=1 1MesS-

(9, a®)  (a8)  eagula(m 4+ 8))
d(a)

= 2 D(gxy agi)_IZ(agi)—lcagiﬁa[gi, 0](‘:%2“)-
i=1

ProrosiTiON 2. 3,08, 0J(Tlu), ..., 384w, 01(Q!u) are linearly in-

dependent as series in u.

Proof. Since for i% j there exists no element m in S™'M satisfying u(a ;)
=wu(algj+m)). This shows that #.[6. 01J(Qlu), ..., Jl8aw, 01(Qlu) are

linearly independent as series in .
Remark. This Proposition is also true for any specialization of Q.

ProrosiTioN 3. Let « and B be positive symmetric elements of A. If a8,
B8'eSTIR, then 3,08, 01(Q| 7u) 3:(8', 01(Q| L' u) is a formal theta function of
type (a+ B, 15* V7 D™y siven by the series:

> { 3 Qm+e an+9))QE (in—aln+49)),
-2 -3¢’ +MEaS~IYR +3STIYR  neS'YR

m—a(n+8)) Zaln+6)) ' (n—aln+8))}a(m).

This is an immediate consequence from the expansions of #.[8, 01(Q|#«)

and #[¢, 01(Qlx). This proposition is also true for any specialization £’ of
£ provided that

g D8 a8 DB — &£ 9)), m =l +9))
" (@ +8)) 2'(m—a(n+9))
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has definite meaning.

By virtue of (18) and Proposition 3 we have

ProposiTioN 4. If ¢(2) and ¢(u) are formal theta functions of type (a, 7)

and (8, 7). respactively, then <(u)y(u) is a formal thela function of type
(a+ B, 727 e,

CoroLLARY. If ¢i(u), . .., ¢(u) are formal theta functions of type (a, 7),
t . .
then T1¢i(u) is a formal theta function of type (ta, 7).
i=1

ProrosiTiON 5. If n is a positive integer greater than one, then there exists
no homogeneous relations of 9,00, 01(Q|u), .[n 'my, 01(Qlu), . . ., FLn  m,,
0] (2 u) as functions in u.

Proof. We shall denote briefly ¢o(u)=9,00, 01(Q|%), ¢i(u) = I.[n " m;
0J(Q)u)(1<i<7). Assume, for a moment, there exists a non-trivial homo-
geneous relation of degree d

t
(*) EI“MS”:“ Cee =0,
V=

where we may assume that the degree d is the lowest value of the possible
case and the number of terms ¢ is the least value provided that the degree is

d. From the expansions of ¢; (0< i< 7), each term of ¢} - - - ¢}'" is of the
following form:

Ctmnu(ngmb‘“+ ’Eﬂlvjmi) (Pes'Mm).

Therefore the degree of #; in each term of ¢ - - - ¢} is of the following
form:

(%) n;;.iyzxi(f)(l’) + S hidi =m0 uxi(BP) + L.
= J=1 =0
If i %45 (mod #) for some » and 7, the number of terms in

Ay . Ave
2 an1%e S Or =0
A=Ay moln

=i=r

is smaller than ¢. This contradicts the assumption on ¢. Hence A,;=24,.; mod »
for every v and »'. Since the degree d is lowest, 4i(1=1,2,...,7; v=1, 2,

..., t) must be congruent to zero mod n. From this it follows that A.w=4v0
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mod#n (v, »'=1,2,...,¢t). We denote by f the positive integer such that
0<f<n and A,w+/=0 mod n. Putting ¢i(u) =¢7(u) (1=0,1,2,...,7), we
have a relation of ¢, . .., ¢ of degree d' = (d+f)n""

.
(k%) Shapgh™ -+ ¢ 9P =0, where
v=1

o =n"Aw+1), ti=n"tA <i<r).

Then the degree d' is the lowest of the possible case and the number of terms
t is the least one. Moreover, by virtue of (*+), the degree of u; in each term

of gbv « « « ¢ is of the form

n(n g})#lei(f)u))) + w8 = ﬂQE,Ltulxi(bm) + 7 i

Therefore, by the same reason as for {i.;}, we have pu+f =pu= =2, =0
mod » with /' satisfying 0< f/<nandd>d = (d+/)n"'>d" = (d +/)n"". This
shows that the precess of generating {u.;} from {1.;} does not stop. It is,

however, impossible, for the degree d of (*) is finite. This is a contradiction.

2.2. Let X, ..., 7: be multiplicative functions on Mg. We shall denote
by ZLIQ, X1, . . ., %11 the Z-algebra generated by Q(m, n), Z(m), (m, n€ Mgy)

and series
ueSZ.-_‘IEmD(n+ g an+)0B ' m—an+9), m—a(i+9)) Z(a(n+8))
Z7(m—a(n+9))
(a, B: positive symmetric elements in 4; 8, me Mg;
¥, 7'+ multiplicative functions #i* + « - 2 (r1, . . ., 1€ 4g)).

We denote by Q((, X1, . . ., Xt)) the quotient field of Z[[Q, 7y, . .., Z11

ProrosiTion 6. Let n be a positive integer greater than one and 7 be a

multiplicative function on Mqg. Put
@o(w) = H Q1" ) 3,00, 01(D ),
¢1(w) =3 QL w) Ialn ™ my, 01(2D ), ...,
O (u) =3 QI " w) Saln"'my, 01(D ] u)
(They are theta functions of type (n+1, Z)). Then there exists a positive

integer M(n) such that for any positive integer m and any theta function ¢ of

type (m, 7) with coefficients in Q((2, X)) there exists a homogeneous relation

https://doi.org/10.1017/50027763000023631 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000023631

10 HISASI MORIKAWA

in ¢, Co, ..., 0 at most of degree M(n) with coefficients in ZL[Q, X11 which
is non-trivial on ¢.

