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EPA and DHA appear to be the most important n-3 fatty acids, but roles for n-3
docosapentaenoic acid are now also emerging. Intakes of EPA and DHA are usually low,
typically below those recommended. Increased intakes result in higher concentrations of
EPA and DHA in blood lipids, cells and tissues. Increased content of EPA and DHA
modifies the structure of cell membranes and the function of membrane proteins. EPA
and DHA modulate the production of lipid mediators and through effects on cell signalling
can alter the patterns of gene expression. Through these mechanisms, EPA and DHA alter
cell and tissue responsiveness in a way that often results in more optimal conditions for
growth, development and maintenance of health. DHA has vital roles in brain and eye
development and function. EPA and DHA have a wide range of physiological roles,
which are linked to certain health or clinical benefits, particularly related to CVD, cancer,
inflammation and neurocognitive function. The benefits of EPA and DHA are evident
throughout the life course. Future research will include better identification of the determi-
nants of variation of responses to increased intake of EPA and DHA; more in-depth dose–
response studies of the effects of EPA and DHA; clearer identification of the specific roles of
EPA, docosapentaenoic acid and DHA; testing strategies to enhance delivery of n-3 fatty
acids to the bloodstream; and exploration of sustainable alternatives to fish-derived very
long-chain n-3 fatty acids.

DHA: EPA: Fish oil: CVD: Cancer: Inflammation: Eicosanoids: Development: Brain

n-3 Fatty acids: structure, metabolic interrelationships,
dietary sources and intakes

n-3 Fatty acids are a family of PUFA(1). They are defined
by the position of the double bond closest to the methyl
terminus of the hydrocarbon (acyl) chain. This is on car-
bon number three when counting the methyl carbon as

number one. EPA (20:5n-3) and DHA (22:6n-3) appear
to be the most important n-3 fatty acids(2,3), although
roles for docosapentaenoic acid (DPA; 22:5n-3) are
now also emerging(4,5). Because of their long hydrocar-
bon chain, EPA, DPA and DHA are sometimes termed
very long-chain n-3 fatty acids, in order to differentiate
them from the 18-carbon plant-derived n-3 fatty acids
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like α-linolenic acid (ALA; 18:3n-3) and stearidonic acid
(SDA; 18:4n-3). In the present paper, the term ‘very long-
chain n-3 fatty acids’ will be used to individually and col-
lectively describe EPA, DPA and DHA.

EPA, DPA and DHA are metabolically related to one
another, and there is a pathway by which EPA can be
synthesised from the simpler plant-derived n-3 fatty
acids (Fig. 1). The conversion of ALA to EPA involves
three steps catalysed, in turn, by delta-6 desaturase, elon-
gase 5 and delta-5 desaturase (Fig. 1). Further conversion
of EPA to DHA, via DPA, occurs by a complex pathway
(Fig. 1) involving chain elongation catalysed by elongase
5, a second chain elongation catalysed by elongase 2 or 5,
desaturation by delta 6-desaturase, and then removal of
two carbon atoms by limited β-oxidation in peroxisomes.
The enzymes of n-3 fatty acid interconversion are shared
with the analogous n-6 fatty acid biosynthetic pathway of
conversion of linoleic acid (18:2n-6) to arachidonic acid
(ARA; 20:4n-6) and beyond. The high intake of linoleic
acid relative to ALA in many Western diets(6) favours
linoleic acid conversion over that of ALA. This may be
one explanation for the frequently reported low rate of
conversion of ALA along this pathway(7,8), although
this rate can be influenced by several other factors includ-
ing age(9), sex(10–12), hormones(13) and genetics(14).

EPA and DHA are found in fairly high amounts in
most seafood, especially in fatty fish (sometimes called
oily fish), in the blubber and tissues of sea mammals
like whales and seals, in supplements like fish oils, cod
liver oil and krill oil, in some algal oils, and in a limited
number of pharmaceutical grade preparations(15,16).
There is at least a 10-fold range in content of these
fatty acids per serving of seafood, with fatty fish (e.g.
mackerel, salmon, trout, herring, tuna and sardines)
being the richest source (Table 1). Hence, intake of
very long-chain n-3 fatty acids is strongly influenced by
fish consumption. In most Western countries only a rela-
tively small proportion of the population regularly con-
sume fatty fish. For example, in the UK it is estimated
that only 25% of the adult population are regular fatty
fish consumers(17). Consequently intakes of very long-
chain n-3 fatty acids are low in much of the population
and mean intakes of EPA+DHA among adults in
many Western populations are considered to be about
0·1–0·3 g/d(17). However, it is difficult to be precise
about this figure for several reasons, as discussed else-
where(3). A series of Australian studies in adults and chil-
dren provide probably the most accurate data on intake
of very long-chain n-3 fatty acids. Data from over
10 000 Australian adults identified mean daily intakes
of EPA, DPA and DHA as 56, 26 and 106 mg, respect-
ively, to give a total very long-chain n-3 fatty acid intake
of 189 mg/d(18), consistent with the oft-quoted average
intake of these fatty acids among Western adults.
However, median intakes of EPA, DPA and DHA
were found to be only 8, 6 and 15 mg/d, respectively(18).
The large differences between mean and median intakes
reflect the skewed distribution of the intake data. A
more recent study using an updated nutrient composition
database produced mean daily intake data for EPA,
DPA and DHA of 75, 71 and 100 mg, respectively, in

Australian adults, giving a mean total very long-chain
n-3 fatty acid intake of 246 mg/d(19). Again, median
intakes were lower, being about 50% of the mean. The
data suggest that 50% of Australian adults consume
less than about 120 mg of very long-chain n-3 fatty
acids daily. There is no reason to think that average
intakes would be higher than this in other Western
countries, and in many they may be lower.
Australian children and adolescents aged 2–16 years
consumed a mean of 79 mg/d EPA +DPA +DHA,
with a median intake of 29 mg/d(20). Intakes increased
with age and were much higher in fish eaters than
non-fish eaters(20).

The oil used in many n-3 fatty acid supplements is
sourced from fish; as such this may be referred to as
fish oil. Other, non-fish, sources of oil such as krill
and algae are also used in supplements. These different
oils differ according to their very long-chain n-3 fatty
acid content and the relative contributions of EPA
and DHA (Table 2). Fig. 2 illustrates the estimated
influence of daily consumption of a 1 g standard fish
oil capsule, a 1 g ‘concentrated’ supplement, one tea-
spoon of cod liver oil, one meal of salmon and one or
four capsules of a pharmaceutical grade preparation
on daily intake of EPA +DHA. This shows that a per-
son who does not consume fatty fish or n-3 fatty acid
supplements can markedly increase their EPA +DHA
intake through dietary change or through use of
supplements.

Fig. 1. The metabolic pathway of biosynthesis of EPA,
docosapentaenoic acid and DHA.
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Increased intake of EPA and DHA leads to increased
content of EPA and DHA in blood, cells and tissues

As for all long-chain and very long-chain fatty acids,
EPA and DHA are transported in the bloodstream ester-
ified into TAG, phospholipids and cholesteryl esters as
components of lipoproteins. They also occur in the
bloodstream in the non-esterified form non-covalently
bound to albumin. EPA and DHA are stored in adipose
tissue esterified into TAG and they are found in all cell
membranes esterified into phospholipids and related
complex lipids. Cell membrane phospholipids and their
fatty acid composition are important in determining the
physical characteristics of cell membranes(21), the manner
in which membranes change in response to external stim-
uli(22) and the functional activities of membrane-bound

proteins(23). EPA and DHA circulating in the blood-
stream, stored in adipose tissue, and present in cell mem-
branes may be regarded as transport, storage and
functional pools, respectively. The contribution of EPA
or DHA to the total fatty acids present within any of
the transport, storage or functional pools differs accord-
ing to the pool (Table 3)(24–36). DHA is most often pre-
sent in a greater concentration than EPA (Table 3).
This is especially true in specific regions of the eye and
brain where DHA makes a significant contribution to
the fatty acid complement and EPA is virtually
absent(27,28,37). Within cell membranes, EPA and DHA
are distributed differently among the different phospho-
lipid components and in the brain and eye specific phos-
pholipids are especially rich in DHA(37,38).

