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TRIANGULATED CHARACTERIZATIONS OF SINGULARITIES

PAT LANK and SRIDHAR VENKATESH

Abstract. This work presents a range of triangulated characterizations for

important classes of singularities such as derived splinters, rational singularities,

and Du Bois singularities. An invariant called “level” in a triangulated category

can be used to measure the failure of a variety to have a prescribed singularity

type. We provide explicit computations of this invariant for reduced Nagata

schemes of Krull dimension one and for affine cones over smooth projective

hypersurfaces. Furthermore, these computations are utilized to produce upper

bounds for Rouquier dimension on the respective bounded derived categories.

§1. Introduction

This article presents a technical result concerning the splitting of the natural map OX →
Rπ∗OY in the bounded derived category of coherent sheaves on X, for a given proper

surjective morphism π : Y →X of Noetherian schemes (see Lemma 3.11). Our result offers

a new perspective and set of tools for detecting various important classes of singularities

studied in algebraic geometry.

We employ a concept called generation in a triangulated category T , which has been

extensively studied [1], [7], [34]. Let E be an object and C a subcategory of T . We say that

C finitely builds E if E can be obtained from objects in C using a finite combination of

coproducts, shifts, direct summands, and cones. The minimal number of cones required is

the level of E with respect to C, denoted levelC(E). A special case of interest is the case

where C consists of a single object. The Rouquier dimension of T is the smallest integer

n such that there exists an object G where levelG(E) ≤ n+1 for all objects E. See §2 for

details.

Let Db
coh(X) denote the bounded derived category of coherent sheaves on a Noetherian

scheme X. For a proper surjective morphism π : Y → X, the level of OX with respect to

Rπ∗D
b
coh(Y ) (i.e., the essential image of Rπ∗ : D

b
coh(Y )→Db

coh(X)) is always finite, see [12,

Theorem 1.1]. We will show that, under mild constraints, the splitting of the natural map

OX → Rπ∗OY is equivalent to the level of OX with respect to Rπ∗D
b
coh(Y ) being at most

one in Db
coh(X). The splitting of this natural map, in the appropriate settings, is used to

define various classes of singularities.

To set the stage, let us consider singularities in prime characteristic. Suppose X is a

variety over a perfect field of prime characteristic, and denote its Frobenius morphism by

F : X →X. We say that X is globally F-split if the natural map F : X →X splits as OX -

modules, see [28]. In [6], techniques of generation were utilized to prove that when X is

affine, it is globally F -split if, and only if, the level of OX with respect to F∗OX is at most

one. This alludes one to characterizing a prescribed singularity type using generation. We
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2 P. LANK AND S. VENKATESH

push this line of thought further by studying classes of singularities in various contexts

through the lens of generation in a triangulated category.

Let us shift gears by highlighting classes of singularities that are of interest to our work;

for background, see §3.1:

• A variety X over a field of characteristic zero has rational singularities if, given a resolution

of singularities π : X̃ →X, the natural map OX → Rπ∗O ˜X splits in Db
coh(X) [5], [22].

• A variety over a field is said to be a derived splinter variety X if the natural map OX →
Rπ∗OY splits in Db

coh(X) for all proper surjective morphisms π : Y →X [5].

• A variety X over a field of characteristic zero is said to have Du Bois singularities if the

natural map OX → Ω0
X splits in Db

coh(X) [21], [35], where Ω0
X denotes the 0-th graded

piece of the Du Bois complex of X.

These classes of singularities are characterized by a splitting condition, which naturally

fits into the context of generation in Db
coh(X) as they tell us that OX is a direct summand

of a particular object. We now state our first main result, which is a special case of

Theorem 3.12, Theorem 3.13, Proposition 3.17, and Theorem 3.14.

Theorem A. Let X be a variety over a field k.

1. The following are equivalent:

(a) X is a derived splinter

(b) levelRπ∗D
b
coh(Y )(OX)≤ 1 for all proper surjective morphisms π : Y →X.

2. Assume k has characteristic zero. If π : X̃ →X is a resolution of singularities, then the

following are equivalent:

(a) X has rational singularities

(b) levelRπ∗D
b
coh(

˜X)(OX)≤ 1

(c) Rπ∗O ˜X is a perfect complex on X.