Proof. By virtue of Propositions 1 and 3, there exists a non-zero element
¢ in Z[[Q, ¥1] such that the coefficients of #(m) in &¢(%) (me S™'M) belong
to Z[[Q, 7]]. Since ¢ is a theta function of type (m, /) with coefficients in
Q((9, %)), putting ¢ = ¢""", we get a theta function ¢ of type ((n+1)m, X).
Since the number of products of degree x of ¢, ..., ¢, equals to (x—i;r), the
number of products of ¢, ¢, ..., ¢, that are theta functions of type (x(zn

+ 1)m, Z) equals to

(xmr+r)+((x—1f)m+r)+ B
-l ) (e ) e )
(x-14 %)+ -+ 2}

If x> (n+1) 7!, this number is greater than
() ™M+ (x=1)"+ -+« +(x=(n+1)"7)7).

On the other hand, by virtue of Propositions 1 and 2, the number of linearly
independent theta functions of type (x(n+1)m, ¥) equals to 2 (n+ 1) m".
Since the reading term of

A+ E=D"+ - F =+ = (n+1)x" is &,
there exists a positive integer M such that
M4+M~-14 - + (M=(n+1)7"2) -2 (n+1)"M >0.
Hence we have

(Mm+r)+<(M—1)m+r>+ .

. 7 fv r
” ” +1>M (n+1)"m

for every m>0 in Z. This shows that there exists a non-trivial relation of
degree M and M is independent of m. From Proposition 5, ¢, ..., ¢, are
inderendent, hence the relation is non-trivial on ¢. Since all the coefficients
belong to Q((Q, X)), the coefficients in the relation can be chosen in Z[[Q, #1]1.
Therefore, putting M(n) = (n+ 1)M, we get M(»n) in the Proposition.
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CoroLLARY. Let ©(u) and ¢{u) be theta function of type (m, X) with co-
efficients in QUQ, 1)). Then there exists a homogeneous relation in ¢/P, P/ Pe,
., 9]¢y at most of degree M(n)* which is non-trivial on ¢/¢.

Proof. By virtue of Proposition 6,

[QUL, 1)) (@/¢, @1/, . . ., €r/P0) :
QUD, 1) (1)@, - . ., ©2/0)1< M(n)
and

QU 1)) (@/90, ©/Pay <« oy Crl¢0):

QUQ, 1)) (¢/¢y, . .., ¢/¢0)]< M(n).
Hence

[Q((D) Z))(Sp/qb) 901/90(); « o ey Gar/‘ﬁu):

QUL, 1) e/, . . ., ‘Pr/%)]SM(n)z.

ProrosiTioN 7. Let ¢, ..., $rs1 be theta functions of type (a, 7) with
coefficients in Q((Q, X)). Then there exists a non-trivial homogeneous relation
n Qo ..., Ore1 with coefficients in Q((Q, 7)).

Proof. The number of products of degree x of ¢, ..., ¢+ equals to
(x ':_:1" 1) and the type of such products is (xa, 7). On the other hand the

number of linearly independent formal theta functions of type (x«, /) equals

x+r+1) is ((z+1)1)'%™", we have

r T 4
to #” deta. Since the reading term of ( ral

(M +7r+1
r+1
of a non-trivial relation of ¢, ..., ¢,+1. Since the coefficients in the products
of ¢y, ..., ¢-+1 belong to Q((Q, ¥)), the coefficients in the relation can be

chosen in Z[[Q, 711

>>M’ det « for a sufficiently large M. This implies the existence

§3. Theta functions and abelian functions with coefficients in 2.

3.1. In the following we denote by g the positive symmetric bimultiplicative
function on Mg x Mg valued in £* defined in §1.

All the results in the previous section are valid for the replacement of the
symbol Q with g, if we prove the convergence of the coefficients of the products
of two theta functions J.[8, 01(g|X%) and 3,[¢', 01(ql|X'u).

By the definition of A(S™’, q) we know that A(S™), ¢) ®2Q has the involu-
tion *: a®=S’« S and by the positive definiteness of S we have a®a>0 for
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a0 in AST, @).

LemMMA 1. If a is @ positive symmetric element in U(S™’, g), then v(q(m,
am))>0 for m=0.

Proof. Since a is positive symmetric, there exist a positive integer ¢ and

h
By ..., Brin A(S™ ,g) such that ca = Zlﬁi* B2  From this follows cv(g(m,

h h
am)) =v(g(m, cam)) = v(q(m, (éﬁi*ﬁi)m) = v({Ilq(m, Bi*gim)) = ?;lv(q(ﬁim,
pgim)). On the other hand (v(g(m;, m;))) is positive definite, hence v (g(m, m))
h
>0 for m=0. Therefore v(g(m, am)) =c > v(g(B:m, f;m))>0 for m=0.
£=1

LemMma 2. Let ¢(u) be a theta function of type (a, X) with coefficients in
2 (a is a positive symmetric element in A(S™Y, q)). Then % has values in 2

on Mq.
Proof. Putting ¢(u) = nESE imclnu(m) with e¢m in £, by virtue of (17), we
1 —1
have

Y(am) = X(a(m+8))7(ag) ™
=q(m+6, a(m+8))""q(8, a®csm+g cag, (af, meS™M).

This shows that ?(am) (meS™'M) belong to 2. On the other hand « is posi-
tive, hence for any » in Mq there exists a positive integer » such that ineS™'M;
Namely X(n)*=X(yn) belongs to 2*. Since £ is algebraically closed, ¥(i)
belongs to 2.

ProprosiTiON 8. Let X, X' be multiplicative functions on Mq valued in Q°
and a, B be positive symmetric elements in W(S™', q). Then the series:
neg_}lsmq(n+g, a(n+8))g(B (m—an+8)), m—aln+08))X(aln+8) 2 (m—a(n

+8)) converges for every 8, m in Mq.
Proof. We shall denote by I(n) the n-term
gn+9, a(n+8))g(B7 (m—a(n+48)), m—a(n+8))Z(an+8)) 2'(m —aln+9)).