Increased intakes of EPA and DHA from fish or from
supplements are reflected in increased concentrations
(and proportions) of both fatty acids in blood lipids,
blood cells and many tissues. This has been reported
many times for total plasma and serum lipids and for
the complex lipid components of plasma and serum
(i.e. TAG, phospholipids and cholesteryl esters)(24,39–47).
It is also well described for erythrocytes(24,42,43,47), plate-
lets (24,39,48) and leucocytes(24,26,44–46,49). When their
intake is increased, the content of EPA and DHA
increases in several human tissues, including skeletal
muscle(31), heart(29), gut mucosa(35,50) and adipose tis-
sue(24,43). There is a dose- and time-dependent pattern
of incorporation of both EPA and DHA(24,26,39,43–46).
Although EPA is incorporated more quickly than
DHA(24,43), the precise pattern of EPA and DHA incorp-
oration that occurs depends upon the specific nature of
the lipid pool(24,43). Pools that are turning over rapidly
show faster incorporation of EPA and DHA than slower
turning over pools. For example, plasma lipids incorpor-
ate EPA and DHA more quickly than blood cells(24,43),

Table 1. Typical content of EPA, docosapentaenoic acid (DPA) and DHA (g/100 g food) in a selection of seafood and meat

Typical adult portion size EPA + DPA +DHA
Food EPA DPA DHA (g) (g/portion)

Mackerel 0·71 0·12 1,10 160 3·09
Canned pilchards 1·17 0·23 1·20 110 2·86
Trout 0·23 0·09 0·83 230 2·65
Salmon 0·50 0·40 1·30 100 2·20
Canned sardines 0·89 0·10 0·68 100 1·67
Herring 0·51 0·11 0·69 120 1·56
Crab 0·47 0·08 0·45 85 0·85
Plaice 0·16 0·04 0·10 130 0·39
Cod 0·08 0·01 0·16 120 0·30
Mussels 0·41 0·02 0·16 40 0·24
Haddock 0·05 0·01 0·10 120 0·19
Venison 0·04 0·09 < 0·01 120 0·16
Canned tuna 0·02 0·02 0·14 45 0·08
Lamb 0·03 0·04 0·02 90 0·08
Prawns 0·06 < 0·01 0·04 60 0·06
Chicken 0·01 0·02 0·03 100 0·06
Beef 0·02 0·02 0 90 0·04
Pork 0·01 0·02 0·01 90 0·04

Data are taken from ref. 15. Note that both very long-chain n-3 fatty acid content and portion size may vary. Modified from ref. 3 with permission from John
Wiley and Sons.

Table 2. Typical EPA and DHA contents of n-3 supplements

EPA
(mg/g oil)

DHA
(mg/g oil)

EPA + DHA
(mg/g/oil)

Cod liver oil 110 90 200
Krill oil 140 65 205
Standard fish oil 180 120 300
Typical 45% fish oil
concentrate

270 180 450

Tuna oil 110 350 460
Algal oil used in infant formula 0 >400 >400
Typical 60% fish oil
concentrate

360 240 600

Omacor®* (n-3 ethyl ester
concentrate)

460 380 840

Flaxseed oil 0 0 0

Reproduced from ref. 16 with permission from John Wiley and Sons.
* Also known as Lovaza®.
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and amongst blood cells, leucocytes have been usually
shown to incorporate EPA and DHA more quickly
than erythrocytes. However, dose- and time-dependence
of EPA and DHA incorporation into tissues is not well
investigated in human subjects, apart from for adipose
tissue(24,43). Modification of human brain fatty acid com-
position is more difficult than for other tissues, especially
beyond childhood.

The higher concentration of EPA and DHA achieved
in various lipid pools through increased intake of EPA
and DHA is maintained so long as the higher intake of
EPA and DHA is maintained. If, after a period of
increased intake of EPA and DHA, intake returns to
the earlier lower level, then EPA and DHA concentra-
tions decline, eventually returning to earlier levels. This
is well described for blood lipids(39,43,44), platelets(39), leu-
cocytes(44) and erythrocytes(43,47). Just as the incorpor-
ation of EPA into different pools is faster than the
incorporation of DHA, the loss of EPA is faster than
the loss of DHA(39,43,44,47). The better retention of
DHA than EPA may be because DHA is structurally
and/or functionally preferred over EPA and that meta-
bolic mechanisms have evolved to preserve it.

Molecular and cellular effects of increased EPA and
DHA content

Many, though not all, of the functional effects of EPA
and DHA are considered to require their incorporation
into cell membrane phospholipids(51–53) (Fig. 3). EPA
and DHA are highly unsaturated and as a consequence
they have been shown in some studies to decrease mem-
brane order (i.e. increase membrane fluidity)(21,54),
although cells have mechanisms such as modifying

membrane cholesterol content, to limit this effect.
Through modulation of the physical properties of mem-
branes, EPA and DHA provide a specific environment
for membrane proteins like receptors, transporters, ion
channels and signalling enzymes to function(22,23,55). As
a result, EPA and DHA can modulate cell responses
that are dependent upon membrane protein function.
This has been shown to be especially important in the
eye where the presence of DHA enables optimal activity
of the photoreceptor protein rhodopsin(56). Cell mem-
branes contain microdomains called rafts(57). These
have specific lipid and fatty acid compositions and act
as platforms for receptor action and for the initiation
of intracellular signalling pathways(57–59). EPA and
DHA can modify raft formation in a variety of cell
types including neurons, immune cells and cancer
cells(59–61), so affecting intracellular signalling path-
ways(59–62). As a result of their effects on membrane-
generated intracellular signals, EPA and DHA can
modulate transcription factor activation and, subse-
quently, gene expression patterns in a variety of cell
types(51,55,63). NF-κB (64), the peroxisome proliferator
activated receptors(65,66), and the sterol regulatory elem-
ent binding proteins(67–71) are amongst the transcription
factors shown to be affected by EPA and DHA. The
effects of EPA and DHA on transcription factor activa-
tion and modulation of gene expression are central to
their role in controlling fatty acid and TAG metabolism,
inflammation and adipocyte differentiation(51–53,55,63).

