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SPACES IN WHICH SPECIAL SETS ARE
z-EMBEDDED

ROBERT L. BLAIR

1. Introduction. A subset .S of a topological space X is z-embedded in X in
case each zero-set of S is the restriction to .S of a zero-set of X. (A zero-set is
the set of zeros of a real-valued continuous function.) For the basic theory of
z-embedding, see [3] and [4] (and see [4] for a comprehensive bibliography of
relevant papers). Here we continue the development of the theory of z-
embedding, with the focus on the following three classes of spaces:

(1) Normal spaces (§2). We show that X is normal if and only if every
closed subset of X is z-embedded (2.1), and that every F,, or, more generally,
every normally placed set (in the sense of Smirnov [23]) in a normal space is
z-embedded (2.3 and 2.5).

It is difficult to improve on the F, theorem just cited. This is shown in § 3,
where a number of examples are given which show that a union of z- (or even
C*- or C-) embedded sets is only rarely z-embedded.

(ii) Weakly perfectly normal spaces (§ 4). By definition, these are the spaces
X with the property that every subset of X is z-embedded in X. The class of
weakly perfectly normal spaces is strictly included in that of completely nor-
mal spaces, and includes (strictly, if one admits measurable cardinals) the
class of perfectly normal spaces (see 4.1 and 4.8). But it is an open question
whether there is a weakly perfectly normal T'-space of nonmeasurable power
that is not perfectly normal. The main result here is that there is such a space
if there is a (weakly) perfectly normal T';-space of nonmeasurable power that
is not realcompact (4.4). As a consequence of this and [25], the existence of a
weakly perfectly normal compact Hausdorff space of power R, that is not
perfectly normal is consistent with the usual axioms of set theory (4.10).

(iii) The class Oz of spaces in which every open set 1s z-embedded (§ 5). This is
a wide class of spaces which includes all (weakly) perfectly normal spaces, all
extremally disconnected spaces, and (see 5.6) all products of separable metric
spaces. Among other things, we show that: (a) X € Oz if and only if every
dense subset of X is z-embedded if and only if every regular closed subset of X
is a zero-set (5.1), (b) if every finite subproduct of X = Il,¢ X, satisfies
the countable chain condition and every countable subproduct belongs to Oz,
then X € Oz (5.5), (c) a pseudocompact product X X Y belongs to Oz only
if X, Y€ 0Oz (6.7), and (d) if X € Oz is Tychonoff and of nonmeasurable
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power, then every nonisolated point of X is contained in a nowhere dense
zero-set (5.11). This last is a generalization of a theorem of Isbell, that an
extremally disconnected P-space of nonmeasurable power is discrete (see 5.12).

Unless otherwise specified, X will denote an arbitrary topological space;
specific separation properties will always be noted when they are needed. We
follow the terminological conventions of [16] with respect to separation proper-
ties, but otherwise adopt the notation and terminology of [11] (with which
familiarity is assumed). In particular, C(X) (respectively, C*(X)) denotes
the set of all real-valued (respectively, bounded real-valued) continuous func-
tions on X ; and if f € C(X), then Z(f) denotes the zero-set of f. The set of all
zero-sets of X is denoted by Z°(X). We note that Z (X) is closed under
countable intersection [11, 1.14(a)].

In 1.1 we quote some results concerning z-embedding that are used several
times in the sequel. Recall first that if S C X, then the Gs-closure of S in X
consists of all points x € X for which each G,-set about x meets S. (For
Tychonoff X, this is precisely all x € X for which each zero-set about x meets
S.) S is Gs-dense (respectively, Gj-closed) in case the Gj-closure of S is X
(respectively, .S).

1.1. ProprosITION. (a) If .S is z-embedded in X and completely separated from
every disjoint zero-set, then S is C-embedded in X.

L) If S is z-embedded and Gs-dense in X, then S is C-embedded in X.

(c) If S is z-embedded in the Tychonoff space X, then the Gs-closure of S in vX
is vS.

For 1.1(a), see [4, 3.6B] or [3, 4.1B]. 1.1(b) (proved in [5,1.1(a)]) follows
immediately from 1.1(a); see also (4, 4.4]. For 1.1(c), see [5, 1.1(b)] or [4,
2.6(a)].

2. z-embedding of closed sets. In this section we consider the requirement
that every closed subset of X be z-embedded in X. This is easily seen to be
equivalent to normality:

2.1. THEOREM. For any space X, these are equivalent:

(a) X 1s normal.

(b) Every closed subset of X is z-embedded in X .

(¢) F\J Z is z-embedded in X whenever F 1s closed in X and Z is « zero-set
in X disjoint from F.

Proof. (a) = (b) is a consequence of Urysohn's Extension Theorem, and
(b) = (c) is trivial.

(c) = (a): Let F be closed in X. By (c), F is z-embedded. Suppose that
ZecZ(X) with FNZ =@. Then F € Z(F\JZ), so by (c) there is Z' €
Z(X)suchthat F = (FUZ)NZ . Thus ¥ C Z' and ZN Z' = @, so F and
Z are completely separated. It follows from 1.1(a) that F is C-embedded, and
we conclude that X is normal.
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An easy consequence of 2.1 is the fact that every completely regular Lindel6f
space X is normal [11, 3D.4] (since every closed subspace of X is Lindeléf, and
a Lindelof space is z-embedded in every superspace [13, 5.3]). (Of course it is
known, more generally, that every regular Lindel6f space is normal [16, p. 113].)

2.2 ProrositioN. Let S C X. If every neighborhood of S contains a normal
(respectively, normal and z-embedded) subspace that contains S, then S 1s normal
(respectively, normal and z-embedded).

Proof. Let F be closed in X and let A € Z (F). Since every zero-set is a G,
we can write 4 = (N,nG,, Where each G, is open in F. Now X — (clg4 N
cly(F — G,)) is a neighborhood of S, so for each #n there is, by hypothesis, a
normal subspace 7, of X such that

SCT, CX — (cxd Nclx(F — G)).