Since it is sufficient to prove for non-archimedean case, it is sufficient to show
that for any positive integer N, there exists a positive integer M such that, if
lexi(ﬁ)l >M then v(I(n))>N. Put a;=uviq(in;, am;) and b;=v(qg(  am;,

am;)). Then, since « and B are positive symmetric elements in A(S™}, g) by

1 See [1] p. 482,
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virtue of Lemma 1, the symmetric matrices (a;;) and (&;;) are positive definite.
The principal part (as a polynomial in % (n), ..., %(n)) of v(I(n) is 2 (aij
+ bi7) xi(n) x;(n), hence, by the positive definiteness of the matrix (aij+ bij) we
see that for any positive integer NV there exists a positive integer M such that
if glxi(n)l > M, then v(I(n))>N.

ProrosiTION 9. .08, 0J(gl#) (1<i< deta) converges for every multi-

plicative function X on Mg valued in 2.

Proof. In the complex case, this is classically known, so it is sufficient to

prove for non-archimedean ». Let us culculate the value:

v(gm+8, a(m+8)) Z(a(m+8))) = ‘i}lxi(m)xj(m)v(q(mi, am;))
+ éx,-(m)(v(q(mi, a8) +v(q(8, am;)) + v(Z(am;)))
+ v(g(8, a8)) + v(X(ad)).

By virtue of Lemma 1, (v(g(m;, am;))) is positive definite, hence, for any
positive integer N, there exists a positive integer M such that v(g(m+8, a(m
+8)> N for every m in SM satistying 3|z(m)|>M This proves the
convergence of 9,08, 01(q]#%). :

By Proposition 8, Lemma 2 and (18), we have

Prorosition 10. Let ¢(u) be a theta function of type (a, /) with coefficients
in Q (with the period (S7%, q)). Then, ¢(&) converges for every multiplicative

Junction & valued in 2.

3.2. By virtue of Proposition 4, the product of abelian functions with
coefficients in £ and with period (S7), q) is also an abelian function of the
same type. Obviously the differences, the sums and the inverses of abelian
functions are also abelian functions. Hence all the abelian functions with
coefficients in £ and with period (S7%, g) form a field Ks, over 2. We shall

now prove the following theorem :

TaeoreM 1. Kj, 4 is a finitely and separably generated extension of dimension
r over L.

Proof. Putting Fni(u) = 3.[n""m;, 0](qlu)/3.00, 01(qlu) (n>1; 1<i<r),
we shall prove that (if p=x0) Ks o/ 2(Fpi(#), . .., Fer(u)) is a finite separable

https://doi.org/10.1017/50027763000023631 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000023631

14 HISASI MORIKAWA

algebraic extension and Ks,,/2(Fn1 (%), ..., Far(w)) is a finite algebraic
extension. It is'sufficient to prove the former assertion, because, by virtue of
Proposition 5, Fm(#), . .., Fu(u) are algebraically independent over 2.  First
‘assume, for a moment, Kj,, is not separable over 2(Fp:(#), . . ., Fpr(%)). Then

there exist an element f in Ks, and an irreducible polynomial >la; X’ with
i=0

coefficients in 2(Fp1, . . ., Fpr) such that ga;fpi =(0. Let ¢ and ¢ be theta
functions such that f =¢/¢. Then the relation induces a homogeneous relation
of ¢, ¢, 9,00, 01, Fp[p™"m;, 0] (1< i< 7) with coefficients in 2:

(%) libl;,-‘,...,-,ﬂp[o, 01 - - - [ p 7 m,, 0re?g b2 =,
=0

where we may assume that the degree d=gz’1 on #,[0, 0], #,Lp ' my, 0],
.o, Fs[p'm,, 0] in the relation is the lowest_ of the possible cases and the
number of terms is also the least value provided that the degree on ¢ is d.
Since the degree of #; in each term of L p7 m;, 01 is 0; modulo p (1< 4,7 <7)
and the degree #; in each term 9,00, 0], ¢, ¢"*P? is zero modulo p. This
shows the degree of u; in each term of #,[0, 013, [p ™ my, 01" - - - FLp " m,,
01r¢' ™2 is §; modulo p. This means that the degree of ¥p[p"m;, 0] in

each term of (*) is congruent to the same value, say‘ 4j, modulo p, for otherwise

23 >3 brijein L0, 0F° - - - Slp7 m,, 0Yrei?gn bt =

=iy

Jr=iy
is a shorter relation than (*). If ;%0 modp, we can get a lower relation. So
;=0 mod p and consequently all degree 7 of [0, 0]in (*) are also congruent
to the same value, say A, modulo p. Let 2 be the integer 0 < 2 <p, such that
h+2=0 mod p. Then, putting u=p""(do+h), 1j=20""4}, Gliug-ur = bigerrip, WE
have I,S;,‘l%al;,,n...g,ﬂp[o, 01 d,Lp~ my, 04 - - - Bl p™ m,, 0T ¢'¢" PP = 0. This
shows f =¢/¢ is separable over 2(Fps, ..., Fp). This is a contradiction.
Namely Ks o/ 2(Fp, . . ., Fp,) is separable. On the other hand, by virtue of
Proposition 6, every element f in Ky, , is of bounded degree over 2(Fpi, .. .,
Fpr) (p%0), hence K, o/ 2(Fpi, ..., Fpr) is an algebraic simple extension of
finite degree. Since by virtue of Corollary of Proposition 6, 2(Fn1, . .., Fnr,
Fpi, o ooy Fpy)/2(Fny, ..., Fny) is a finite algebraic extension, Kg, ,/2(Fns,

..., Fy1) is also a finite algebraic extension. Since every element in Ks,, is
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a bounded degree over 2(Fni, ..., Fur), if p%0, Ksq is a finite algebraic
extension of Q(Fyy, ..., Fn). This completes the proof of Theorem 1.

3.3. We shall now prove the Addition Theorem of abelian functions with
coefficients in 2.

Lemma 3. Let f(u) be a non-zero abelian function in Ks,. Then there
exists & in €(R) such that f(£)=0.