Increased abundance of EPA and DHA in cell mem-
brane phospholipids is associated with decreased abun-
dance of the n-6 PUFA ARA(26,39,44,45,72). This alters
the availability of substrates for synthesis of bioactive
lipid mediators (Fig. 4). ARA is quantitatively the
major substrate for the biosynthesis of various prosta-
glandins, thromboxanes and leukotrienes, together
termed eicosanoids, which have well-established roles in
regulation of inflammation, immunity, platelet aggrega-
tion, smooth muscle contraction and renal function.
Eicosanoids are oxidised derivatives of 20-carbon
PUFA and are produced via the cyclooxygenase (prosta-
glandins, thromboxanes), lipoxygenase (leukotrienes and
other products) and cytochrome P450 pathways.
Although they have a number of obvious important
physiological roles, excess or inappropriate production
of eicosanoids from ARA is associated with many dis-
ease processes(73,74). Increasing the EPA and DHA con-
tent of cell membranes results in decreased production
of eicosanoids from ARA(39,45), resulting in an impact
of EPA and DHA on inflammation, immune function,
blood clotting, vasoconstriction, and bone turnover
amongst other processes. In addition to decreasing pro-
duction of eicosanoids from ARA, EPA and DHA are
themselves substrates for the synthesis of lipid mediators
(Fig. 4). Some of these are simply analogues of those pro-
duced from ARA. For example, PG E3 produced from
EPA is an analogue of PG E2 produced from ARA.
Frequently, though not always, the EPA-derived medi-
ator has weaker biological activity than the mediator
derived from ARA(75). For example, thromboxane A3
produced from EPA is a much weaker platelet

Fig. 2. Typical intake of EPA + DHA from the background diet in
an adult not regularly consuming fatty fish and what would be
achieved by also consuming a 1 g standard fish oil (FO) capsule, a
1 g ‘concentrated’ supplement, one teaspoon of cod liver oil, one
meal of salmon, or one or four capsules of the pharmaceutical
grade preparation Omacor®. Reproduced from ref. 3 with
permission from John Wiley and Sons.
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aggregator than thromboxane A2 produced from
ARA(76). EPA and DHA are also substrates for more
complex biosynthetic pathways that result in generation
of mediators known as resolvins (E-series formed from
EPA and D-series formed from DHA), protectins/neuro-
protectins (formed from DHA) and maresins (formed
from DHA)(77–79) (Fig. 4). It has recently been discovered
that DPA gives rise to a similar family of mediators(5,80).
The major role of resolvins, protectins and maresins
appears to be in the resolution of inflammation and
modulation of immune function(77–79). It seems likely
that many of the anti-inflammatory and immune modu-
lating actions of EPA and DHA that are described in the
literature(52,53,72,81) are mediated through resolvins, pro-
tectins and maresins.

The above-mentioned mechanisms of action of EPA
and DHA rely upon incorporation of those fatty acids
into cell membrane phospholipids (Fig. 3). It is now
recognised that EPA and DHA (in their non-esterified
form) can also act directly via membrane G-protein
coupled receptors that exhibit some specificity for very
long-chain n-3 fatty acids over other fatty acids as
ligands(82). In particular, free fatty acid receptor 4 (also
known as GPR120), which is highly expressed on inflam-
matory macrophages and on adipocytes, was shown in
cell culture experiments to play a central role in mediat-
ing the anti-inflammatory effects of DHA on macro-
phages and the insulin-sensitising effects of DHA on
adipocytes(82).

Roles of EPA and DHA in supporting optimal cell and
tissue function and promoting health

CVD

Native populations in Greenland, Northern Canada and
Alaska consuming their traditional diet were found to
have much lower rates of death from CVD than pre-
dicted, despite their high dietary fat intake(83–86). The
protective component of the diet was suggested to be
the very long-chain n-3 fatty acids consumed in very
high amounts as a result of the regular intake of seal
and whale meat, whale blubber and fatty fish(87). Low
cardiovascular mortality is also seen in Japanese con-
suming a traditional diet(88) and this diet is rich in sea-
food including fatty fish and sometimes marine
mammals, which contain significant amounts of EPA
and DHA. Much evidence has now accumulated from
prospective and case–control studies indicating that
higher intake of EPA and DHA is associated with
reduced risk of CVD outcomes in Western populations,
although not all studies agree. These studies have been
summarised and discussed in detail elsewhere(89–93) and
they have been subject to systematic review and
meta-analysis. For example, Chowdhury et al.(94)

brought together prospective studies examining the asso-
ciation of dietary or circulating fatty acids, including very
long-chain n-3 fatty acids, with risk of coronary out-
comes. Data from sixteen studies involving over
422 000 individuals showed a relative risk of 0·87 for

Table 3. Typical EPA and DHA concentrations reported in different lipid pools in human subjects

Population Lipid pool EPA DHA Reference

Generally healthy men and women aged 20–80 years; UK Plasma TAG* 0·3 0·8 (24)
Generally healthy men and women aged 20–80 years; UK Plasma phospholipids* 1·2 3·6 (24)
Healthy pregnant women aged 18–40 years; week 38 of pregnancy; UK Plasma phospholipids* 0·4 3·8 (25)
Newborn infants (umbilical cord); healthy pregnancies; UK Plasma phospholipids 0·3 6·4 (25)
Generally healthy men and women aged 20–80 years; UK Plasma cholesteryl esters* 1·0 0·6 (24)
Generally healthy men and women aged 20–80 years; UK Plasma NEFA* 0·4 1·6 (24)
Generally healthy men and women aged 20–80 years; UK Erythrocytes 2·3 5·2 (24)
Generally healthy men and women aged 20–80 years; UK Platelets 1·1 2·0 (24)
Generally healthy men aged 18–40 years; UK Blood neutrophils 0·6 1·6 (26)
Generally healthy men and women aged 20–80 years; UK Blood mononuclear cells

(mainly lymphocytes)
0·8 1·9 (24)

Men mean age 68 years with no evidence of dementia Brain grey matter Not reported 18 (27)
Men mean age 68 years with no evidence of dementia Brain white matter Not reported 4 (27)
Breast-fed term infants who had died at mean age 4 months; Australia Cerebral cortex <0·1 8 (28)
Breast-fed term infants who had died at mean age 4 months; Australia Retina 0·1 12 (28)
Men mean age 55 years who had received a heart transplant; USA Cardiac muscle 0·2 1·5 (29)
Mainly men mean age 60 years undergoing cardiac surgery; Australia Cardiac muscle

phospholipids
0·5 4·8 (30)

Healthy men mean age 21 years; UK Skeletal muscle 0·6 1·5 (31)
Healthy men and women aged 25–45 years; USA Skeletal muscle

phospholipids
0·7 1·9 (32)

Men and women aged 38–41 years undergoing surgery; Chile Liver 0·4 6·8 (33)
Men and women aged 23–63 years undergoing surgery; Chile Liver phospholipids 4·8 15·1 (34)
Patients with inflammatory bowel disease; UK Colonic mucosa 0·3 1·7 (35)
Generally healthy men and women aged 20–80 years; UK Subcutaneous adipose

tissue
0·2 0·2 (24)

Generally healthy men mean age 34 years; Iran Spermatozoa 0·6 9·6 (36)

Data are taken from the selected references and are expressed as % of total fatty acids. Reproduced from ref. 16 with permission from John Wiley and Sons.
* Blood collected after an overnight fast.
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those in the top third of dietary intake of very long-chain
n-3 fatty acids compared with those in the lower third of
intake. Data from thirteen studies involving over 20 000
individuals showed relative risks of 0·78, 0·79 and 0·75
for those in the top third of circulating EPA, DHA and
EPA+DHA, respectively, compared with those in the
lower third(94). A smaller number of studies in fewer indi-
viduals gave a relative risk of 0·64 for circulating
DPA(94). A more recent analysis pooled data from nine-
teen studies that investigated the association between
EPA or DHA concentration in a body compartment
like plasma, serum, erythrocytes or adipose tissue and
risk of future CHD in adults who were healthy at study
entry(95). EPA and DHA were each associated with a
lower risk of fatal CHD, with relative risks of 0·91 and
0·90, respectively(95). These analyses(94,95) support a
clear role for EPA and DHA in primary prevention of
CHD, and perhaps, more widely, of CVD, as discussed
elsewhere(96).