Since clz,4 and cl,,(F — G,) are disjoint closed sets in the normal space T,
there is Z, € Z(T,) such that 4 C Z, and Z, N\ (F — G,) = 0. If we set
Z=MNx(SNZ,), then Z ¢ Z(S) and A = FN Z. Thus Fis z-embedded
in S, s0 .S is normal by 2.1. To prove the parenthetical assertion of 2.2, we may
assume that each T, is z-embedded in X. Then (with the notation as before)
Z,=T1,MN2Z, for some Z, € Z(X). Set Z' = MNyenZ,, take F =S, and
note that 4 = S M Z. Thus S is z-embedded in X.

The nonparenthetical assertion of 2.2 is due to Smirnov [27].

An F,-set in a normal space need not be C*-embedded (e.g., consider the
open interval (0, 1) in R). But, in normal spaces, F,’s retain at least z-embed-
dability:

2.3. THEOREM. Every F,-set in a normal space is z-embedded.

Proof. If (F,)nen is a sequence of closed sets in the normal space X, then
we must show that S = U,enF, is z-embedded. Consider any f € C(S). For
each n € N, define a function f, on F, \U clxZ(f) as follows:

_Mfx) ifx € F,

Ja) = {0 ifx € deZ(f) — Py

Note that if x € F, N\ clxZ(f), then x € Z(f), and hence f,(x) = f(x) = 0.
Thusf, = OonclxZ(f) and f, = fon F,, sof, is continuous. By normality of X,
each f, has an extension g, € C(X). Let Z = MN,enZ(g,) and note that Z €
Z (X). One easily verifies that Z(f) = SN Z, and thus S is z-embedded.

2.4. Remarks. (a) The countability hypothesis implicit in 2.3 is essential;
see 4.1 below.

(b) We sketch an alternative proof of 2.3 (due to H. E. White, Jr.): One
shows first (by induction) that any two separated F,’s in a normal space are
contained in disjoint cozero-sets. (4 and B are separated in case 4 M cl B =
BMNcl A = 0. A cozero-set is the complement of a zero-set.) Then, for .S an
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F, in X and f € C(S), set Z, = {x € S: |f(x)| 2 1/n}. Z(f) and Z, are
separated F,’s in X, so for each # there is Z,” € Z (X) with Z(f) C Z,/ and
Z, N Z,) = 0. Then NuenZ, € Z (X) and Z(f) = SN (MyenZy)-

(c) 2.3 may be viewed as a theorem concerning z-embeddability of certain
unions of z-embedded sets. On general principles, one might expect such a
result to have some generalization to Tychonoff spaces. However, there seems,
in fact, to be no immediate generalization: the examples of § 3 show rather
conclusively that a union of z- (or even C*- or C-) embedded sets is very likely
not z-embedded. (Of course, certain F,'s are always z-embedded: A cozero-set
in any space X is z-embedded in X [5, 1.1(c)], and any o-compact S is Lindelof
and hence z-embedded in any superspace [13, 5.3].)

A subset S of X is normally placed in X in case for every neighborhood 1V of
S there is an F,-set H in X such that S C H C V (see [27]). It is known that
every F, in a normal space is normal (see, e.g., [7, Chap. [X, § 4, Ex. 6]) and
that, more generally, every normally placed subset of a normal space is
normal ([27, Theorem 1]; see also [9, Problem 2G]). We sharpen the latter
(and use 2.1, 2.2, and 2.3 to simplify its proof) as follows:

2.5. THEOREM. If S is normally placed in the normal space X, then S is normal
and z-embedded in X.

Proof. By 2.2 and 2.3, it suffices to show that any F,-set H in X is normal.
But if Fis closed in H, then Fis an F, in X, and hence z-embedded in X by
2.3. It follows that F is z-embedded in H, so H is normal by 2.1.

For completeness, we give an example of a normally placed set (in fact, a
generalized cozero-set) that is not an F,. (S is a generalized cozero-set in case
for every neighborhood 17 of S there is a cozero-set P such thatS C P C V.)

2.6. Example. Let X be any regular Lindelof 7°j-space that is not o-compact
(e.g., the Sorgenfrey line). Then X is a generalized cozero-set, but not an F,,
in BX.

Proof. If V is a neighborhood of X in X, then X can be covered by a
countable family (P,),en of cozero-sets in X such that P, C 17 for each .
Then U,enPy is a cozero-set in X which lies between X and I7; and since X
is not g-compact, X is not an F, in gX.

3. Unions of z-embedded sets. Most of this section is devoted to the
examples alluded to in 2.4(c). For completeness, we phrase some of these
examples in terms of v-embedding as well as z-embedding. (A subset .S of the
Tychonoff space X is v-embedded in X in case vS C vX [2]. Every realcompact
subspace of X is (trivially) v-embedded, and every s-embedded subset is
v-embedded (2, 3.5].)

Recall that X is completely normal in case every subspace of X is normal.
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3.1. Example. Let X = DU {0} be the one-point compactification of an
uncountable discrete space D. Then X is completely normal and D is not
z-embedded in X. (Hence a union of uncountably many closed subsets of a
normal space need not be z-embedded.)

Proof. Complete normality is obvious. Let N be any countably infinite
subset of D and define f € C(D) as follows: f(x) = 0 (respectively, 1) if
x € N (respectively, x € D — N). Suppose there is g € C(X) such that
Z(f) = DM Z(g). Then clearly g(c0) = 0, so for each n > 0 there is a finite
subset F, of D such that [g(x)| < 1/nforallx € D — F,. Chooseanyx € D —
(NVU (UpenFr)). Then f(x) = 1 and g(x) = 0, a contradiction, and we con-
clude that D is not z-embedded in X.

3.2. Example. Let I be an uncountable set, let N, = N for each « € I, and
let X = Hae :N.. Then there are two closed disjoint C-embedded subsets Fy
and F; of X such that Fy \U F} is not z-embedded in X.