Proof. By virtue of the definition of abelian function there exist theta
functions ¢ and ¢ of some type (%, Z) with coefficients in £ such that f =¢/¢.

Since ¢ and ¢ are power series in #i, ..., %, ', ..., Ur, we may consider
r
i,

them as analytic functions on 2% x -+ - X 2. So the quotient f is not always
zero on 2% x - -+ X2%,

We call an element » in 6(K) to be variable over a subfield L in K if
there exists no non-trivial relations me?ﬂg}gcmwm]) =0 with coefficients cm(in

€x7'M) in L. Then simalarly as Lemma 3 we have.

LemMma 3. Let w be a multiplicative function on Mq variable over 2 and let
f(u) be a non-zero abelian function in 2((w))Ks .. Then there exists a multi-
Dlicative function £ in €(2) such that f(£) 0.

LemMma 4. Let w be a multiplicative function on Mq variable over 2. Let
Sy« - <, f be abelian functions in Ks 4 (resp. 2((w))Ks,q) linearly independent
over 2 (resp. 2((w))). Then there exist multiplicative functions &1, . .., & in
C(2) such that

det (fi(£7)) 0.

Proof. We shall prove the Lemma by the induction on N. By virtue of
Lemma 3 (resp. Lemma 3'), for N=1 the Lemma is true. If we assume the

Lemma for N -1 we have multiplicative functions &, ..., &y-1 in €(2) such
that
S8, oo, fily-1)
det x 0.
fN-—l(sl)y e e ey fN—l(eN—l)
Since fi, . . , fx are linearly independent over 2 (resp. 2((w)), we have

( fi(fl), e .0y f1(51~'—1), fx(u)
det ):9;
fN(f]), c ey fN(E‘\'—x), fN(u)
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Hence, from Lemma 3 (resp. Lemma 3'), there exists a multiplicative function

&y in €(2) such that &, . .., &y satisfying the condition of the Lemma.

LemMma 5. Let ¢ and ¢ be theta functions of type (m, Xs) with coefficients
in Q and ) be a multiplicative function on Mq. Put f(u) = ¢(Lu)/¢(Xu). Then
f belongs to 2((X))Ks,q.

Proof. 1t is sufficient to prove for variable X. We shall denote by K, the
field 2(Fp1, ..., Fpr) for px0 and 2(Fa1, ..., Fn) for p=0, where Fp;,
Fnj (1<4, j<7) are the quotients of the theta functions in Theorem 1. Then,
by virtue of Theorem 1, K, ,/K, is a separable extension of finite degree.
Assume 2((%))Ks, does not contain f and denote by » the degree of f over
2(())Ksq. Let 1y, ..., % be independent generic specializations of X over
£ and fi, . .., ft be the images of f by the specializations. First we shall
prove that {f&--- fit|{1<ii<v—1; 1<I<7r} are independent over 2((Xi

.., X)) Ks,. Assume there exists a non-trivial relation

() @i Uy, IS fi=0
0511.5-\'-1
1=ip=y-1
with coefficients in (7, . .., Z¢))Ks 4 where we may assume (*) is non-

trivial on f. Specializing X, . . . , X: to suitable multiplicative functions on Mq
valued in £* such that the specialized relation of (*) is non-trivial on f, we
have a contradiction with [2((X))Ks,o(f) : 2((Z))Ks,q]=v». This proves

[Q((er LA ) xt))KQ,q(ﬁy LY y.ﬁ) :Q((Zly o e oy Xt))Ks,q]=P‘-
This contradicts Proposition 6 for sufficiently large t.

Tueorem 2. (The Addition Theorem). Let fi, ..., fv be generators of
Ks,q over 2 and f be any abelian function in Ks,  Then fluw) belongs to
Q0fiw), . .., fx(w), filw), . .., fx(w)) and f(u™') belongs to 2(fi(u), . ..,
Ia(w)).

Proof. Let w be a multiplicative function on Mg and put guwlu) = f(wn).
Then, by virtue of Lemma 5, gw(#) belongs to 2((w))Ks,,. Therefore there
exist abelian functions ¢;, . .., ¢x in Kj 4 linearlly independent over 2((w)))

and elements bi(w), . . ., dbu(w), cilw), . .., cu(w) in 2((w)) such that

(%) guwlu) = flwn) = gb;(w) <ﬁ,~(u)/il}c;(w) ¢i(n).
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We may assume that the number M of {¢i(u)} is the least value of possible
cases and, after changing the indices, we may assume cy(w) =1. From Lemma
4, there exist multiplicative functions &, ..., &x on Mg valued in 2° such
that det (¢;(&;)) %0. After translating ¢, . .., ¢x by the matrix (¢:i(§;)), we
may assume that (¢;(&;)) is the unit matrix. Hence by (*), we have

bi(w) = f(&iw) cilw)

bu(w) = f(Euw),
and

(k%) %}l{(f(wu) - f&w)) o) cilw)) + (f(wn) — f(Exw)) Pu(u) =0.

{(flwu) — F(2;iw))¢i(u), (1<i<M-1)} are linearly independent over 2, for,
otherwise ]:'E:;ld,-(f(wu) — fEiw)) i) =0, flwu)= Igd,'f(E;w)%(u)/t%ld;%(u)
and this contradicts the assumption on M. Therefore by virtue of Lemma 4,
we have M — 1 multiplicative functions 7i, . . ., 7u-1 on Mq valued in 2° such
that det (¢:(9;)) %0, where ¢:(a) = (f(wu)) — f(&iw)) ¢:(u). Hence, from (*%*),
cilw) (1< i< M~1) are rational function of (f(w7;) — f(&iw)) ¢i(n) (1<i< M;
1<j<M-1). This shows that b;(w), cj(w)(1<i<M; 1<j<M-1) are
abelian functions in 2(fi(w), ..., falw)), because f(w=x), f(&w) € 2(fi(w),
ceos folw)) (1<d, j<M). This shows f(wu) e 2(fi(n), ..., fr(n), frlw),

.» /a(w)). By virtue of (18) any theta function of type (n, ¥) is a linear
combination of #,[8,0](q]uX) (n8< S™*M) and $,[8,01(qlu) = 3L —8,01(qlu"").
This means that, if ¢(x)/¢(u) is the quotient of theta functions ¢, ¢ of type
(n, %) with coefficients in 2, ¢(u™")/¢(#™") is also the quotient of theta func-
tions ¢*(%) = ¢(u™"), ¢*(u) = ¢(u™') with coefficients in 2. This proves the
last assertion of the Theorem.