Beneficial modification of a broad range of risk factors
probably explains the protective effect of very long-chain
n-3 fatty acids towards CHD. These risk factors include
plasma/serum TAG concentrations, blood pressure,
thrombosis, cardiac function, vascular function and
inflammation, which are all improved by very long-chain
n-3 fatty acids(89,93,97–101). A recent meta-analysis of ran-
domised controlled trials (RCT) evaluated the effects of
EPA+DHA on a range of risk factors for CVD(102);
the findings are summarised in Table 4. Significant effects
of EPA+DHA were identified for plasma/serum TAG
and HDL cholesterol concentrations, systolic and dia-
stolic blood pressure, heart rate and C-reactive protein
concentration, a marker of inflammation (Table 4).
There was also a significant elevation of LDL concentra-
tion (Table 4), but this apparently deleterious effect may
be offset by an increased size of LDL particles(103), ren-
dering them less atherogenic. The improvement in the
risk factor profile with very long-chain n-3 fatty acids
would account for the lowered risk of coronary disease
reported in many previous epidemiological studies and
identified in the recent meta-analysis(94) and pooled ana-
lysis(95) of cohort studies.

A role in prevention of CVD is an obvious important
health benefit of EPA+DHA. There has also been great
interest in the ability of very long-chain n-3 fatty acids to
treat people with existing CVD. The outcome in studies
in this area has most often been the occurrence of a
major cardiovascular event (e.g. myocardial infarction
(MI)), fatal MI, or death. Several large studies published
between 1989 and 2008 reported lower rates of death
in patients receiving very long-chain n-3 fatty
acids(104–108). Doses of very long-chain n-3 fatty acids
used in these studies were 500 mg to 1·6 g/d and dura-
tions of intervention were 1–5 years. As a result of
these positive findings, meta-analyses published in the
period 2002–2009 supported that very long-chain n-3
fatty acids lower mortality in patients with existing
CVD(109–111). For example, a meta-analysis including
eleven studies involving almost 16 000 patients reported
that, compared with control, very long-chain n-3 fatty
acids lower the risk of fatal MI, sudden death and all-
cause mortality (relative risks 0·7, 0·7 and 0·8, respect-
ively)(109). A second meta-analysis including fourteen
studies involving over 20 000 patients reported that, com-
pared with control, very long-chain n-3 fatty acids lower
the risk of cardiac mortality and all-cause mortality (rela-
tive risks 0·68 and 0·77, respectively)(110). It is likely that
the mechanisms that reduce the likelihood of cardiovas-
cular events and mortality in patients with established
disease are different from the mechanisms that act to
slow the development of atherosclerosis. Three key
mechanisms have been suggested to contribute to this
therapeutic effect of very long-chain n-3 fatty acids.
The first is altered cardiac electrophysiology seen as
lower heart rate(112), increased heart rate variability(113)

and fewer arrhythmias(114). These effects make the
heart more able to respond robustly to stress. The second
is an anti-thrombotic action resulting from the altered
pattern of production of eicosanoid mediators from
ARA and from EPA that control platelet aggregation(39).
This effect would lower the likelihood of clot formation
or would result in weaker clots less able to stop blood

Fig. 4. Overview of the bioactive lipid mediators produced from
arachidonic acid, EPA and DHA.

Fig. 3. General overview of the mechanisms by which very
long-chain n-3 fatty acids can influence the function of cells.
Modified from Calder(72), Copyright (2011), with permission from
Elsevier.
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flow to affected organs. The third mechanism is the well-
documented anti-inflammatory effect of very long-chain
n-3 fatty acids, which would serve to stabilise atheroscler-
otic plaques preventing their rupture(115,116). This effect
would reduce the likelihood of a cardiovascular event
(MI, stroke) from happening(117). Thus, there is a bio-
logical plausibility to EPA+DHA having a benefit in
secondary prevention of cardiovascular events and
mortality.

Despite the positive findings with very long-chain n-3
fatty acids, supported by meta-analyses and biologically
plausible candidate mechanisms, more recent studies in
patients with existing CVD have failed to replicate the
earlier findings(118–122). This has influenced some of the

most recent meta-analyses, which have concluded that
there is little protective effect of very long-chain n-3
fatty acids on cardiovascular mortality(123–125).
Nevertheless, the meta-analysis by Rizos et al.(125)

which included the recent studies, but excluded the land-
mark GISSI Prevenzione trial(105), did identify a reduc-
tion in cardiac death with very long-chain n-3 fatty
acids (relative risk 0·91) and trends towards reductions
in sudden death and MI (relative risks 0·91 and 0·89,
respectively). It is important to recognise that the most
recent studies of very long-chain n-3 fatty acids and car-
diovascular mortality have been criticised for various
reasons related to small sample size, the low dose of
EPA+DHA used, the too short duration of follow up,

Table 4. Summary of the effects of very long-chain n-3 fatty acids on risk factors for CVD identified through the meta-analysis of AbuMweis
et al.(102)

Risk factor Number of studies included Effect size (95% CI) P

Plasma/serum TAG concentration (mM) 110 −0·368 (−0·427, −0·309) 0·0001
Plasma/serum total cholesterol concentration (mM) 108 −0·051 (−0·166, 0·064) 0·387
Plasma/serum LDL cholesterol concentration (mM) 100 0·150 (0·058. 0·243) 0·001
Plasma/serum HDL cholesterol concentration (mM) 110 0·039 (0·024, 0·054) 0·0001
Systolic blood pressure (mm Hg) 50 −2·195 (−3·172, −1·217) 0·0001
Diastolic blood pressure (mm Hg) 50 −1·08 (−1·716, −0·444) 0·0001
Heart rate (beats per minute) 26 −1·370 (−2·415, −0·325) 0·01
C-reactive protein (mg/l) 20 −0·343 (−0·454, −0·232) 0·0001
Flow-mediated dilatation (%) 6 1·460 (−0·475, 3·395) 0·139

Table 5. Some of the current recommendations for intake of very long-chain n-3 fatty acids

Recommending organisation Population subgroup Recommendation Reference

(UK) Scientific Advisory Committee on
Nutrition/Committee on Toxicity

Adults in the general population At least two portions of fish per week, at
least one of which is fatty fish; equated
to 450 mg EPA+ DHA daily

(17)

International Society for the Study of Fatty
Acids and Lipids

Adults in the general population Minimum of 500 mg EPA +DHA daily;
Target of 650 mg EPA+ DHA daily

(262,263)

French Agency for Food, Environmental and
Occupational Health Safety

Adults in the general population Target of 400–500 mg EPA +DHA daily
with at least 100–120 mg DHA daily

(264)

(Australian) National Health and Medical
Research Council

Adults in the general population Target of 430–610 mg EPA +DHA daily (265)

Food and Agricultural Organisation of the UN Adult males and non-pregnant or
non-lactating adult females

Minimum of 250 mg EPA +DHA daily (266)

Food and Agricultural Organisation of the UN Pregnant or lactating females Minimum of 300 mg EPA +DHA daily of
which at least 200 mg should be DHA

(266)

Food and Agricultural Organisation of the UN Children aged 2–4 years 100–150 mg EPA+ DHA daily (266)
Food and Agricultural Organisation of the UN Children aged 4–6 years 150–200 mg EPA+ DHA daily (266)
Food and Agricultural Organisation of the UN Children aged 6–10 years 200–250 mg EPA+ DHA daily (266)
European Food Safety Authority Adult males and non-pregnant

adult females
Adequate intake is 250 mg EPA +DHA
daily

(267)