3. Assume k has characteristic zero. If X is an embeddable variety, then the following are

equivalent:

(a) X has Du Bois singularities

(b) levelΩ
0
X (OX)≤ 1.

Theorem A is a special case of more general statements found in §3.2. The key

technical ingredient that bridge the splitting conditions to statements regarding generation

is Lemma 3.11. In forthcoming work, we will establish similar results regarding singularities

of pairs [25]. This perspective of utilizing generation in triangulated categories allows one

to use level as an invariant to measure the failure of a prescribed singularity type.

Along the way, we discover that it is possible to make similar assertions about the

normality of an integral Nagata scheme in this context. This is particularly relevant for

varieties over a field when investigating their potential for normality.

Theorem B. If X is an integral Nagata scheme, then the following are equivalent:

1. X is normal,

2. levelRν∗OXν (OX)≤ 1 where ν :Xν →X is the normalization map.

Furthermore, we provide explicit computations yielding bounds on the number of cones

required to finitely build OX in Db
coh(X) from a given resolution of singularities π : X̃ →X

for a variety X over a field. The examples of interest include quasi-projective curves and
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TRIANGULATED CHARACTERIZATIONS OF SINGULARITIES 3

affine cones over a smooth projective hypersurface over a field of characteristic zero. These

calculations measure the failure to have rational singularities and provide upper bounds on

Rouquier dimension for the corresponding bounded derived categories, see Proposition 4.2,

Corollary 4.3, Proposition 4.6 and Corollary 4.7.

Theorem C.

1. Let X be a reduced Nagata one-dimensional scheme. If ν : Xν →X is the normalization

of X, then the Rouquier dimension of Db
coh(X) is bounded above by the following value:

(dimDb
coh(X

ν)+1)(1+ max
s∈Sing(X)

{δs})−1

where δs denotes the δ-invariant of X at s. If X is affine, then one has the following:

levelRν∗OXν (OX)≤ 1+ max
s∈Sing(X)

{δs}.

2. Let X be a smooth projective hypersurface in Pn
k of degree d ≥ n, where k is a field of

characteristic zero. Let C be the affine cone of X associated with an ample line bundle

on X. Then

dimDb
coh(C)≤ (2dimC+1)(1+2(d−n))−1.

Moreover, there is an inequality:

levelRπ∗(O ˜C⊕O
˜C(E))(OC)≤ 1+2(d−n).

1.1 Notation

Let X be a Noetherian scheme. The following will be of importance:

1. D(X) :=D(Mod(X)) is the derived category of OX -modules.

2. DQcoh(X) is the (strictly full) subcategory of D(X) consisting of complexes with quasi-

coherent cohomology.

3. Db
coh(X) is the (strictly full) subcategory of D(X) consisting of complexes having

bounded and coherent cohomology.

4. perf(X) is the (strictly full) subcategory ofDQcoh(X) consisting of the perfect complexes

on X.

If X is affine, then we might at times abuse notation and write D(R) := DQcoh(X)

where R :=H0(X,OX) are the global sections; similar conventions will occur for the other

categories.

§2. Generation

This section provides a streamlined overview of generation in triangulated categories,

and utilizes content found in [1], [7], [30], [34]. Let T be a triangulated category with the

shift functor [1] : T → T .

Definition 2.1 [7]. Suppose S is a subcategory of T .

1. A triangulated subcategory is said to be thick if it is closed under direct summands.

2. The smallest thick subcategory containing S in T is denoted by 〈S〉. If C consists of a

single object G, then we write 〈C〉 as 〈G〉.
3. Consider the following additive subcategories of T :
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4 P. LANK AND S. VENKATESH

(a) add(S) is the smallest strictly full subcategory of T containing S and is closed

under shifts, finite coproducts, and direct summands,

(b) 〈S〉0 := add(0),

(c) 〈S〉1 := add(S),
(d) 〈S〉n := add{cone(φ) : φ ∈HomT (〈S〉n−1,〈S〉1)}.

If C consists of a single object G, then we write 〈C〉n as 〈G〉n.

Remark 2.2.

1. There are different forms of notation for the ideas in Definition 2.1, which we highlight.

On one hand, at times 〈−〉n is denoted by thicknT (−), (e.g., in [1]). On the other hand,

add(−) is sometimes taken to be the smallest strictly full subcategory of T containing S
and is closed under finite coproducts, see [30, Reminder 1.1] and its proceeding remark.