3.4. We shall prove the multiplicative theorem.

ProrosiTION 11. Let a be a positive symmetric element in U(S™", q), B be
a non-singular element in U(S™', q) and ¢ be a theta function of type (a, ¥)
with coefficients in 2. Put ¢(u) = ¢(u’)(u’(m) means u(pfm)). Then ¢(u) is a
theta function of type (BaR*, 1) with coefficients in 2.

Proof. From the definition of theta functions of type (a, 7) and multiplica-
tions of (S7Y, q), for any m in S'M we have
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¢lg(mu) = ¢(g(m)?4’) = ¢(g(B* m)u")
=g(g*m, afm)  u(Baf*m) 2 (BaB* m) " ¢(up)
=g(m, BaB*m) 'u(Baf*m) 7 X(Baf* m)¢(u).

ProrosiTioN 12. Let ¢ and ¢: be theta functions of type (a, X) with
coefficients in 2. Then there exist a positive integer n and theta funclions ¢
and ¢» of type (n, ¥) with coefficients in 2 such that

01(0)/ o) = 1)/ o ma).

Proof. Let n be a positive integer such that 3=#n—a is a positive sym-
metric element in A(S™Y, ¢). Put

¢i(2) = ¢1(u) 300, 01(g| X=») and
¢2(u) = %(u)ﬂg[o, 0] (q l Tu).

Then ¢, and ¢ satisfies the condition in the Proposition.
By virtue of Proposition 12, abelian functions in K, , are defined by the
quotients of theta functions of the same types (a, %) with coefficients in £,

where a runs over positive symmetric elements of A(S7}, g).

Tueorem 3. (The Multiplication Theorem). Let a be a multiplication of
(S7, @) and f be an abelian function in Ks,;. Put glu) = f(u*). Then g belongs
i’O Ks'q.

Proof. Let ¢, and ¢ be theta functions of type (n, ¥) (nsZ) with co-
efficients in £ such that f(#)=¢:(@)/¢(n). Put ¢i(n) =@(u®) and ¢(n)
=@,(u*). Then, by virtue of Proposition 11, ¢,(%) and ¢»(«) are theta functions
of type (naa™, X) with coefficients in 2 such that g(u) = ¢:(#)/¢:(%). Therefore,
from Proposition 12, we have g€ Kj, 4.

§4. Abelian variety with period (S}, q)

4.1. By virtue of the addition theorem of abelian functions in K, we
can now prove that Kj , is canonically isomorphic to the field of rational func-
tions on an abelian variety As 4 and the law of composition on Ag,, is induced
by the multiplication (v, w)— vw of multiplicative functions v, w on Mq.

We shall mean by €(S™%, ¢) the subgroup {g(m)|me S M} of E(K) and
Ts,q the quotient group of €(K) by €(S™), g). We shall mean by s ,(2) the
quotient group €(2)/€(S7%, ¢q).
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LEMMA 6. Let 8, § be elements in n ' S™'M such that 8& ST'M. Then

Il — 9, 01(g|q(8)1(H)) =0

and

3l — 6, 01(qlg(8) 1(R)) : 9,00, 01(qlq(8)1(H))
x 9. — g, 01(ql1) : $.L0, 01(q|1).

Proof. By the periodical properties of # we have
Il —8,0](glg(@)1(H)) = > g(m—8, n(m—9))1(Hh, n(in —9)) g(g, n(m —8))
mes—yp
=q(9, n8)7'1(H, ng) > q(m, nm)
meSTigy

= q(8, n8) '1(D, 78) $.L0, 01(ql1)
and

FaL0, 01(glg(8)1(H)) = >3 qlm, »m) 1(H, nm) g8, nm)?
mes—19R
=q(g, n0)' > qlm+6, n(m+4))
mes—iyy
=q(8, n8) ' 34[6, 01(q]1).
Since ¥#a[ — 4, 01(ql1) =3.(8, 0](g|1), we have
#a[0, 01(qlq(8)1(9)) = q(g, n3)"'9,L — g, 0](ql1).

On the other hand, since »(g(m, #m))>0 for m =0, we have

v(#400, 01(gl1)) =wv(1) =0
and
v(F.L -6, 0J(g!1)) >Minv(g(m -8, n(m—9)))>0.
This implies
v(Fal ~ 8, 01(q11)/94L0, 01(ql1))>0

and
v(3.L — 8, 0](glq(8)1(H)))
=v(qg(9, )7 1(H, n8)3,[0, 01(ql1))
=v(q(8, n8)™") <0.
Hence
v(daL -8, 01(q|q(8) 1(§)) /P[0, 0] (qlg(8)1(H)))
= v(1(Y, #8) F,L0, 01(ql1)/3,L -4, 01(q|1))
= v(d,00, 01(q|1)/3.[ — 8, 01(g|1))<0
This shows
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3L =6, 01(qlg(8) 1)) %0
and

Il -8, 01(qlq(8)1(H)) : 900, 01(q]q(a)1(H))
9.0 —6, 01(gl1) : 34L0, 01 (ql1).

LemMma 7. Let 1 be a prime number different from p and 8 be an element
in I''S™'M such that 8 ST'IM.  Then there exist a positive integer v and an
element %) in I S™'M such that

Inlh, 01(q]1(8)) =0
and

3plh, 01(gl1(a)) : Hn[0, 0T(g|1(8))
=3plh, 01(gl1) : 9n[0, 01(ql1).