European Food Safety Authority Pregnant females An additional 100–200 mg DHA daily (267)
European Food Safety Authority Infants and children aged 6

months to 2 years
100 mg DHA daily (267)

European Food Safety Authority Children aged 2–18 years ‘consistent with adults’ (267)
American Heart Association Patients who have had a recent

myocardial infarction
1000 mg EPA +DHA daily in
concentrated form

(89,129)

American Heart Association For patients with elevated blood
TAG concentrations

2000–4000 mg EPA +DHA daily (89)
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and, in some studies, the low rate of events(126). Despite
this, meta-analyses that include the GISSI-Prevenzione
study and some of the more recent neutral studies, still
report benefits from very long-chain n-3 fatty
acids(127,128). For example, Casula et al.(127) identified
reductions in cardiac death, sudden death and MI (rela-
tive risks 0·68, 0·67 and 0·75, respectively) with very long-
chain n-3 fatty acids and a trend towards lower all-cause
mortality (relative risk 0·89). Likewise, Wen et al.(128)

identified reductions in cardiac death, sudden death,
MI and all-cause mortality (relative risks 0·88, 0·86,
0·86 and 0·92, respectively) with very long-chain n-3
fatty acids.

Thus, there is a significant literature gathered over
more than 45 years from association studies, from RCT
investigating the impact on risk factors, and from RCT
investigating the effect on hard clinical outcomes like
mortality that very long-chain n-3 fatty acids lower the
risk of developing CVD, especially CHD and can be
used to treat people with CVD. Although the most recent
RCT in patients with CVD have produced findings that
do not agree with the previously accumulated literature,
it is too early to discard the earlier evidence. Instead rea-
sons to explain the different findings need to be iden-
tified, in order to better understand the actions of EPA
and DHA. The conclusion that very long-chain n-3
fatty acids have a role in reducing risk of CVD, especially
CHD, remains well supported, for example by the
American Heart Association(89,129).

Cancer

EPA and DHA have a number of biological activities
that may influence tumour cell viability and prolifer-
ation. For example, DHA can promote tumour cell
apoptosis(130,131), possibly through inducing oxidative
stress. The replacement of ARA in cell membranes by
EPA and DHA is also an important anti-cancer mechan-
ism of action of n-3 PUFA, since ARA-derived eicosa-
noids like PG E2 and leukotriene B4 promote tumour
cell proliferation, survival, migration and inva-
sion(131–133). Through these effects, EPA and DHA can
directly influence cancer cells and the tumour environ-
ment, and they can also influence the host response to
tumour bearing. Recent reviews provide a detailed
description of the mechanisms by which very long-chain
n-3 fatty acids affect tumour cell proliferation, survival,
invasion and metastasis(130,131); the ability of very long-
chain n-3 fatty acids to enhance the effectiveness of
anti-cancer treatments(131,133); and the current evidence
of the efficacy of very long-chain n-3 fatty acids in
human subjects in the context of cancer and its
treatment(131,133).

Some prospective and case–control studies show that
very long-chain n-3 fatty acids are associated with
lower risk of colorectal and breast cancers, but there is
inconsistency in the findings from such studies(134).
Recent systematic reviews conclude that very long-chain
n-3 fatty acids are protective against colorectal(135) and
breast(136) cancers, while a fairly recent prospective
cohort study among post-menopausal women found

that higher dietary intake of either EPA or DHA was
associated with lower risk of developing breast can-
cer(137). Whether very long-chain n-3 fatty acids increase
or decrease risk of prostate cancer is currently under
debate(138,139).

In addition to effects that lower the risk of developing
some forms of cancer, there seems to be a role for very
long-chain n-3 fatty acids in patients who already have
cancer. For example, quality of life and physical func-
tioning can be improved in cancer patients with oral pro-
vision of very long-chain n-3 fatty acids. A systematic
review(140) concluded that lung cancer patients receiving
supplements containing EPA and DHA had improved
appetite, energy intake, body weight and quality of life.
Breast cancer patients with a higher concentration of
very long-chain n-3 fatty acids in their bloodstream had
lower inflammation and less physical fatigue than seen
in patients with a lower concentration of very long-chain
n-3 fatty acids(141). Lung cancer patients given 1·8 g
EPA+DHA daily had improved appetite and less
fatigue than controls(142). Van der Meij et al.(143)

reported improved quality of life, physical function, cog-
nitive function and health status in patients with non-
small cell lung cancer receiving 2·9 g EPA+DHA per
day. The patients receiving very long-chain n-3 fatty
acids also tended to have greater physical activity com-
pared with the control group(143).

EPA and DHA sensitise cultured tumour cells to che-
motherapeutic agents, increasing the efficacy of those
agents(144). The mechanism by which this occurs is not
clear, but it might involve increased EPA and DHA con-
tent of tumour cell membranes resulting in increased
lipid peroxidation in those membranes in the presence
of the cancer therapeutic. If this occurred in vivo it
would result in improved efficacy of the therapy and per-
haps reduced side effects. Murphy et al.(145) conducted a
trial in patients with non-small cell lung cancer and
showed that 2·5 g EPA+DHA daily caused a 2-fold
increase in response rate to the chemotherapy being
used and prolonged the period over which patients
could receive the chemotherapy. They also reported a
trend towards improved survival with very long-chain
n-3 fatty acids. Bougnoux et al.(146) reported improved
chemotherapy outcomes in breast cancer patients receiv-
ing 1·8 g DHA daily.

Cancer cachexia (loss of lean and fat tissue) is a com-
plication that occurs in patients with advanced solid
tumors and greatly increases risk of mortality. Weed
et al.(147) reported that patients with squamous cell can-
cer of the head and neck taking 3·08 g EPA+DHA
daily had increased lean body mass. Murphy et al.(148)

showed that 2·2 g EPA+DHA daily was able to main-
tain body weight and muscle mass during chemotherapy
in patients with non-small cell lung cancer. In other stud-
ies in patients with cancer, very long-chain n-3 fatty acids
increased body weight(149,150).

Thus, there is increasing evidence from studies in
human subjects that very long-chain n-3 fatty acids
have a role in reducing risk of developing some cancers,
particularly colorectal and breast. Furthermore, a num-
ber of intervention trials demonstrate that very long-
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chain n-3 fatty acids have a range of benefits in patients
with various types of cancer. Most intervention studies
have used approximately 2 g/d EPA+DHA. From
their review of the literature Vaughan et al.(133) con-
cluded ‘There is now sufficient literature to suggest that
the use of supplements containing EPA and DHA may
have potential use as an effective adjuvant to chemother-
apy treatment and may help ameliorate some of the sec-
ondary complications associated with cancer. . .. . . our
investigations indicate that supplementation with fish
oil or EPA/DHA (>1 g EPA and >0·8 g DHA daily) is
associated with positive clinical outcomes.’

Inflammation

Inflammation is an essential component of normal host
defence mechanisms, initiating the immune response
and later playing a role in tissue repair. The inflamma-
tory response is normally self-limiting (i.e. resolving) in
order to protect the host from damage. However, the
loss of the normal mechanisms inducing tolerance (e.g.
to self, to endogenous commensal micro-organisms, or
to environmental components such as foods) or loss of
resolving factors can allow inflammation to become
chronic and in this state the damage done to host tissues
may become pathological(151,152). As such, inflammation
is the central adverse response seen in a range of condi-
tions including rheumatoid arthritis (RA), inflammatory
bowel disease, multiple sclerosis, asthma, psoriasis, and
atopic dermatitis. Furthermore, chronic low-grade
inflammation is now recognised to be a contributor to
CVD(153,154) and to play a role in cardiometabolic dis-
eases like obesity, type-2 diabetes and non-alcoholic
fatty liver disease and in cognitive decline(155). Cancer
also has a permissive inflammatory component(156).