2. If S is a subcategory of T , then there exists an exhaustive filtration on the smallest

thick subcategory in T containing S:

〈S〉0 ⊆ 〈S〉1 ⊆ ·· · ⊆
∞⋃

n=0

〈S〉n = 〈S〉.

Definition 2.3 [1], [34]. Let E,G be objects and C a subcategory of T .

1. An object E is finitely built by C if E belongs to 〈C〉. The level, denoted levelCT (E),

of E with respect to C is the minimal non-negative integer n such that E is in 〈C〉n. If
C consists of a single object G, then we write levelC(E) as levelG(E).

2. A classical generator for T is an object G in T satisfying 〈G〉= T .

3. A strong generator for T is an object G satisfying 〈G〉n = T for some n ≥ 0. The

generation time of G is the minimal n such that for all E in T one has levelGT (E)≤
n+1.

4. The Rouquier dimension of T , denoted dimT , is the smallest integer d such that

〈G〉d+1 = T for some object G in T .

Example 2.4.

1. If X is a quasi-affine Noetherian regular scheme of (finite) Krull dimension n, then

〈OX〉n+1 =Db
coh(X), see [32, Corollary 5].

2. If X is a smooth quasi-projective variety X over a field with a very ample line bundle

L, then 〈
⊕dimX

i=0 L⊗i〉2dimX+1 =Db
coh(X), see [34, Proposition 7.9].

3. If X is a quasi-projective variety X over a perfect field of nonzero characteristic with a

very ample line bundle L, then F e
∗ (

⊕dimX
i=0 L⊗i) is a strong generator for Db

coh(X) where

e	 0 and F : X →X is the Frobenius morphism, see [6, Corollary 3.9].

4. If X is a separated quasi-excellent Noetherian scheme of finite Krull dimension, then

Db
coh(X) admits a strong generator, see [2, Main Theorem]. For related work in the

affine setting, see [15], [18].

5. If X is a Noetherian scheme such that every closed integral subscheme of X has an open

regular locus, then Db
coh(X) admits a classical generator, see [11, Theorem 1.1]. See [8],

[31] for further connections to regular locus to other notions besides “generation”.

6. There has been recent attention toward studying generation in noncommutative settings.

See [13], [14] for generalizations of the work above to the case of coherent alegbras over

a Noetherian scheme. This largely enhances the previously known setting of [4], [16].
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TRIANGULATED CHARACTERIZATIONS OF SINGULARITIES 5

Definition 2.5 [3], [39]. Let C be an additive category.

1. C is said to be a Krull–Schmidt category if every object in C decomposes into a finite

coproduct of objects having local endomorphism rings.

2. An object of C is called indecomposable if it is not isomorphic to a direct sum of two

nonzero objects.

Remark 2.6.

1. If C is a Krull–Schmidt category, then every object decomposes into a finite coproduct

of indecomposables, and this is unique up to permutations, see [23, Theorem 4.2].

2. Let R be a complete Noetherian local ring. Consider an R-linear abelian category A.

(a) A is said to be Ext-finite if the R-module Extn(A,B) is finitely generated for all

objects A,B in A and n≥ 0.

(b) A is Ext-finite over R if, and only if, Db(A) is Hom-finite over R.

(c) If A is Ext-finite (over R), then Db(A) is a Krull–Schmidt category, see [24,

Corollary B].

The following was originally observed for the category of coherent sheaves on a proper

variety over an algebraically closed field [3, Theorem 2].

Lemma 2.7 (Atiyah). If X is a proper scheme over a Noetherian complete local ring R,

then both cohX and Db
coh(X) are Krull–Schmidt categories. Additionally, if X is integral,

then OX is an indecomposable object in both categories.

Proof. If X is proper over R, then cohX is Ext-finite (over R). This can be deduced from

[37, Tag 0D0T]. Hence, we see thatDb
coh(X) is a Krull–Schmidt category, see Remark 2.6. As

X is proper over a Noetherian complete local ring,H0(X,OX) is a finite product of complete

local rings. But X being integral ensures that H0(X,OX) is integral domain, so H0(X,OX)

must be a Noetherian complete local integral domain. This tells us that Ext0(OX ,OX) is

a local ring. Hence, OX is indecomposable via [23, Lemma 5.2 and Proposition 5.4].