Proof. Since (v(g(m;, m;)) is positive definite, there exists a positive real
munber e such that if ‘HS*h<e implies v(g(h, §)) <v(g(m+Yh, m+19)) for every
non-zero m in ST'M. Putting 8 = >, %:(8)m;, we assume x;(4) is not an [-integer.

im]

Let » be a positive integer such that I"?"<e. Then we have
I m;, 01(gl1@N = D) qlm+7""m;, Pm+m) 18, m4+m;)
mes—9n
=108, m) > glm+my;, m+m;)
mes—'9IM
=1(8, m) I m;, 01(ql1)

and
[0, 01(11(8)) = >3 q(m, I’m)1(e, I’m) =3[0, 01(q|1).
mesS—'9Mm

On the other hand, 7™***m;S*m;=1"%"<e, hence »(g(I™*m;, m;) <wv(g(m+"m;,
I’m+m;)) for every non-zero m in S™'M. This shows (Il m;, 01(gl1))
=v(g(™"m;, m;) and $p[I" m;, 01(gl1)=0. Since 1(a, m) =1 %1, we have
Il m;, 01(ql1(8)) =0
and
IplI>m;, 01(ql1(8)) : Fn[0, 01 (q]|1(8))
[ m;, 01(gl1) : 9n[0, 01(g|1).

4.2. Let fy, ..., fy be abelian functions such that 2(f1, f5, . . . , fx) = Ks,4
and ¢, ..., ¢y be the theta functions of certain tyer, say (#, ¥), with coeffici-
ents in £ such that fi=¢/¢, . .., fo=¢x/¢. Putting ¢i(u) =¢:(X 'u) (0<i
< N) and gi(u) = ¢i(u)/¢(u) (1<i< N), we have a system of abelian functions
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g - . ., @ with coefficients in 2 such that &(7«) =fi(#) (1< i< N). Therefore
by virtue of Theorems 2 and Lemma 2 we have 2(gi(#%), . . ., gv(%)) = 2(f1(X%),

) =20fi(w), ..., falw), AN, oL D) =2(fw), ..., fa(®)))
= Ks,q. Hence, by virtue of (18), we get

TueEOorRM 4. There exists a positive integer n such that
(8, 01(q|2)/34L0, 0J(qln), . .., 3.L8.r, 01(qlu)/3.L0, 0J(qln)

generate Ks o over 2, where {8:=0, 6, . . ., 8} is @ system of representatives
of n” STIM/S7TIM in nTSTIM.

We shall denote by An, s 4 the locus of (3.[g1, 01(gl%), . . ., FLgw, 01(qln))
over £ in the projective space of dimension #” —1. The mapping pn: X - (F4[8:,
01(ql7), . .., Fallgw, 01(qlX)) of €(K) into Ans, induces a mapping #n of
Fs,q int0 An,s,q : 0 is defined on the subset {Z,] theta functions of ‘type (s, X)
do not vanish simultaneously at %}.

Let us show that A,,s, has a normal law of composition for a sufficient
large n.

ProrosiTiON 13. If m is a positive integer not less than the positive integer
n in Theorem 4. Then Am,s,q has the normal law of composition such that

om{vw) = pm(v) o pm(w) for independent v, w in G(K) over L.

Proof. We shall denote briefly
Fi-1(u) = 3408, 01(qlu)/Pal8:, 01(gln), (2<i<n").

For any independent » and w in €(K) over 2 we have, by virtue of Theorem 2,
Fi(vw) € 2(F(0), . . ., Fwra(v), Fiw), . .., Fra(w)) and Fiv™) € 2(Fi(v),
.« ., Fr-(v)). This shows that the loci of (om(2), pm(w), pm{vw)) and (pm(v),
pm(v™")) over £ define rational mappings r of Am,sqX Am,s.q and @ of Ams,q
onto Am,s,q such that 7(pm(v), om(w)) =pm(vw), w(pm(v)) = pm(v™"). Since

v(wX) = (vw)X, vo™*

=1 and vw=wv, we have r(pm(v), r(pm(w), om(X))) =
7(r(om(0), om(w)), om(X)), 1(om(¥), @(pm(v))) =pm(1) and 7(pm(v), pom(w))
=1(om(w), om(w)). Moreover we have 2(om(vw), pn(w)) < 2(om(v), om(w))
C Q2(pm ), om(wovv™")) = 2(pm(v), pm(vw)). Similarly we have 2(pm(w), pm(vw))
= 2(pm(2), om(w)). This shows that, putting om(2)com(w) = r(om(v), om(w)),

we have a normal law of composition such that pm(v)°pm(w) = pm(vw) and
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om0 0 pm(v) = pm(1).

By virtue of the fundamental theorem of pre-group variety,” there exists a
uniquely determined commutative group variety As s, such that there exists
the birational transformation tm of Am,sq generically surjective on A, s,q and
the law of composition of A s 4 is obtained by transformering of that of Am,s,q
by tm. For m, m=>mn, the varieties Am, s,q and A% s, are isomorphic over 2
so that we may denote it by As,. We denote further by As ,(2) the group

consisting of all £-rational points on As,g.

ProrosiTion 14. There exists a homomorphism o of Ts,q into As,q such that
9(7) = (tmeom) (v) for m=n and the variable v, where n is the integer in
Theorem 4 and v is the class of v in s,  Moreover we kave 7(Zs,4(2))
C As,4(2).

Proof. Let Z be any element in €(K) and w be a variable element in €(K)
over 2((¥)). Then pm(w) and em(w™'7) are generic points of Amsq over £2.
So the birational transformation of Am,s,q¢ onto As,, is biregular at pm(w) and
om(w™'¥). Hence we may put

(19) ﬁ(?) = (’l'm"{lm) (W) + (‘Z'm"Pm) (w”}.’).