Eicosanoids and related lipid mediators provide a dir-
ect link between fatty acids and inflammatory processes.
As described earlier, the n-6 PUFA ARA is the precursor
for the production of prostaglandins and leukotrienes
that are directly involved in inflammatory pro-
cesses(73,74). In contrast to the effects of ARA, EPA
and DHA give rise to mediators which are less
pro-inflammatory, anti-inflammatory or inflammation
resolving(52,53,72,77–79,81). In addition to their effects on
lipid mediators (prostaglandins, leukotrienes, resolvins,
protectins, maresins), EPA and DHA modulate many
other aspects of inflammatory processes including
leucocyte migration and production of inflammatory
cytokines(52,53,72,81). These effects on inflammation
relate to the modulation of cell signalling, transcription
factor activation and gene expression by EPA and
DHA. There is good evidence that EPA and DHA
given in combination at sufficiently high doses are
anti-inflammatory and have a therapeutic role in inflam-
matory diseases. This has been most widely studied in
RA(157), inflammatory bowel disease(158) and asthma(159).
Evidence of efficacy is strongest in RA, although high
doses (several g/d EPA+DHA) are typically used(157).
Recent systematic reviews and meta-analyses have high-
lighted the benefits of EPA+DHA on arthritic
pain(160,161).

Allergic disease begins in infancy and the immune
imbalances that predispose to allergy may be influenced
by the relative exposure to n-6 and n-3 PUFA(162).
Therefore, there has been significant interest in whether
increased intake of very long-chain n-3 fatty acids by
pregnant and breast-feeding women will reduce the risk
of allergic disease in their babies. There is some evidence
that increased intake of EPA and DHA during human
pregnancy has an effect on the immune system of the
baby(163–165) and that this is linked to reduced allergic
symptoms later in childhood(163,166,167). Best et al.(168)

reported a meta-analysis of offspring clinical outcomes
from trials of increased maternal intake of very long-
chain n-3 fatty acids in pregnancy. They identified
lower risk of atopic eczema, and less likelihood of having
a positive skin prick test to any allergen tested, to hens’
egg, or to any food extract, all in the first 12 months of
life. A recent study reported that fish oil consumption
by pregnant women decreased risk of persistent wheeze
and asthma in the offspring at ages 3–5 years(169).
Supplementing the diets of very young infants has also
now been shown to have immune effects consistent
with reduced likelihood of allergy (170). This area of
research has been reviewed recently(171–173).

Thus, the anti-inflammatory actions of EPA and DHA
are extensively demonstrated and the underlying
mechanisms are increasingly understood. High doses of
very long-chain n-3 fatty acids can be used to treat
frank inflammatory conditions like RA, while lower
doses likely have a role in protecting against development
of childhood allergic disease and low-grade inflamma-
tory conditions in adulthood.

Neurocognitive health

More than 50% of the dry weight of the brain is lipid,
particularly structural and functional lipid (i.e. phospho-
lipids). The human brain and retina contain an especially
high proportion of DHA relative to other tissues but lit-
tle EPA (Table 3). Grey matter phosphatidylethanola-
mine contains 24% of its fatty acids as DHA, whereas
grey matter phosphatidylserine contains 37% of its fatty
acids as DHA(174). DHA contributes 50–70% of the
fatty acids present in the rod outer segments of the ret-
ina(38). These rod outer segments contain the eye’s photo-
receptors and DHA has been clearly shown to be
essential for optimal visual functioning(56). DHA is
important for neurotransmission, neuronal membrane
stability, neuroplasticity and signal transduction(174–176).
An adequate supply of very long-chain n-3 fatty acids,
especially DHA, seems essential for optimal visual,
neural and behavioural development of the infant/child.
The need for DHA so early in life was demonstrated in
studies conducted in the 1980s and 1990s with pre-term
infants, where formulas that included DHA (and often
also ARA) were shown to improve visual develop-
ment(177–182). However, a recent meta-analysis of seven-
teen trials of inclusion of DHA (and ARA) in infant
feeds involving 2260 preterm infants found little evidence
to support improved visual acuity or neurodevelopment,
although three out of seven studies of neurodevelopment
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did report some benefit of the PUFA(183). Studies of
DHA in preterm infants are discussed in detail else-
where(184). The literature on the effect of DHA on visual
and cognitive outcomes in term infants is mixed with
some studies reporting benefits(185,186) and others
not(187–190). One reason for this might be that an early
beneficial effect of DHA is lost with time so that early
assessments show benefit and later assessments do not;
at least one study has shown this(185,191). A recent
meta-analysis of fifteen trials of inclusion of DHA (and
ARA) in infant feeds involving 1889 term infants found
little evidence to support improved visual or neurodeve-
lopment, although four out of nine studies of visual acu-
ity and two out of eleven studies of cognitive
development reported benefit(192). Despite the inconsist-
encies in the literature, it still seems important that preg-
nant and breastfeeding women and infants consuming
formula instead of breast milk have adequate intakes of
very long-chain n-3 fatty acids, especially DHA. A sys-
tematic review and meta-analysis of eleven RCT of
very long-chain n-3 fatty acids in pregnancy involving
over 5000 women could not conclusively support or
refute that very long-chain n-3 fatty acids in pregnancy
improve infant visual or cognitive development(193).

Very long-chain n-3 fatty acids are likely to have
important roles in the brain beyond infancy and are
probably important for brain function throughout the
life course. A number of studies have reported lower
levels of EPA and DHA in the bloodstream of children
with attention deficit hyperactivity disorder (ADHD) or
autistic spectrum disorders than in control children(194).
It is possible that these and other developmental disor-
ders might be related to some sort of fatty acid deficiency
state. If this is the case, then normalisation of fatty acid
levels should lead to clinical benefit in these conditions.
This has been examined in a number of trials in children
and adolescents with attention, learning, or behavioural
disorders, some showing some improvements(195–205)

and others finding no effect(206–214). These trials have
been reviewed many times, with differing conclusions.
The different findings may relate to the dose of n-3
fatty acids used, the duration of supplementation, the
precise outcome(s) measured and differences in the chil-
dren studied. Indeed, one review concluded that studies
using higher doses of very long-chain n-3 fatty acids or
of longer duration or in children/adolescents with low
socioeconomic status were more likely to find effects(215).
A recent meta-analysis of five RCT involving 189 chil-
dren with autism spectrum disorder identified benefit of
very long-chain n-3 fatty acids on some outcomes, but
concluded that the limited number of studies and small
sample sizes restrict the ability to make firm conclu-
sions(216). Another recent meta-analysis used data from
fifteen case–control studies involving 1193 individuals
with autism to show lower blood EPA, DHA and
ARA and higher ratio of n-6 to n-3 PUFA in autism(217).
Data from four RCT involving 107 individuals with aut-
ism showed improvements in some outcomes with very
long-chain n-3 fatty acids, but the authors suggested
the need for larger and longer studies in order to be
clear about the effect(217). A meta-analysis of ten RCT

of very long-chain n-3 fatty acids in children with
ADHD showed no improvements in measures of emo-
tional lability, oppositional behaviour, conduct problems
or aggression(218). However, subgroup analyses of higher
quality studies and those meeting strict inclusion criteria
found a significant reduction in emotional lability and
oppositional behaviour(218). The authors concluded that
a number of treatment effects may have failed to reach
statistical significance due to small sample sizes and
within and between study heterogeneity in terms of
design and study participants(218). In seven RCT involv-
ing 534 adolescents with ADHD, very long-chain n-3
fatty acids improved ADHD clinical symptom scores,
while in three RCT involving 214 adolescents, very long-
chain n-3 fatty acids improved cognitive measures asso-
ciated with attention(219). A very recent systematic review
was supportive of use of n-3 fatty acid supplements in
children with ADHD(220).