§3. Characterizations

The primary objective of this section is to provide a triangulated characterization of

splinters, derived splinters, rational singularities, and Du Bois singularities. After doing

so, we study, for a given proper surjective morphism π : Y →X, what information can be

extracted by number of cones needed for OX and Rπ∗OY to build one another in Db
coh(X).

3.1 Singularities

Before diving ahead into the proofs, we detour through a quick reminder on the various

notions of singularities relevant to our work.

Definition 3.1 [27], [36]. A Noetherian scheme X is said to be a splinter if the natural

map OX → π∗OY splits in cohX for all finite surjective morphisms π : Y →X.

Example 3.2. A connected Noetherian Q-scheme is a splinter if, and only if, it is

normal. This is [5, Example 2.1]. For instance, any normal quasi-projective variety over C

is a splinter.

Definition 3.3 [5]. A Noetherian scheme X is said to be a derived splinter if the

natural map OX →Rπ∗OY splits in Db
coh(X) for all proper surjective morphisms π : Y →X.
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6 P. LANK AND S. VENKATESH

Example 3.4.

1. A Noetherian Fp-scheme is a derived splinter if, and only if, it is a splinter. This is [5,

Theorem 1.4].

2. Any derived splinter must be a splinter.

Definition 3.5 [19], [20].

1. Let (R,m) be a quasi-excellent Noetherian local ring of equal characteristic zero. We say

R has rational singularities if R is normal and if for every proper birational morphism

π : X → Spec(R) with X regular, we have Rjπ∗OX = 0 for j > 0.

2. Let Y be a quasi-excellent Noetherian normal scheme of equal characteristic zero. We

say Y has rational singularities if every local ring OY,p has rational singularities for

all p in Y.

Remark 3.6. Given a quasi-excellent Noetherian scheme of equal characteristic zero,

the following are equivalent:

1. X having rational singularities,

2. X being a derived splinter.

This is [5, Theorem 2.12], [22, Theorem 3], and [29, Theorem 9.5].

Definition 3.7. A locally quasi-excellent Noetherian scheme X of equal characteristic

zero is said to have semi-rational singularities if for every resolution of singularities

π : X̃ →X, one has the natural map π∗O ˜X → Rπ∗O ˜X is an isomorphism in Db
coh(X).

Remark 3.8. Let X be a variety over a field of characteristic zero. We can associate

to X a filtered complex, denoted (Ω•
X ,F ), in D(X) satisfying some useful properties, see

[10], [38]. This filtered complex is often called the Du Bois complex, and can be viewed as

an analog of the de Rham complex for singular varieties. The graded pieces of this filtered

complex, suitably shifted, are denoted Ωi
X and are objects in Db

coh(X). See [35, Theorem

3.1] for further background.

Definition 3.9. A variety X over a field of characteristic zero is said to have Du Bois

singularities if the natural map OX → Ω0
X is an isomorphism in Db

coh(X).

Remark 3.10.

1. Any variety over a field of characteristic zero with rational singularities must have Du

Bois singularities, see [21, Theorem S]. There are examples of such varieties with Du

Bois singularities, but not rational singularities, see [9].

2. Suppose X is a variety over a field of characteristic zero such that there exists a closed

immersion i : X→Y where Y is a smooth variety (which is called an embeddable variety).

Let π : Ỹ → Y be a log resolution of the pair (Y,X) that is an isomorphism away from X.

Denote by E the inverse image of X along π with the reduced induced closed subscheme

structure in Ỹ . The following are noted from [35, Theorem 4.3] and [21, Theorem 2.3]:

(a) If p : E → X is the natural morphism, then there exists an isomorphism Ω0
X →

Rp∗OE in Db
coh(X).

(b) X has Du Bois singularities if, and only if, the natural map OX →Rp∗OE splits in

Db
coh(X).
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3.2 Proofs

To start proving our results, we need to understand, for a given proper morphism of

schemes π : Y →X, how the natural map OX → Rπ∗OY splitting is related to the level of

OX with respect to the essential image of Rπ∗ : D
b
coh(Y )→Db

coh(X). We state the following

lemma which is an improvement to an earlier version of our work, based on input by Bhargav

Bhatt.

Lemma 3.11. Consider a map f : A → B of algebras in a symmetric monoidal

triangulated category D. Suppose M is a B-module in D such that A is a direct summand of

f∗M , with M regarded as an A-module by restriction along f. Then the algebra map A→B

splits in D.