Proof. We adapt techniques of Stone [28], Corson [8], and Ross and Stone
[26]. For 1 = 0, 1, set

> = {x € X: pro(x) = 7 for all but countably many « € I}
and

F; = {x € X: for every n 1, pro(x) = n for at most one a € I}.

(Here pr, denotes the projection of X of index a.) Clearly Fy and F; are closed
in X. Since Y_;is a >_-product of the family (V,)«c ; (see [8]), it follows from
(8, Theorem 1] that Y, is normal. Moreover, by [8, Theorem 2], vX_; = X.
Since F, C >, we conclude that F;is C-embedded in X.

Suppose now that S = Fy\U F; is z-embedded in X. Since [ is uncountable,
FoMN Fy = @, and hence Fy € Z(S). By hypothesis, therefore, there is a func-
tion f € C(X) such that Fy C Z(f) and Z(f) N F1. = @. By [26, Theorem 4],
there exists a countable subset J of I and a function g € C(Il.¢,N,)such that
f = gopr, (where pr, is the projection of X onto Il.¢,N,). It follows that
prs(Fo) C Z(g) and Z(g) N pr,(F;) = B. Let o: J — N be an arbitrary in-
jection of J into N, and, for 7 = 0, 1, define x; € X by the requirements

_Jo(@) ifa € J,

Pra(¥) = {1 ifo g J.

Then x; € F; and pr,(xs) = pr,(x1), so we have pr,(Fy) N pr,(F,) # 0, a
contradiction. Thus .S is not z-embedded in X.

3.3. Remarks. (a) It follows from 3.2 and 2.1 that the space X = Il,¢;N, of
3.2 is not normal; this is due to A. H. Stone [28].

(b) Since realcompactness is inherited by products and closed subspaces
[11, 8.10 and 8.11], the union F,\J F; of 3.2 is realcompact, and hence v-
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embedded in X. In the next two examples (which we quote from [2]), the
unions in question are not even v-embedded.

If « is an ordinal, then W (a) denotes the set of all ordinals < «, topologized
with the order topology. As in [11], we set N* = W(w 4+ 1), W = W(w:) and
W* = W(w; + 1).

3.4. Example [2,6.2]. Let X be the one-point compactification of the topologi-
cal sum of two copies S; and S, of W. Then S; and S, are disjoint, open, and
C-embedded in X, but S; U S is not v-embedded (hence not v-embedded) in X.

3.5. Example (2, 6.1]. Let X be the Tychonoff plank: X = (W* X N*) —
{(w1, w)}. Let W = W X {w} and, for each n € N, let

F,= W\ {(w;,m): m < nj.

Then (F,),en is an increasing sequence of closed C-embedded subsets of X,
but U,ent, is not v-embedded (hence not z-embedded) in X. Moreover,
each F,is C-embedded in the compact space BX, but \U,exF, is not v-embedded
in BX.

For some positive results concerning v-embeddability of certain unions of
v-embedded sets, see 6.5, 8.3, and 8.4 of [2].

In contrast to 3.5, the next example provides a union of an increasing se-
quence of z-embedded sets that is v-embedded, but not z-embedded. We are
indebted to A. W. Hager for 3.6 and 3.7. (For 3.6 and related results, see [6].)

3.6. LEmma (Hager). If A is « countable (Tychonoff) spuce with no countable
base, and if B is a discrete spuce with cardinalily 280, then A X B is not z-
embedded 1n BA X BB.

3.7. Example (IFlager). There is a compact Hausdorff space X and an in-
creasing sequence (F),),en of closed C*-embedded subsets of X such that
UnrenFy is v-embedded, but not z-embedded, in X.

Proof. Choose A = {ai, as, ...} and B as in 3.6. (For an example of such
an 4, see [11,4M].) Let X = B4 X 8B and, for each n, let F,, = {a1, ..., a,}
X B. Each F, is closed and C*-embedded in X (for f ¢ C*(F,), first extend f
over {ay, ..., a,} X BB, then over X). Now U,enI = 4 X B is realcompact
(as the product of two realcompact spaces) and hence v-embedded in X. But
UnrenFy is not z-embedded by 3.6.

3.8. Example [4, 2.5(a)]. Let S be the x-axis of the tangent circle space
T [11, 3K]. Then S is not z-embedded in T. (Hence the union of a discrete
family of singletons need not be z-embedded.)

We note that the space I' in 3.8 is (hereditarily) realcompact [11, 8.18]. A
somewhat more interesting (pseudocompact) example involving the union of
a discrete family will be given in 3.11. For convenience, we first state a simple
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additivity result for realcompactness (somewhat stronger than is actually
needed for 3.11). We remark that 3.9 is merely a fragment of the general theory
of additivity of the Hewitt realcompactification, which will be treated else-
where.

3.9. LEMMA. If the Tychonoff space X s the union of a countuble family of
z-embedded realcompact subspaces, then X 1s realcompact.

Proof. Write X = U,enS,, where each S, is realcompact and z-embedded in
X, and let % be a real z-ultrafilter on X. Since ¥ has the countable intersection
property, there exists # ¢ N such that S, meets every member of % . More-
over, since .S, is z-embedded, the trace flS,, of # on S, is a real s-ultrafilter
on S, [3, 3.1]. By realcompactness of S,, we have.Z |S, — x for some x € S,,
and then clearly .- # — x. Thus X is realcompact.

3.10. Remarks. The preceding lemma has also been noted, independently,
and with a different proof, by A. W. Hager (unpublished). 3.9 generalizes an
early additivity theorem of Mrowka [20, Theorem 1] (the special case of 3.9
for which X is normal and the countable family consists of closed realcompact
subspaces). We note in passing that 3.9 fails if the countability hypothesis is
omitted (consider any nonrealcompact space regarded as the union of its
points) or if the requirement that the subspaces by z-embedded is omitted
(Mrowka has given an example of a nonrealcompact space that is the union of
two closed realcompact subspaces (see [21] and [22])).