Over 35 years ago Rudin suggested that mental disor-
ders might result from a deficiency in very long-chain n-3
fatty acids and might respond to provision of these fatty
acids(221). Data from nine countries demonstrated a sign-
ificant correlation between high annual fish consumption
and lower prevalence of major depression(222), an obser-
vation that is compatible with a proposed protective
effect of very long-chain n-3 fatty acids. A reduction in
depressive symptoms was reported in a small study
using a very high dose of EPA+DHA (9·6 g/d)(223),
while this effect was not seen in a study using a lower
dose of DHA alone (2 g/d)(224). Intervention with 6·2 g/d
EPA+DHA in patients with bipolar manic depression
resulted in significant improvements in nearly all out-
comes, especially with respect to depressive symptoms,
after 4 months(225). Likewise, 2 g/d EPA improved symp-
toms in patients with unipolar depressive disorder after 4
weeks(226). A meta-analysis of thirteen RCT involving
1233 participants with major depressive disorder showed
an overall beneficial effect of very long-chain n-3 fatty
acids on depressive symptoms(227); interestingly higher
EPA dose was one factor associated with better outcome
for n-3 PUFA supplementation. This finding fits with an
earlier analysis of fifteen RCT investigating the effects of
EPA, which concluded that supplements containing
≥60% EPA in doses ranging from 0·2 to 2·2 g/d EPA
were effective against primary depression(228). There is
also evidence from meta-analysis that depressive symp-
toms seen in bipolar disorder may be improved by the
adjunctive use of very long-chain n-3 fatty acids(229).
Another meta-analysis that included twenty-five studies
involving 1373 participants identified a ‘small-to-modest
benefit’ for depressive symptomology with very long-
chain n-3 fatty acids(230) but the authors expressed doubts
about the robustness of their finding.

Schizophrenic patients have lower levels of EPA and
DHA in their erythrocytes than do controls(231–235).
The first trial of very long-chain n-3 fatty acids in schizo-
phrenia identified clinical improvement with EPA (2 g/d),
but not with DHA(236), while subsequent trials also
showed benefit with EPA(237,238), but not all studies
have seen this(239). A recent study reported significant
benefits of very long-chain n-3 fatty acids given for 26
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weeks to patients with schizophrenia(240). Although these
findings are encouraging, a Cochrane review concluded
that very long-chain n-3 fatty acids should be regarded
only as an experimental treatment for schizophrenia(241).
A study reported significant benefit from 1 g/d EPA in
borderline personality disorder(242), while a small num-
ber of studies report anti-aggressive effects of
DHA(243,244).

Post-mortem studies showed that the brains of people
with Alzheimer’s disease contain less DHA than those
without the disease(245–248) and some studies have linked
low blood levels of very long-chain n-3 fatty acids to
dementia(249). Sinn et al. reported that 1·8 g EPA +
DHA daily for 6 months reduced depressive symptoms
and improved cognition in adults with mild cognitive
impairment(250). Improved memory performance in sub-
jects with mild Alzheimer’s disease was reported with 1·5
g EPA+DHA daily for 6 months(251). However, a num-
ber of other studies using various doses and ratios of
EPA and DHA reported no effect on cognitive perform-
ance in people with Alzheimer’s disease(252–257). Meta-
analyses provide a mixed view of the findings for n-3
fatty acid treatment in the area of cognitive impairment,
reflecting the mixed findings from individual trials. A
Cochrane review of RCT studying the role of very long-
chain n-3 fatty acids in preventing cognitive decline in
healthy older people showed no benefits(258), while two
more recent meta-analyses differ in their findings. One
meta-analysis of six RCT of duration 3–40 months and
using 0·l4–1·8 g EPA+DHA daily identified a slower
rate of cognitive decline in those receiving very long-
chain n-3 fatty acids(259). In contrast, a meta-analysis of
three RCT involving 632 participants with mild to mod-
erate Alzheimer’s disease and followed for 6, 12 or 18
months found no evidence of a benefit from very long-
chain n-3 fatty acids on any outcome that was
assessed(260). A recent large trial found no effects of
very long-chain n-3 fatty acids (0·225 g EPA plus 0·8 g
DHA daily) over 3 years on cognitive decline(261).

Thus, DHA is a key structural component of the brain
and retina, where it plays particular, unique functional
roles. A supply of DHA is very important early in life,
especially during the fetal and early infant periods
when the eye and central nervous system are developing.
Since the supply must come from maternal sources (via
the placenta and breast milk), maternal DHA status is
likely to be important in determining eye and brain
development early in life. Newly emerging areas of inter-
est relate to the influence of very long-chain n-3 fatty
acids on childhood developmental disorders, adult psy-
chiatric and psychological disorders, and neurodegenera-
tive diseases of ageing. These conditions appear to be
associated with a lower status of very long-chain n-3
fatty acids. Additionally, there is some epidemiological
evidence for a lowered risk of psychiatric, psychological
disorders and neurodegenerative disorders with increased
dietary intake of very long-chain n-3 fatty acids.
Intervention studies indicate that there may be some
benefit from very long-chain n-3 fatty acids in childhood
developmental and adult psychiatric and psychological
disorders, particularly in depression. Interestingly many

of these studies are indicative that EPA is more import-
ant than DHA, which contrasts with the relative roles
of these two fatty acids in very early eye and brain devel-
opment. Although there may be a role for very long-
chain n-3 fatty acids in slowing cognitive decline(259),
this has not been well demonstrated(258,260). There is a
clear need for larger, longer and higher quality human
trials in this area of research.

Recommendations for intake of EPA and DHA acid

The demonstration of physiological actions of EPA and
DHA that result in improved health outcomes and
reduced risk of disease, along with the increased under-
standing of the molecular and cellular mechanisms of
action involved, indicates a need to set recommendations
for the intake of these important fatty acids. However,
the exact requirement for very long-chain n-3 fatty
acids in order to maintain health is not known.
Furthermore, there has been a lack of clarity about the
extent to which EPA and DHA can be synthesised in
human subjects so long as there is sufficient intake of
the precursor ALA(8). Nevertheless, the recognition of
the health benefits of EPA and DHA has resulted in sev-
eral recommendations to increase the intake of fish and,
more specifically, of EPA and DHA by various govern-
mental, non-governmental and professional agen-
cies(17,89,129,262–267). These recommendations are
summarised in Table 5.