We will apply Lemma 3.11 to the special case where D =DQcoh(X) and A→ B is the

natural map OX →Rπ∗OY for a proper morphism π : Y →X of Noetherian schemes. If we

are given a pair of objects E,G in Db
coh(X) and E is a direct summand of G in DQcoh(X),

then E is also a direct summand of G in Db
coh(X) since Db

coh(X) is a full subcategory.

Proof of Lemma 3.11. It suffices to check the splitting after tensoring over A with

f∗M (as f∗M contains A as a direct summand). But then the statement is clear: since

M is a B -module, the action map B ⊗A f∗M → M provides the desired splitting of

M →B⊗A f∗M .

Theorem 3.12. If X is a Noetherian scheme, then the following are equivalent:

1. X is a derived splinter,

2. levelRπ∗D
b
coh(Y )(OX)≤ 1 for all proper surjective morphisms π : Y →X.

There is an analogous statement for splinters.

Proof. We show the case for derived splinters. It is clear that (1) =⇒ (2). Let

π : Y → X be a proper surjective morphism. Our hypothesis tells us that OX belongs

to 〈Rπ∗D
b
coh(Y )〉1. Hence, OX belongs to 〈Rπ∗E〉1 for some E in Db

coh(Y ). However, this

ensures that natural map OX → Rπ∗OY splits in Db
coh(X) via Lemma 3.11. Since π was

arbitrary, we see that X must be a derived splinter, and so (2) =⇒ (1). The proof for

splinters follows similarly.

Theorem 3.13. Suppose X,Y are integral Noetherian schemes of characteristic zero.

If π : Y →X is a proper surjective morphism where Y has rational singularities, then the

following are equivalent:

1. X has rational singularities,

2. levelRπ∗D
b
coh(Y )(OX)≤ 1.

Proof. It is evident that (1) =⇒ (2), so we show that (2) =⇒ (1). If OX is

in 〈Rπ∗D
b
coh(Y )〉1 for proper surjective morphism π : Y → X where Y has rational

singularities, then the natural map OX → Rπ∗OY splits in Db
coh(X), see Lemma 3.11.

However, as Y has rational singularities, then so must X, see [29, Theorem 9.2]. This

completes the proof.

Theorem 3.14. If X is an embeddable variety over a field of characteristic zero, then

the following are equivalent:
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8 P. LANK AND S. VENKATESH

1. X has Du Bois singularities,

2. levelΩ
0
X (OX)≤ 1.

Proof. It is evident that (1) =⇒ (2), so we check the converse. Since X is embeddable,

there exists a closed immersion i : X → Y such that Y is a smooth variety over k. Consider

a log resolution π : Ỹ → Y of the pair (Y,X) that is an isomorphism outside of X. Let E

denote the inverse image of X along π with the reduced induced subscheme structure, and

p : E →X the natural morphism. By Remark 3.10, we have that Rp∗OE is isomorphic to

Ω0
X in Db

coh(X). If OX is in 〈Rp∗OE〉1, Lemma 3.11 tells us the natural map OX →Rp∗OE

splits. Hence, Remark 3.10 tells us X has Du Bois singularities.

Remark 3.15. In the statements above, the special case where X is additionally proper

is interesting. We can appeal to Lemma 2.7 to check that Db
coh(X) is a Krull–Schmidt

category, and hence, observe the following with the respective notations as earlier:

1. X is a derived splinter if, and only if, levelOX (Rπ∗E)≤ 1 for some object E in Db
coh(Y ),

2. X has rational singularities if, and only if, levelOX (Rπ∗E) ≤ 1 for some object E in

Db
coh(Y ),

3. X has Du Bois singularities if, and only if, levelOX (Ω0
X)≤ 1.

Proof of Theorem B. Before we begin the proof, observe that since ν is a finite morphism,

we have ν∗OXν =Rν∗OXν . If X is normal, then OX � ν∗OXν and so (1) =⇒ (2). It suffices

to show (2) =⇒ (1).

Suppose OX is in 〈ν∗OXν 〉1 in Db
coh(X). If X is a reduced Nagata scheme, then

the normalization ν : Xν → X is a finite birational morphism, see [37, Tag 035S]. By

Lemma 3.11, the natural map OX → ν∗OXν splits in Db
coh(X). Hence, there exists a split

short exact sequence in cohX:

0→OX → ν∗OXν → C → 0.