3.11. Example. There is a (nonnormal, nonrealcompact, pseudocompact)
space X and a discrete family (Si)ac s of compact subsets of X (with |I| =
2K0) such that Uge 1Sq is not z-embedded in X.

Proof. As is well known, BN — N has exactly 2%¥¢ open-and-closed subsets,
and in fact there exist 2%¢ mutually disjoint such sets (see [11, 6QS]). Conse-
quently, there exists, by Zorn's lemma, a maximal pairwise disjoint family
(Sa)ac ;r of open-and-closed subsets of BN — N such that [I] = 280, Let
S = UaerSeand let X = N U S. It is clear that each S, is compact and that
the family (S,)ac 7 is discrete in X. Moreover, since S is the topological sum of
the compact spaces S,, S is realcompact [11, 12G].

Now consider any nonempty zero-set Z € Z°(8N). If ZMN N = 0, then
the interior of Z in BN — N is nonempty [11, 6S.8], and hence Z contains a
nonempty open-and-closed subset of SN — N (since SN is extremally discon-
nected). By the maximality of (Sy)ec;, Z must therefore meet .S. Thus every
nonempty zero-set in BN meets X, and hence (since 3X = N) X is pseudo-
compact. On the other hand, .S is noncompact and closed in X, so X is non-
compact and hence nonrealcompact. But N is C*-embedded, and hence z-
embedded, in X, so it follows from 3.9 that .S is not z-embedded in X. Finally,
since X contains a closed set which is not z-embedded, X is nonnormal by 2.1.
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By now it is clear that rather stringent conditions must be imposed in order
that the union of a family of z-embedded sets be z-embedded. The only general
sufficient condition of which we are aware is as follows:

3.12. THEOREM. Let (Sa)ac 1 be a family of subsets of X and assume there is a
locally finite patrwise disjoint family (Pa)ac r of cozero-sets of X such that S, C
P, for every o € I. If each S, is z-embedded in X (or even just in P,), then
Uee 15« 15 z-embedded in X.

Proof. Let S = Uae 1S, and let 4 € Z(S). For each « there is, by hypothesis,
Z. € Z(X)such that A N S, = S, N Z.. (Since the cozero-set P, is z-embed-
ded in X, this is so even if .S, is just z-embedded in P,.) Set

Q=X — (X = Pa) Y Za)

and let Q = Ua¢ Qo Clearly Q, = coz f, for some f, € C(X) with f, = 0.
Moreover, the family (Qu)ac ; is locally finite in X, so f = X qc 1fa is a (well-
defined) continuous function on X. Clearly Z(f) = X — Q. It is now easy
to verify that 4 = S M Z(f), and thus S is z-embedded.

3.13. COROLLARY. Assume that X is the topological sum of a family (Xa)ae ;1 0f
subspaces of X, and let S, C Xa. If each S, 1s z-embedded in X,, then Uxc 1S«
15 g-embedded 1n X.

3.14. COROLLARY. If (S:)izi=x 1S a finite sequence of pairwise completely
separated z-embedded subsets of X, then \Ji=1S; is z-embedded 1n X.

4. z-embedding of every subset. Recall that X is perfectly normal in case
X is normal and every closed subset of X is a Gs (equivalently: every closed
subset is a zero-set). We shall say that X is weakly perfectly normal in case
every subset of X is z-embedded in X. Our terminology is motivated by the
following :

4.1. PROPOSITION. Every perfectly normal space is weakly perfectly normal, and
every weakly perfectly normal space is completely normal.

Proof. The first assertion is obvious, and the second is an immediate conse-
quence of 2.1. (Thus 2.1 makes completely transparent the (well-known) fact
that perfectly normal spaces are completely normal.)

Example 3.1 shows that a completely normal space need not be weakly
perfectly normal; and (see 4.8) if there is a measurable cardinal, then there is
a weakly perfectly normal space (of measurable power) that is not perfectly
normal. But, barring measurable cardinals, the precise relationship between
perfect normality and weak perfect normality is open. In this connection,
consider the following problems (all open):

4.2. Problems. (a) Does there exist a weakly perfectly normal (7';-) space of
nonmeasurable power that is not perfectly normal?
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(b) Does there exist a weakly perfectly normal T';-space of nonmeasurable
power that is not realcompact?

(c) Does there exist a perfectly normal T;-space of nonmeasurable power
that is not realcompact?

The apparently difficult 4.2(c) was first posed by the author in 1962 (un-
published), and later by R. M. Stephensen, Jr. (see [12, p. 140]). An affirma-
tive answer to 4.2(c) obviously implies one to 4.2(b). What we show here is
that an affirmative answer to 4.2(b) implies one to 4.2(a) (see 4.4), and that,
in fact, 4.2(b) is equivalent to the modified form of 4.2(a) obtained by re-
placing ‘‘perfectly normal” by the requirement that every point be a G;
(see 4.3). As a consequence of 4.4 and [25] (which came to the author’s atten-
tion after the original version of this paper had been accepted for publication),
we note also that affirmative answers to 4.2(a), (b), and (c) are consistent
with the usual axioms of set theory (see 4.9(a) and 4.10).

4.3. THEOREM. These are equivalent:

(a) There 1s a weakly perfectly normal Th-space (of nonmeasurable power)
with a non-Gs point.

(b) There 1s a weakly perfectly normal T:-space (of nonmeasurable power)
that is not realcompact.

4.4. COROLLARY. If there is a weakly perfectly normal T-space of nonmeasurable
power that is not realcompact, then there is a weakly perfectly normal Ti-space of
nonmeasurable power that is not perfectly normal.

We first prove a couple of lemmas:

4.5. LEMMA. Let S be a z-embedded subset of X and let A Ccl S. If A €
Z(S\JU A), then there is Z € 2 (X) such that A = (S\U A) N Z.

Proof. By hypothesis, there is a function f € C(S\U 4) such that A = Z(f).
For each n > 0, set

A, = {x € S [f(®)] = 1/n}.