The future of research in n-3 PUFA

Very long-chain n-3 fatty acids have been a focus of
research since the late 1980s, although important pio-
neering work in the field was performed before then. A
PubMed search conducted in late August 2017 identified
over 25 500 publications using the search term ‘omega-3’
and 28 500 publications using the search term ‘fish oil’.
The earliest publications identified using those terms
were from 1922 and 1945, respectively, although the
earliest of the almost 1000 publications identified with
the search term ‘cod liver oil’ was from 1845. By 1990,
there was a publication on the topic of n-3 fatty acids
on average every day. By the mid-2010s this had risen
to almost five publications every day. Thus, a tremen-
dous effort has been, and is continuing to be, expended
on research in the area of n-3 fatty acids. This research
effort obviously falls into many categories, not all related
to human health and well-being, although much of it
does. Research aimed at better defining the roles that
very long-chain n-3 fatty acids play in human growth,
development, function, health, well-being and disease
risk and better understanding the molecular and cellular
mechanisms involved will continue for the foreseeable
future. Despite the vast amount of knowledge that is cur-
rently available about n-3 PUFA, there remain signifi-
cant gaps and inconsistencies in the literature that
impair the ability to make robust recommendations for
both the healthy population and specific patient groups.
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One reason for this is that it is not clear what the extent
of the variation in response to very long-chain n-3 fatty
acids is within the population or amongst particular sub-
groups, or what the determinants of such variation might
be, although these are likely to include other dietary
components, sex, body composition, genetics, stage in
the life course, physiological state and the presence of
disease. These determinants are likely to be more thor-
oughly explored in the coming years, with researchers
taking advantage of new analytical and data handling
technologies to study larger numbers of samples.
Surprisingly, there is insufficient information currently
available on dose responses of many physiological and
pathological outcomes to very long-chain n-3 fatty acid
intervention. This hampers the ability to use the full
potential of very long-chain n-3 fatty acids in both public
health and clinical settings. Most research on very long-
chain n-3 fatty acids to date has focused on EPA and
DHA, usually studied in combination. This has resulted
in many researchers thinking that EPA and DHA have
the same biological effects. This seems not to be the
case(268,269), but again this is an area of research that is
likely to become better explored in the next period.
Related to this, biological actions of DPA have
emerged(4,5) but the effects of DPA and its mechanisms
of action are poorly described at the moment. It seems
likely that DPA will become a greater focus of research
in this area. It is also likely that research into the molecu-
lar mechanisms of the action of each individual very
long-chain n-3 fatty acid will continue, with membrane
structure–function relationships, early intracellular sig-
nalling pathways, transcription factors, novel membrane
receptors and novel lipid mediators all being important
candidates for future study. Whatever the mechanism
involved, it is evident that EPA, DPA and DHA con-
sumed orally need to be found at the site of their action
in the body. As described earlier, it is also clear that the
effects of these fatty acids on cell and tissue function are
dose dependent(39,40,42,45). Thus, it seems likely that strat-
egies for more effective delivery of these bioactive fatty
acids will be explored. These might include different
chemical(270,271) or physical(272) formulations.

The richest dietary source of very long-chain n-3 fatty
acids is seafood, especially fatty fish (Table 1). Despite
recommendations by many authorities to increase con-
sumption of fish, the majority of the Western population
are low consumers. An alternative to eating fish is to use
n-3 supplements (fish oil) which give an assured intake of
EPA and DHA. A concern is that the supply of fish for
human consumption and for the production of oil for
use in n-3 supplements is not sustainable. Thus, alterna-
tive sources need to be sought and then proven to be ben-
eficial to human health. Such alternatives include algal
oils, some of which are already widely used in the infant
formula industry and seed oils from plants GM to pro-
duce EPA and DHA(273). Finally, although the focus of
the present paper is the very long-chain n-3 fatty acids
EPA, DPA and DHA, plant n-3 fatty acids are widely
available and are sustainable. Most research on plant
n-3 fatty acids conducted to date has been on ALA as
an alternative to very long-chain n-3 fatty acids(8), but

there has been some research on SDA(8,274). From the
research conducted to date, ALA and SDA need to be
converted to very long-chain n-3 fatty acids by the path-
way shown in Fig. 1 to be biologically effective(8).
However, the studies done so far show very poor conver-
sion of ALA and SDA to DHA in human subjects,
although SDA is a better precursor for EPA synthesis
than ALA(275). Future research will attempt to identify
strategies to enhance endogenous biosynthesis of very
long-chain n-3 fatty acids from their simpler plant pre-
cursors. These strategies might include modifying other
aspects of the diet or taking advantage of genetic poly-
morphisms that favour conversion. Thus, there are
many important questions yet to be answered and this
assures continued research in the field of n-3 fatty acids
and human health.

Summary and conclusions

n-3 Fatty acids are a family of PUFA that contribute to
human development, health and well-being. Functionally
the most important n-3 fatty acids are the very long-chain
EPA and DHA found in fatty fish and in supplements;
roles for DPA are now emerging. Intakes of EPA and
DHA are typically low and much below those that are
recommended. Increased intakes of EPA and DHA,
either from fish or from supplements, are reflected in
greater incorporation into blood lipid, cell and tissue
pools. Increased content of EPA and DHA can modify
the structure of cell membranes and also the function
of membrane proteins involved as receptors, signalling
proteins, transporters and enzymes. EPA and DHA
also modify the production of lipid mediators and
through effects on cell signalling can alter patterns of
gene expression. Through these actions EPA and DHA
act to alter cellular responsiveness in a manner that
seems to result in more optimal conditions for growth,
development and maintenance of health. The effects of
very long-chain n-3 fatty acids are evident right through
the life course meaning that there is a need for all sectors
of the population to increase the intake of these import-
ant nutrients. EPA and DHA have a wide range of
physiological roles, which are linked to certain health
or clinical benefits. A number of risk factors for CVD
are modified in a beneficial way by increased intake of
EPA and DHA; these include blood pressure, platelet
reactivity and thrombosis, plasma TAG concentrations,
vascular function, cardiac arrhythmias, heart rate vari-
ability and inflammation. Thus, there is a key role for
these fatty acids in prevention and slowing progression
of CVD. Furthermore, some supplementation studies
with EPA and DHA have demonstrated reduced mortal-
ity in at risk patients, such as post-MI, indicating a thera-
peutic role, although this is currently disputed by some.
A number of other, non-cardiovascular, actions of EPA
and DHA have also been documented, suggesting that
increased intake of these fatty acids could be of benefit
in reducing the risk of (i.e. protecting from) or treating
many conditions. For example, they have been used suc-
cessfully in RA and, in some studies, in inflammatory
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bowel disease, and may be useful in other inflammatory
conditions like asthma and psoriasis. EPA and DHA
may also have a role as part of cancer therapy; some
recent studies show that they improve the effectiveness
of chemotherapeutic agents. DHA has an important
structural role in the eye and brain, and its supply early
in life when these tissues are developing is known to be
of importance in terms of optimising visual and neuro-
logical development. For this reason it is very important
that pregnant and breast-feeding women have adequate
DHA intake. Recent studies have highlighted the poten-
tial for EPA and DHA to contribute to enhanced mental
development and improved childhood learning and
behaviour and to reduce the burden of psychiatric and
depressive illnesses in adults, although these areas of pos-
sible action require more robust scientific support. There
may also be a role for EPA and DHA in preventing neu-
rodegenerative disease of ageing, but evidence for this is
currently weak. The effects of EPA and DHA on health
outcomes are likely to be dose-dependent, but clear dose–
response data have not been identified in most cases.
Also in many cases it is not clear whether both EPA
and DHA have the same effect or potency and therefore
which one will be the most important for a particular
indication. Thus, despite several decades of productive
research on the health effects of very long-chain n-3
fatty acids and the mechanisms involved, important
questions are currently unanswered and many areas
remain to be explored in future research.
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