Let η be the generic point of X. Note that ν∗OXν is a torsion free sheaf of rank one, see

[17, Proposition 7.4.5]. Passing to the generic point, we see that Cη must vanish, and so C

is a torsion sheaf on X. However, C is a direct summand of the torsion free sheaf ν∗OXν ,

so C = 0. This tells us that the natural map OX → ν∗OXν is an isomorphism. Thus, every

affine open Spec(R) of X is normal since R→Rν is an isomorphism, and so we get that X

is normal.

Lemma 3.16 (Bhatt). Suppose f : Y → X is a proper birational map of Noetherian

schemes such that E := Rπ∗OY has finite Tor dimension (or equivalently, is a perfect

complex). Then the natural map OX → Rπ∗OY splits.

Proof. Since E is a perfect complex, there is a trace map tr : RHomX(E,E) → OX .

Since E is an algebra, there is an action map E → RHomX(E,E). We can then consider

the composition of natural maps:

OX → E → RHomX(E,E)
tr−→OX .

This composition is the identity since it is an identity generically on X by the birationality

assumption.
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Proposition 3.17. Suppose X,Y are integral Noetherian schemes of characteristic

zero. If π : Y → X is a proper birational morphism where Y has rational singularities,

then the following are equivalent:

1. X has rational singularities,

2. levelRπ∗D
b
coh(Y )(OX)≤ 1,

3. Rπ∗OY is in perfX.

Proof. By Theorem 3.13, we know that (1) ⇐⇒ (2). The definition of rational

singularities promises us (1) =⇒ (3). If (3) holds, then Lemma 3.16 ensures that the

natural map OX → Rπ∗OY splits in Db
coh(X). From this, it follows that X has rational

singularities, see [29, Theorem 9.2].

§4. Examples

This section establishes explicit computations yielding bounds on the number of cones

needed to finitely build OX inDb
coh(X) from a given resolution of singularities π : X̃ →X for

a variety X over a field. The examples of interest include one-dimensional Nagata schemes

(i.e., curves) and affine cones over a smooth projective hypersurface.

4.1 One-dimensional Nagata schemes

Let us recall some useful properties for one-dimensional Nagata schemes.

Remark 4.1. Let X be a reduced Nagata one-dimensional scheme and p be a closed

point of X.

1. The normalization ν : Xν →X is a finite birational morphism, see [37, Tag OC1R].

2. The δ-invariant of OX,p, denoted δp, is defined as the length of Ap/OX,p as an OX,p-

module where Ap is the integral closure of OX,p in the total ring of fractions of OX,p,

see [37, Tag 0C3Q] for details.

3. The δ-invariant of OX,p is bounded below by one less than number of its geometric

branches [37, Tag 0C43]. Equivalently, it is bounded below by the following (see [37,

Tag 0C1S]):

∑
ν(q)=p

|κ(q) : κ(p)|s

where ν : Xν →X is the normalization of X and the sum ranges over all q in Xν such

that ν(q) = p.

Proposition 4.2. Let X be a reduced Nagata one-dimensional scheme. If ν : Xν →X

is the normalization of X, then the Rouquier dimension of Db
coh(X) is bounded above by the

following value:

(dimDb
coh(X

ν)+1)(1+ max
s∈Sing(X)

{δs})−1

where δs denotes the δ-invariant of X at s.

Proof. Let G be a compact generator for DQcoh(X
ν), and assume that OXν is a direct

summand of G. Throughout this proof, we will freely utilize various part of [37, Tag OC1R].
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Note that ν is a finite birational morphism. There exists a short exact sequence in cohX:

0→OX → ν∗OXν →
⊕

s∈Sing(X)

Qs → 0

where Qs is a skyscraper sheaf supported on the singular point s in X. Note that each Qs,

for s in Sing(X), has length equal to the δ-invariant of X at s, which we denote by δs. For

each s in Sing(X), consider the fiber square:

Zs Spec(κ(s))

Xν X.