Then 4, € Z(S), so there is Z, € Z(X) such that 4, = SN Z,. Let Z =
N\, Z, and note that Z € Z(X).

Now suppose that ¥ € 4. Consider any # > 0 and let " be an arbitrary
neighborhood of x in X. Since f(x) = 0, there is a neighborhood W of x in X
such that [f(y)| < 1/n for every y € SM W. By hypothesis, x € ¢l .S, and
hence VN W meets S. It follows that ¥V meets 4,, and we conclude that
x €clyd, C Z, Thusx € Z, so we have 4 C (S\U 4) M Z. On the other
hand,

SVUA)NZ=(NA)\JANZ)CA4,

and the proof is complete.
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4.6. LEMMA. Let Y be completely regular and assume that V = X \J {p} with
X z-embedded in Y. If S C YV and if SN X 1s z-embedded in X, then S is z-
embedded in Y.

Proof. f S C X, then S is z-embedded in ¥ by transitivity of z-embedding.
We may therefore assume that p € S. Let 4 € Z°(S) and set 1" = SN X.
By hypothesis, 7" is z-embedded in X, and hence also in Y.

Case 1. p € A. Suppose first that p € clyT so that A C T'\U {p} C clyT.
Since p € A, we have S = T"\U 4, and thus 4 € 2 (T \U 4). It follows from
4.5 that there is Z €¢ Z (V) such that 4 = (ITU A)NZ =SNZ.

Suppose, on the other hand, that p ¢ cly7. Then thereisf € C(Y) such that
f(p) = 0and f = 1on clyZ. Moreover, A N\ 1" € Z(T), so there is g € C(V)
such that AN T = TN Z(g). Then (as one easily verifies)

A =SOZ(fI A lgh-

Case 2. p ¢ A. In this case, A C T'so A € Z(T). Then there is f ¢ C(Y)
such that 4 = T°M Z(f). Moreover, since p ¢ 4 and p € S, we have p ¢
clyA. Hence there is g € C(Y) such that g(p) = 1 and g = 0 on clyA. In this
case, one can verify that 4 = SN Z(|f] V |g|), so the proof is complete.

Proof of 4.3. (a) = (b): Assume that Y is a weakly perfectly normal 7-
space with a non-G; point p. Let X = ¥V — {p} and note that X is weakly
perfectly normal. Moreover, X is both z-embedded and G;-dense in Y, so, by
1.1(b), X is C-embedded in V. It follows that X is not realcompact.

(b) = (a): Let X be a weakly perfectly normal 7';-space (of nonmeasurable
power) that is not realcompact. Pick any p € vX — X and set ¥V = X U {p}.
By 4.6, YV is weakly perfectly normal (and of nonmeasurable power). Now if
there is f € C(Y) with Z(f) = {p}, extend f to g € C(vX). But then Z(g) N
X = 0, contrary to the fact that every nonempty zero-set in vX meets X
[11,8.8(b)]. Thus {p} ¢ Z(Y), so {p} is not a G;in V.

4.7. Remark. 1t seems unlikely that (a) = (b) of 4.3 can be improved by
replacing, in 4.3(b), the phrase “‘with a non-G; point”’ by “‘that is not perfectly
normal.” (Consider the ‘“‘obvious’ modification of the preceding proof of
(a) = (b): “Let F be a closed set in ¥ which is not a Gs and let Y/F be the
quotient space obtained by collapsing F to a point.”” The difficulty is that the
image of X — F in Y/F under the natural map does not appear to be z-
embedded in V/F).

If D is a discrete space of measurable power, then D is not realcompact
[11, 12.2]. The proof of 4.3 therefore shows:

4.8. THEOREM. If D is discrete of measurable power, then there is p € vD — D,
and D \J {p} is weakly perfectly normal but not perfectly normal.

4.9. Remarks. (a) In [25], Ostaszewski shows that Jensen's ¢ implies the
existence of a perfectly normal, countably compact, almost compact [11, 6]]
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T1-space of power X; that is not compact (and hence not realcompact). Thus
(in view of 4.4) affirmative answers to 4.2(a), (b), and (c) are consistent with
the usual axioms of set theory (see also 4.10 below).

(b) If vX is weakly perfectly normal, then clearly X is also, but the converse
is an open question (obviously related to 4.2(a), (b), and (c)). (A plausible
conjecture is that the converse fails under <.)

(¢) In [32], Weiss shows that MA4 + T1CH implies that every perfectly
normal, countably compact 7';-space is compact. (M A4 and CH denote Martin’s
axiom and the continuum hypothesis, respectively.) This (together with (a))
suggests the question: Does M A + T1CH imply a negative answer to any one
of 4.2(a), (b), or (c)?

(d) Denote by Zo(X) (respectively, Za(X)) the set of all Borel (respec-
tively, Baire) subsets of X (see, e.g., [12, p. 136]). If X is perfectly normal,
then clearly #o(X) = Za(X), but the converse is an open question (due to
Katétov [15, p. 74]). In [12, p. 140], Hager, Reynolds, and Rice conjecture
that if Zo(X) = Za(X), and if X has no closed discrete subspace of mea-
surable power, then X is realcompact. By 4.9(a), this conjecture fails in
ordinary set theory.

(e) Every perfectly normal realcompact space is hereditarily realcompact
[11, 8.15]. However, by 4.10, the existence of a weakly perfectly normal real-
compact (in fact, compact Hausdorff) space that is not hereditarily real-
compact is consistent with the usual axioms of set theory.

4.10. THEOREM []. There is a weakly perfectly normal compact Hausdorff
space Y of power Ry such that Bo(Y) = Ba(Y) (whence Y is not perfectly
normal) and such that 'Y is not hereditarily realcompact.

Proof. Let X be the Ostaszewski space described in 4.9(a), and let ¥V = pX.
Since X is countably compact but not realcompact, Y is not Borel-complete
[12, 3.2 and 2.3]; hence Zo(Y) = ZBua(Y) by [12, 3.1], and obviously Y is not
hereditarily realcompact. Moreover, since X is perfectly normal and almost
compact, | Y| = X, and V is weakly perfectly normal (by 4.6).