Let w; be a variable element in &(K) over 2((¥, w)). Then since pm(w)

cw(pm(wi)) = pm(wwi?) and pm(w™ %) e 0(pm(wi X)) = om(w™ 2(wi*X)™"), we have

{(zme pm)(w) + (tm° pm) (w7 %)}
—{(tme om) (w1) + (tmo pm) (wi'X)} =0,

where o is the rational mapping such that pm(2)°w(pm(2)) = pm(1).

This shows that 5(¥) does not depend on the choice of w and 5(¥) is a
2((X))-rational point of A5,  Let 71, 7> be elements in €(K) and ws;, w: be
independent elements in €(K) over 2((¥;, 72)). Then, since pm(wy), pm(w:) are
independent generic points of Am,s,, over 2 and pm(Ziwi'), omtYew;') are in-

dependent generic points of Ams, over 2, we have

—5(21) +§(?2) = (Tm°pm) (wl) + (Tm°0m) (wl_lyl) + (Tm°(7m) (ZUZ) + (Tmc'pm) (wz_lZa)
= (Tm° om) (wlZUz) + (Tm°pm) ((W1u)2)_1%172) = 5(?172)
and

?) See [3] p. 438, Theorem (Chevalley), or [4] III 7°, p. 50.
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- 5(:/:1) = - (Tmopm)(w) — (emopm) (20—121)
= (Tmopm)(w_l) + (Tm"Pm) (w-l;ﬁ) = 0(7;1).

This proves that p is a homomorphism of Zs , into As,.

We denote by T, the subgronp of %, consisting of all elements of finite
order and denote by p the homomorphism of G(K) into As, such that o(v)
=p(9).

ProrposiTiON 15. The restriction of § on T 4 is an isomorphism.

Proof. Let 7 be an element of G(K) such that 7€ 3¥,757'(0). Since I35,
is the image of {g(8)1(})|8, h=Mg} in Iy, there exist =, 6, § such that
Z=¢q(8)1()) and 8, Hen'ST'M. It is sufficient to prove o(fw) = p(w) for a
variable element w in G(K) over £. If & S™'M or 1(h) =1, there exists by
Lemmas 6 and 7 a theta function ¢(#) of some type, say (n”, 1), with coeffici-
ents in £ such that ¢(1)/9,.[0, 01(q|1) = ¢(q(8)1(H))/I»[0, 01(qlg(8)1(h)).
This shows <(w)/3.[0, 01(glw)=<¢(fw)/I.[0, 01(g|7w). Hence pn(w)
% pmv(Jw). Since pw(w), pnv(Zw) are generic points of A, s, over 2, plw)

= (rpvopuv) () 2% (Tpve o) (Jw) = p(w?). This proves Proposition 15.

THEOREM 5. As 4 is an abelian variety defined over Q. If p =0, the number
[As,o(p) : {0Y] of p-division points of As.q is p. Let o™ be the mapping of the
field of rational fnnction 2(As,q) over @ into Ks , such that o*(f)(v) = f(p(v)),
(feQ(As)). Then o is an isomorphism of the field of rational functions
2(Asq) onto Ks, such that o"(f)(vw) = fo0)+o(w)) and p*(f)e™)
=f{—=0o(v)).

Proof. By virtue of the structure theorem on group variety, there exists a
connected linear group L defined over 2 such that A = As,/L is an abelian
variety and L is the direct product of the semi-simple part Ls and the unipotent

)

part L,.” If I is a prime number different from p, then the group Ls(I) (con-
sisting of all /-division points in Ls) contains [“™" elements and L. has no
I-divison point other than the unit element. On the other hand, for an abelian
variety A we have [A(D) : {0}]=1""4 and [A(p) : {0}]1<p"™ 4% On the other

hand, by virtue of Proposition 15, [As (D) :{0}]1=17?". This shows that the

3) See [3], or [4] III 7°, p. 50.
4 See [2] Chap. VIL
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linear group L must be the identity group. Namely As,, is an abelian variety.
Therefore by virtue of Proposition 15, [A(p):{0}1=2". For sufficient large
m Am,s,q is birational equivalent with As, and Am,s,, is the locus of (3,08,
0X(qlw), ..., Fml@m, 01(qlw)) over 2. So p* is a isomorphism of 2(As,q)
onto Ks 4 Since p is a homomorphism of €(K) into Asg p* satisfies the
condition in Theorem 5.

THEOREM 6. There exists-a positive integer mo such that for every n=mng
the locus of
(?971CGX, 0] (q‘ u), o o oy &n[gn", 0] (ql u))

over @ is a projective embedding of As,, over Q.

Proof. An abelian variety defined over £ is always embedded in a pro-
jective space over 25 Let (fi, ..., fy) be a system of rational functions on
As,q over 2 such that, if ¥ is a generic point of As,q over 2, (fo(x), . . ., fa(%))
is a generic point of the embedding of As,,in the projective space. Then there
exist a positive integer n, a mulutiplicative function ¥ on Mg valued in 2 and
theta functions ¢, . . ., ¢n+1 of type (m, ¥) with coefficients in 2 such that

F o)) = @i(0) ] rsr(w) (0<i<N).

This shows that the locus of (¢4(%), ..., ¢x(%)) over 2 is a projective em-
bedding of As4 ever 2. From (18) we know that the locus of

(3a[8:1, 01(ql22), . . ., Pul8nr, 01(qlX2))

over £ is a projective embedding of As, over 2. Since As, is an abelian
variety, (3.Lg, 01(gl%), ..., 3.[8,, 01(glu)) gives also projective embedding
of As,. By virtue of Lemma 2, the embedding is defined over 2.

4.3. Let us now show that any multiplication a« of ¢ induces an endo-
morphism of As 4. In the classical case, for some special value of ¢, As 4 has
endomorphisms other than those corresponding to the multiplications of (S7}, g).
For non-archimedean case, however, we have no knowledge about such endo-

morphisms of As,q.