p

q i

ν

First, since the maps are finite, we have that OSpecκ(s) → p∗OZs splits, and so

OSpecκ(s) belongs to 〈p∗OZs〉1. This implies that i∗OSpecκ(s) belongs to 〈(i ◦ p)∗OZs〉1,
and since (i ◦ p)∗ = (ν ◦ q)∗, we have i∗OSpecκ(s) belongs to 〈(ν ◦ q)∗OZs〉1 and hence,

level(ν◦q)∗OZs (i∗Os) ≤ 1. Since X has finitely many singular points, we may assume G

finitely builds each q∗OZs in at most one step by simply adding to G a copy of such

object. We have levelν∗G(i∗OSpecκ(s)) ≤ 1, and so levelν∗G(Qs) ≤ levelν∗G(i∗OSpecκ(s)) ·
leveli∗OSpecκ(s)(Qs)≤ δs as Qs is of length δs. Now, we finish the proof by observing that:

levelν∗G(OX)≤ levelν∗G(ν∗OXν )+ levelν∗OXν (
⊕

s∈Sing(X)

Qs)

= 1+ max
s∈Sing(X)

{levelν∗OXν (Qs)}

≤ 1+ max
s∈Sing(X)

{δs}.

The claim follows from [26, Proposition 3.16].

Corollary 4.3. Let X be a reduced Nagata one-dimensional affine scheme. If ν : Xν →
X is the normalization of X, then the level of OX with respect to ν∗OXν is bounded above

by the following value:

1+ max
s∈Sing(X)

{δs}

where δs denotes the δ-invariant of X at s.

Proof. This is essentially the proof of Proposition 4.2 coupled with the fact that OXν

is a strong generator for Db
coh(X

ν) with generation time one.

4.2 Cones over smooth projective varieties

We fix an integer n which is at least two. Let X be a smooth projective variety over a

field k of characteristic zero. Let L be an ample line bundle on X. The affine cone over X

with conormal bundle L is defined as the affine variety:

C := Spec(
⊕
m≥0

H0(X,L⊗m)).

Since L is ample, the ring is
⊕

m≥0H
0(X,L⊗m) is finitely generated. Note that C is a

normal variety of Krull dimension dimX +1 whose regular locus is all of C except for a
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single point v, called the vertex. We denote by m the ideal sheaf defining v. For background,

see [20, Section 3.1].

Setup 4.4. Consider the special case where t : X → Pn is a smooth hypersurface of

degree d. Let L := t∗OPn(1). We can resolve the singularities of C by simply blowing up C

at the vertex v, as summarized in the following diagram:

E C̃

v C.

i

p π

j

Here, π denotes the blowup of C at v, and E = (π−1(v))red denotes the reduced exceptional

divisor. It is important to note that E is isomorphic to X.

Lemma 4.5. Assume Setup 4.4. If d ≥ n, then for every integer c > 0, we have that

md−n annihilates Rcπ∗O ˜C .

Proof. Let ωC denote the canonical bundle on C. Since π is an isomorphism away from

E, we can write the canonical bundle on C̃ as ω
˜C = π∗ωC ⊗O

˜C(aE) for some integer a.

Let us first calculate a in terms of n and d. The adjunction formula for the hypersurface E

contained in C̃ gives us:

ωE = i∗(ω
˜C ⊗O

˜C(E))

= i∗(π∗ωC ⊗O
˜C(aE)⊗O

˜C(E))

= i∗(π∗ωC ⊗O
˜C((a+1)E))

= i∗O
˜C((a+1)E),

where for the final equality, we use the fact that π∗ωC is trivial along the fiber E. Now,

under the identification E being isomorphic to X, we make two observations. First, we have

the following isomorphism:

ωE
∼= ωX

∼= t∗(ωPn ⊗OPn(d))

= t∗OPn(−n−1+d).

Secondly, i∗O
˜C((a+1)E) ∼= t∗OPn(−(a+1)). If we compare the two quantities, then we

have that −n− 1+d = −a− 1, and so a = n−d. By Grauert–Riemenschneider vanishing,

we see that for any positive integer c:

0 = Rcπ∗ω ˜C

= Rcπ∗(π
∗ωC ⊗O

˜C((n−d)E))

= ωC ⊗Rcπ∗O ˜C((n−d)E),

where the last equality follows from the projection formula. Thus, one has Rcπ∗O ˜C((n−
d)E) = 0 for c > 0. Now, given any integer l, consider the short exact sequence on C̃:

0→O
˜C(lE)→O

˜C((l+1)E)→ i∗OE((l+1)E)→ 0.