We conclude this section with some simple characterizations of weak perfect
normality.

Recall that a subset 4 of X is locully closed in case for each x € A4 there is a
neighborhood 17 of x in X such that 4 M 17 is closed in V. It is easy to show
that A4 is locally closed if and only if 4 is the intersection of an open set and
a closed set (see [7, Chap. I, § 3.3]).

4.11. PROPOSITION. For any spuce X, these are equivalent:

(@) X 1s weakly perfectly normal.

(L) Every locally closed subset of X is z-embedded in X.

(c) Every open subset of X is normal and z-embedded in X.

(d) X is completely normal and every open subset of X is z-embedded in X.
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Proof. (a) = (b) is trivial.

(b) = (¢): If Gisopen in X, then G is locally closed and hence z-embedded.
Moreover, if Fis closed in G, then Fis locally closed in X. Then Fis z-embedded
in X, and hence in G, so G is normal by 2.1.

The implications (¢) = (d) and (d) = (a) follow immediately from 2.2.

A subset of a locally compact Hausdorff space is locally closed if and only
if it is locally compact [7, Chap. I, § 9.7], so we have:

4.12. CoroLLARY. A locally compact Hausdorff space X is weakly perfectly
normal if and only if every locally compact subset of X is z-embedded in X.

5. z-embedding of open sets. In this final section we study the class Oz
of spaces X for which every open subset of X is z-embedded in X. This class
includes (a) all (weakly) perfectly normal spaces (this is trivial), (b) all
extremally disconnected spaces (since X is extremally disconnected (if and)
only if every open subset of X is C*-embedded in X [11, 1H.6]), and (c) all
products of separable metric spaces (5.6). Moreover, membership in Oz is
inherited by open subspaces, dense subspaces, regular closed subspaces, by
retracts, and by arbitrary topological sums (5.3).

We first give several characterizations of Oz. Recall that a subset 4 of X
is regular closed in case A is the closure of an open set (equivalently: 4 =
clint A). A regular open set is the complement of a regular closed set.

5.1. THEOREM. For any space X, these are equivalent:

(a) X € Oz (1.e., every open subset of X is z-embedded in X ).
(b) Every dense open subset of X is z-embedded in X.

(c) Every regular closed subset of X is a zero-set in X.

(d) Every dense subset of X 1s z-embedded in X.

Proof. (a) = (b) is trivial.
(b) = (c): Let G be open in X, let S = G\J (X — cl G), and note that
S is a dense open set (hence z-embedded by (b)). Define f on S by:

_fo ifx € G,
f(x)_{l ifx € X —dG.

Then f € C(S), so we have Z(f) = SN\ Z for some Z ¢ Z (X). It follows
that cl G = Z, so the regular closed set cl G is a zero-set in X.

(¢) = (d): Let S be dense in X and let A; and 4. be subsets of S that are
completely separated in .S. To prove that S is z-embedded, it suffices to find
Zy, Zo € Z (X)such that 4; C Z;(i =1,2) and Z,NZ, NS = @ (see (3,
3.1]). By hypothesis, there is f € C(S) with f = 0on 4; and f = 1 on 4,. Let

Gy ={x€S:f(x) <1/3}, G:={x€S:f(x) > 2/3}.

Now S — clsG; is a regular open set in S, so by [30, Prop. 1.2] X — cly(clsG)
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= X — clxG,is a regular open set in X. Hence Z; = clxG; is regular closed in
X,s0Z, € Z(X) by (c). But clearly Z,\Z; N\ S = 0.

Since (d) = (b) is trivial, it suffices now to show that (c) = (a). Let S be
open in X and let f € C(S). For each n > 0, let

Go = {x € 5:|f(®)] < 1/n}.

Then, by (c), clxG, € Z (X),s0 Z = N, clxG, € Z (X). But Z(f) = SN Z,
so S is z-embedded in X. The proof is now complete.

The implication (a) = (c) is applied in [6] (where it is shown that if X has
a countable base and Y € Oz, then X X Y is z-embedded in 83X X 8Y).

5.2. CoroLLARY. If X € Oz, then X 1s weak cb.

Proof. (For the definition of ““weak cb”, see [18, § 3].) By [18, 3.1], X is
weak cb if (and only if), given a decreasing sequence (F,),en of regular closed
sets in X with MyenFn = 0, there exist Z, € Z(X) with NuenZ, = 0 and
Z, O F, for each n. The result is therefore immediate from 5.1.

The converse of 5.2 is false (even with ‘“weak cb” replaced by ‘“‘compact’);
3.1 and 3.4 provide easy counter-examples.

Remark. Let us call a space X regularly normal in case X is normal and every
regular closed subset of X isa G;in X. Itfollowseasily from 5.1 and 2.1 that X is
regularly normal if and only if every open subset of X is z-embedded in X and
also every closed subset of X is z-embedded in X. The class of regularly normal
spaces is strictly included in that of normal spaces, and strictly includes that
of weakly perfectly normal spaces. (The space of 3.1 is (completely) normal
but not regularly normal. On the other hand, BN is normal and extremally dis-
connected, and hence regularly normal; but BN is not completely normal
[11, 6Q.6], and hence not weakly perfectly normal (4.1).)

5.3. ProrosiTiON. (a) Let X € Oz and let S C X. If S is either open, dense,
or regular closed in X, or if S 1s a retract of X, then S € Oz.
(b) Oz s closed under the formation of arbitrary topological sums.

Proof. (a): The result is trivial for S open. If S is dense, let 1" be dense in S.
Then T is dense in X, hence z-embedded in X (5.1). But then 7" is z-embedded
in S, s0 S € Oz by 5.1. The regular closed case follows from 5.1 and the fact
that if F is regular closed in a regular closed subset of X, then F is regular
closed in X. Finally, if f: X — .S is a retraction onto S, G is open in S, and
Z ¢ Z(G), then there is Z' ¢ Z(X) with f~3(Z) = f~Y(G) N Z'. Then
ZZNScZ(S)and Z =GN (Z'NS).