TaeoreM 7. There exists an isomorphism v of U(S7), q) into the ring of
endomorphisms of As,q such that 5(2%) =1(a)p(Z) (£€E&(K), a €AS™Y q)),

9 See [6].
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where o is the canonical homomorphism of T ,=GC(K)/G(S™, @) into As,,.

Proof. Let ¢, ..., ¢y be a system of theta functions of some type, say
(m, X), with coefficients in £ such that the locus of (¢, ..., ¢5) over £ is a
projective embedding of As,. Let a be an element of A(S™Y, ¢) and put ¢q,i(%)
=¢;(u®) (0<i<N). Then, by virtue of Proposition 11, ¢, i(#) (0 <i< N) are
theta functions of type (naa™, X) with coefficients in £. Hence ¢s,i(%)/da,0(%)
€ Ks,, (1<i< N). This shows that the locus of

(@o(2), « . o, On(u)) X (@o(u®), . . ., ¢n(u®))
over 2 gives a rational mapping r(a) of As, into As,  Since As, is an
abelian variety, 7(«) is defined everywhere on As,. Furthermore, since

(@l (20)®), . . ., ex(u)™) = (@olu®v®), . . ., ¢x(u®v™), 1a)

is an endomorphism of As, such that p(¢%) =r(a)p(8) (6€E(K)). 7 is an

isomorphism, because £* < €(S™}, ¢q) for every £ in €(2) if and only if a =0.
Since the group 2, is isomorphic to the group consisting of all the points

of finite order in As, by mean of the isomorphism . So we may choose a

system of l-adic (resp. p-adic) coordinates on As,, as follows:

p(g(8)1(H)) = (x1(8), . . ., 2(8), x(H), ..., %(5)) (mod 1)

(resp. p(g(8))— (x:(8), ..., %(8)) (mod 1)), where 8 = gxi(ﬂ)m,- and

b= glxi(f))mi-

Therefore, by virtue of Theorem 7, we have

TueoreM 8. There exisis a system of l-adic (resp. p-adic) coordimites on
As g such that, if we denote by M, (resp. Mp) the l-adic (vesp. p-adic) res-
Dresentation of the ring of endomorphisms End (As,,) of As,q with respects to

the system of coordinates, then

SaS™! 0
Mi(r(a)) =( ® B )
0 SaS™,

and, if px0,
Mp(r(a)) = SaS™! (acUAS™, @),

where we identify o« with the integral matrix that is the representalion of «
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with respect to the coordinate system of Mq.

4.4. Let us now prove the existence of a positive symmetric bimultiplicative
function g on Mg x Mg valued in 2% such that A(S™Y, q) = 4.

ProrosiTioN 16. Let (By, . .., Br) be a (minimal) Q-base of the module
of symmelric elements of the commutor algebra A of Ag in Endq (Mq). Put
S8 =(cf) with components ¢if (1<i, j<7r; 1<I<h). Let q be a positive
symmetric bimultiplicative function on Mo X Mg valued in 2° and e, ..., e
be elements in Q° satisfying v(e) = + -+ =v(en) =0. If A4 is gemerated by
{Bi, . . ., Bu}t and there exists no relation: qu(m, n)= lIiIIeY' (m, nx0 in Mq;
(v, « .., vi)%(0,..., 0)), then the bimultiplicative function q defined by
q(m;, my) = qolm;, mj(illefg) (1<i<j<7r) is a positive symmetric multiplicative
Sfunction such that U(S7}, q) = A

Proof. Since Bf=S'4S =8, we have ¢}/ =cf (1<i, j<r; 1<I<h).
By the positivity of g and »(g(m, 1)) = »(ge(m, n)) (m, n€Mg), q is a positive
symmetric bimultiplicative function. Let a be any element in Endg (Mg) such
that aST'Mc S™'IM and put am; = i;a;j(a)mj with ai(a) in Z (1<4, < 7).
Then, since m; = S¥(1,0, . .., 0), .J. ., My =870, ...,0,1), we have (a;(a))
=S'aS and (a;j(a®)) =S'a*S=SUS'aS)S=‘a. Let us now write the
condition on (a;j(a)) to be a multiplication of (S, q): g(am;, m;) = I:Iq( m,

)% = g(my, a*mj) = I;I g(m;, m)**” (1<, j<r). Hence a=A(S”, q) if

and only if I:Iqo(m;, my) e 'Ha oGl anteh) I;Iqo( my, my)%® sz €22}’ Since there
exists no relation go(m, n) = l'lIe}" (v o« ., vr)=%(0, ..., 0)). we see that
a€AS™, @ if and only if (*) (au(a)) (cff) = (ci) (@j(a™)) (1<s<h).
Since (aij{a)) =S a8, (aij(a*)) =‘a and (cff') = S™'Bs, the condition (*) is
equivalent to afs=fsa (1<s<h). On the other hand Aq is semi-simple, the
commutor algebra of 4G coincides with Aq. Therefore, by virtue of the assum-

ption on 4§, the condition (#) is equivalent to a belongs to 4qg. This proves
Proposition 16.

Prorosition 17. If A4 is generated by symmetric elements in A%, then there
exists a positive symmetric bimultiplicative function q on MqxMq valued in 2
such that A(S™!, q) = A.
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Proof. Since 2 is v-complete, 2 contains infinite many elements &, &, . .
such that »(£;)=0 (/=1,2,...) and &, &, ... are algebraically independent
over the prime field I7 of 2. Let ¢, be a positive symmetric bimultiplicative
function on Mg x Mq valued in £*. Then g(m, w)(m, n=Mg) are algebraic
over qo(m;, my) (1<i<j<7r), so that there exist &;,, ..., &, in 2° such that
v(€)= -+ =0v(§)=0 and &, ..., &, are algebraioally independent over
D {gOm, w)m, neMg}). This means that there exists no relation go(m, n)

=118 ((vs, . ..,o1)%(0,...,0)). Hence, by virtue of Proposition 16, putting
1

g(m;, my) = qo(m;, my) I1 Sff(;) (1<i<j<7), we have UA(S™%, q) = 4.
I3
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