Pushing this forward by by π∗, we get a long exact sequence in cohomology sheaves:

· · · → Rcπ∗O ˜C(lE)→ Rcπ∗O ˜C((l+1)E)→ Rcπ∗i∗OE((l+1)E)→ ·· ·
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For every c > 0, observe that Rcπ∗i∗OE((l+ 1)E) = j∗R
cp∗OE((l+ 1)E) and so, it is

annihilated by m since it is scheme-theoretically supported on v. It follows that if

Rcπ∗O ˜C(lE) is annihilated by mk for some k, then the middle term Rcπ∗O ˜C((l+1)E)

is annihilated by mk+1. Applying this argument step by step, we have that:

m0 annihilates Rcπ∗O ˜C((n−d)E) =⇒m1 annihilates Rcπ∗O ˜C((n−d+1)E)

...

=⇒mk annihilates Rcπ∗O ˜C((n−d+k)E)

...

=⇒md−n annihilates Rcπ∗O ˜C for all c > 0.

In Theorem A, we saw a relation between the level of OC̃ with respect to Rπ∗O ˜C and

C having rational singularities. Since C has rational singularities if and only if d ≤ n, we

state the following proposition describing the level of OC̃ , albeit with respect to Rπ∗(O ˜C ⊕
O

˜C(E)), in terms of d and n.

Proposition 4.6. Assume Setup 4.4. If d≥ n, then there is an inequality:

levelRπ∗(O ˜C⊕O
˜C(E))(OC)≤ 1+2(d−n).

Proof. Consider the diagram in Setup 4.4:

E C̃

v C.

i

p π

j

Observe that under the identification E being isomorphic to X, we haveOE(E) is isomorphic

to t∗OPn(−1). This gives us a short exact sequence:

0→OPn(−d−1)→OPn(−1)→ t∗t
∗OPn(−1)→ 0.

From the long exact sequence in cohomology, d≥ n implies:

Hn−1(X,t∗OPn(−1)) =Hn(Pn,OPn(−d−1)) �= 0.

In particular, this implies that Rp∗OE(E) �= 0 since for every c:

Rcp∗OE(E) =Hc(E,OE(E)) =Hc(X,t∗OPn(−1)).

As a consequence, we get that OSpec(κ(v)) belongs to 〈Rp∗OE(E)〉1. Therefore, j∗OSpec(κ(v))

belongs to 〈i∗Rp∗OE(E)〉1, and hence, to 〈Rπ∗i∗OE(E)〉1. Additionally, we have that

Rπ∗i∗OE(E) is in 〈Rπ∗(O ˜C ⊕O
˜C(E))〉2 since we have the short exact sequence:

0→O
˜C →O

˜C(E)→ i∗OE(E)→ 0.

We have the distinguished triangle:

OC
ntrl.−−−→ Rπ∗O ˜C →Q→OC [1].

https://doi.org/10.1017/nmj.2025.11 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2025.11


TRIANGULATED CHARACTERIZATIONS OF SINGULARITIES 13

Observe that Q is supported in cohomological degrees c > 0, and the cohomology sheaves

Hc(Q) = Rcπ∗O ˜C for c > 0. By Lemma 4.5, we have that md−n annihilates Hc(Q) for all

c. In particular, we see that Q is scheme-theoretically supported on the (d−n)th nilpotent

thickening of the ideal sheaf associated with the vertex. This promises that j∗OSpec(κ(v))

finitely builds Q in at most d−n cones. The desired claim follows immediately.

Corollary 4.7. Assume Setup 4.4. If d≥ n, then there is an inequality:

dimDb
coh(C)≤ (2dimC+1)(1+2(d−n))−1.

Proof. Let L be an ample line bundle on C̃. Then G :=
⊕dimC

i=0 L⊗i is a strong generator

for Db
coh(C̃) whose generation time is at most 2dim C̃, see Example 2.4. By Proposition 4.6,

it follows that OC belongs to 〈Rπ∗(G⊕O
˜C(E))〉1+2(d−n). By [26, Proposition 3.16], the

desired bound follows.

Remark 4.8. It is a conjecture of Orlov that the Rouquier dimension of Db
coh(W ), for

W a smooth variety over a field, coincides with Krull dimension, see [33, Conjecture 10]. If

this conjecture holds, then there is an obvious sharper bound similar to Corollary 4.7.
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