5.13 below shows that membership in Oz is not, in general, inherited by
closed subspaces.

5.4. ProrosITION. Let S be dense and C-embedded in the Tychonoff space X.
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Then S € Oz if and only if X € Oz. (In particular, X € Oz if and only if
vX € 0z.)

Proof. Let S € Oz. By 5.3(a), it suffices to show that vX € Oz. Let G be
open in vX. By 5.1, cls(G N S) € Z(S), and, since vS = vX, it follows that
clix (GNS) € Z(vX) [11, 8.8(b)]. But since S is dense in vX, cl,y (G N S) =
cl,G, so the result follows from 35.1.

We do not know whether vX can be replaced by BX in the parenthetical
assertion of 5.4. (In particular, we do not know whether any of these spaces
are in Oz: SR, 8Q, or 3Q — Q).

Questions about z-embedding in products are usually elusive, so it is not
surprising that the behavior of Oz with respect to products is not at all
transparent. The information we have is summarized in 5.5, 5.6, 5.7, 5.8,
and 5.9.

5.5. THEOREM. Assume that each finite subproduct of X = e ;X satisfies
the countable chain condition. If every countable subproduct of X belongs to Oz,

then X € Oz.

Proof. Let F be a regular closed subset of X. By [24, 1.4(1)], X satisfies the
countable chain condition, so by (the proof of) [26, Theorem 3] there is a
countable subset J of I such that if x € F, y € X, and pra.(x) = pra(y) for
every a € J, then x = vy (cf. [24, 2.2]). It follows that F = pr,~(pr,(F))
(where pr, is the projection of X onto V = Il,c,;X,), which implies that
pr;(F) is closed and pr,(F) = cl pr (int F). By hypothesis, ¥ € Oz, so
pr,(F) € Z(Y) by 5.1. Hence F € Z (X), so X € Oz.

The following corollary is essentially due to Noble (who shows in [23] that

a product of separable metric spaces satisfies 5.1(d) above).

5.6. CoroLLARY (Noble). Every product of separable metric spaces belongs
to Oz.

We do not know whether “countable subproduct’ can be replaced by “‘finite
subproduct’ in 5.5. At any rate, it does not suthce merely to assume that each
factor X, is in Oz (see 5.8).

5.7. THEOREM. Assume X X YV is pseudocompuct. If X X YV € Oz, then
X €0z and Y € Oz.

Proof. We show that X € Oz. Let = be the projection map from X X ¥V
onto X and let /' be a regular closed set in X. Since 7 is open, 7#—'(F) is regular
closed in X X YV, so by 5.1 we have 7#='(F) = Z(f) for some f € C(X X Y).
For each n > 0, set

Up={p € X X V:|f(p)] < 1/n}.

Then #='(F) and (X X V) — U, are completely separated, so there is g, €
C(X X Y)such that g, = —1lon 7 '(F)and g, =1on (X X YV) — U,. For
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each » € [0, 1], set
Var = {PEXX an(P) <7’},
and for each » € R, define W, by:

7] if r <0,
W,y = a(V,,) if0=r=1,
X if 1 <r.
We claim that if » < s, then cl W,, C W,,. Thisis trivialif r < Qor 1 < s, so
assume that0 < r < s £ 1. By a theorem of Tamano [29], pseudocompactness

of X X Y implies that 7 is z-closed (i.e., 7(Z) is closed in X whenever Z €
Z (X X Y)), and we therefore have

cd Wy, =cn(V,,) Cr({p € X X YV:g(p) £r}) C Wy
It follows from [11, 3.12] that the formula

h,(x) =inf {r € Rix € W,,} (x € X)
defines %, as a continuous real-valued function on X. Since F = n(z~1(F)) C
Wpe and W,; C w(U,), it is easy to see that , £ 0 on F and #, = 1 on
X — w(U,). Setk, = (h, V 0) A 1,and let k = 3 ,27"k,.

Suppose thatx € Z(k), but that 7= (x) N Z(f) = @. Then 1/f* € C(zx1(x)),
where f* = flz—1(x). Consider any m > 0: Then k,(x) = 0, so h,(x) < 0,
whence x € 7(U,). Thusx = = (p) for some p € U,, and we have 1/|f*(p)| =
1/1f(p)| > m. We conclude that 1/f* is unbounded on 7~(x). But =—1(x) is
pseudocompact, a contradiction. Thus 7= (x) meets Z(f) = N, U,, so x €
7 (N, U,), and it follows that Z(k) C F. Butclearly F C Z(k),so F = Z(k)
is a zero-set in X. By 5.1, X € Oz.

It seems unlikely that the hypothesis of pseudocompactness can simply be
omitted in 5.7, but we have no counter-example.
The converse of 5.7 fails (even if X X ¥ is compact):

5.8. THEOREM. If D is an infinite discrete space, then D ¢ Oz, but 8D X BD
¢ Oz.

Proof. Since 8D is extremally disconnected [11, 6M.1], 8D € Oz. Now since
D is infinite, there is a point p € D — vD. Let X = vD U {p} and ¥V =
BD — {p}, and note that X is realcompact [11, 8.16] and Y is pseudocompact
[11, 6I.1 and 9.6]. Since A = {(x, x): x € D} is open-and-closed in X X YV,
the characteristic function f of A on X X ¥ can be extended to f* €
Cw(X X 7)). Now if BD X BD € Oz, then, by 5.1, X X Y is z-embedded in
BD X BD, and hence in X X 8D = vX X vV, Then X X Y is v-embedded in
vX X vV [2, 3.5] (cf. 1.1(c)), so v(X X V) = vX X vV [2, 7.6(a)]. But then
0 = f*(p, p) = 1, a contradiction.

5.9. Remarks. (a) 5.8 improves the known result that D X 8D is not
extremally disconnected [33, 191] (see also [11, 6N.1]). Part of the construc-
tion of the preceding proof generalizes [19, 5.3].

(b) None of the familiar spaces of ordinals is in Oz. Note first that W ¢ Oz.
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(It suffices to show that the open (discrete) subset
S = {a € W: ais not a limit ordinal}

of W is not z-embedded in W. Define f € C(S) by f(a) = 0 (respectively, 1)
if a is even (respectively, odd). Since each g € C(W) is constant on some tail
of W, we have Z(f) = SN Z(g) for every g € C(W).) Since W X W is
pseudocompact [11, 8M.3], it follows from 5.7 that W X W ¢ Oz. Hence,
by 5.3(a), none of the spaces W* W X W* W* X W* W X N, W X N*
W* X N, and W* X W* is in Oz. Hence also, by 5.4, the Tychonoff plank is
not in Oz.

(c) There are several results in [5] to the effect that the relation v(X X V) =
vX X vY holds if it holds “uniformly locally” in some appropriate sense (see
also [2, 8.11]). The following is another result of this kind: If X, ¥ € Oz, and
if X X Y has a normal closed cover U = (U, X Va)ac 1 0f nonmeasurable power
such that v(Uy X V) = vU, X vV, for every o € I, then v(X X V) = vX X
vY. (In view of 5.1, Z = (int U, X int V)ac; is a (nonmeasurable) refine-
ment of % by cozero-rectangles. Moreover, 2 is normal by [5, 2.4 and 0. (ii)],
so the result follows from [5, 3.3].)

A point x of a Tychonoff space X is a P’-point of X in case x € Z ¢ 2 (X)
implies that x € cl int Z (equivalently: every zero-set of X which contains x
has nonempty interior); and X is a P’-spuce in case every x € X is a P’-point
(see [31] and [17]). (Obviously every P-point of X [11] is a P’-point, and every
P-space is a P’-space. For examples of (compact) P’-spaces, see [31]. I am
indebted to R. Atalla for calling my attention to [31] and [17].) Isbell has
shown that every extremally disconnected P-space of nonmeasurable power is
discrete [14, 2.4] (for other proofs, see {11, 12H] and [1]). We show next that
Isbell's result can be generalized to the class of P’-spaces in Oz (see 5.12
below).

5.10. LEmMA. Assume X is Tychonoff. If Z is a nowhere dense zero-set in vX,
then X M Z is a nowhere dense zero-set in X.

Proof. Obviously X N Z € Z (X). Suppose that inty(X N Z) # @. Then
there is a nonempty cozero-set P in X such that P C X N\ Z. By [2, 5.1],
vP = vX — cl,xy (X — P), so vP is a nonempty open set in vX such that vP C
cluyP C Z. But then Z is not nowhere dense.

5.11. THEOREM. Assume X is Tychonoff of nonmeasurable power. If X € Oz,
then every nonisolated point of X 1s contained in a nowhere dense zero-set.

Proof. We adapt the proof of [1]. By 5.4 and 5.10, we may assume that X is
realcompact. Let p be a nonisolated point of X. By Zorn's lemma, there is a
maximal set . of mutually disjoint cozero-sets of X such that p ¢ U .%.
Since p is nonisolated, it follows easily that.S = \U.% is dense in X, and hence
z-embedded in X by 5.1. Now each member of .% is cozero in X and hence
realcompact [11, 8.14], and S is the topological sum of the members of .%.
Since |.¥] is nonmeasurable, it follows that S is realcompact [11, 12G]. But a
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z-embedded realcompact subspace must be Gj-closed (1.1(c)), so there is
Z € Z(X) such that p € Z and ZN' S = @. Obviously Z is nowhere dense.

5.12. CoROLLARY. Assume X is Tychonoff of nonmeasurable power and that
X € Oz. Then every P'-point of X 1s tsolated. Hence if X 1s a P’'-space, then X

18 discrete.

5.13. COROLLARY. Assume that X is of nonmeasurable power. If X s locally
compact and realcompact, but not compact (e.g., if X 1s infinite and discrete),
then X — X ¢ Oz.

Proof. By [10, 3.1], each zero-set in X — X is the closure of its interior, so
BX — X is a P’-space. Now if X — X € Oz, then, by 5.12, X — X is
discrete (as well as compact), so X — X is finite. But then X is pseudocompact
[11, 9D.3], and hence compact, a contradiction.

5.14. Remarks. (a) The hypothesis of nonmeasurability cannot be omitted
in 5.11 or 5.12: If D is discrete of measurable power, then (i) vD € Oz (5.4),
(i1) vD is a P-space [11,8A.5], and (iii) D # vD [11, 12.2] (so vD is not discrete).

(b) By 5.12, any nondiscrete P-space of nonmeasurable power (see, e.g.,
[11, 4N]) is an example of a basically disconnected space that is not in Oz.

(c) We do not know whether the nonmeasurability hypothesis of 5.13 can
be omitted. (Without it, the remaining hypotheses imply that 3X — X is not
basically disconnected [10, 3.2].)

We conclude with an F-space analogue of 5.12. (For the definition of
“ F-space’’, see [11, 14.25].)

5.15. ProproSITION. Every (T'ychonoff) F-space in Oz is extremally disconnected.

Proof. We need only note that X is an F-space (if and) only if every z-
embedded subset of X is C*-embedded [4, 4.5].

Added in proof (June 2, 1976). 2.1, 2.3, and 2.5 appear, without attribution,
in §7 of R. A. Ald and H. L. Shapiro, Normal topological spaces, Cambridge
Tracts in Math. 65 (Cambridge Univ. Press, London, 1974). These results are
due to the present author. For some additional results concerning z-embedding
of every subset and of every open subset, see T. Terada, Note on z-, C*-, and
C-embedding, Sci. Rep. Tokyo Kyoiku Daigaku Sect. 413 (1975), 129-132.
(Among other things, Terada notes, independently, the equivalence of (a)
and (d) of 4.11 and of (a), (b), and (d) of 5.1.)
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