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Abstract

In 2007, Andrews and Paule introduced a new class of combinatorial objects called broken k-diamond
partitions. Recently, Shishuo Fu generalised the notion of broken k-diamond partitions to combinatorial
objects which he termed & dots bracelet partitions. Fu denoted the number of k dots bracelet partitions of
n by Bi(n) and proved several congruences modulo primes and modulo powers of 2. More recently, Radu
and Sellers extended the set of congruences proven by Fu by proving three congruences modulo squares
of primes for Bs (), B7(n) and By (n). In this note, we prove some congruences modulo powers of 2 for
Bs(n). For example, we find that for all integers n > 0, Bs5(16n + 7) = 0 (mod 2°).
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1. Introduction

This paper is concerned with congruences modulo powers of 2 for the number of 5
dots bracelet partitions. We find several arithmetic progressions An + B such that for
any integer n > 0,

Bs(An + B) = 0 (mod 25),

where Bs(n) is the number of 5 dots bracelet partitions of n and k is a positive integer.

A combinatorial study guided by MacMahon’s partition analysis led Andrews and
Paule [1] to the construction of a new class of directed graphs called broken k-
diamond partitions. A broken k-diamond partition 7 = (aj, az, . .. ; by, b3, bs, .. .) is
a plane partition satisfying the relations illustrated in Figure 1, where here and in
the rest of the figures, a;, b; are nonnegative integers and a; — a; is interpreted as
a; > a;. More precisely, each building block in Figure 1, except for the broken block
(by, b3, . .., byry2), has the same order structure as shown in Figure 2. Each block is
called a k-elongated partition diamond of length 1, or a k-elongated diamond, for short.
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FiGure 1. A broken k-diamond of length 2n.
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FIGURE 2. A k-elongated diamond.

Let Ai(n) denote the number of broken k-diamond partitions of n. From [1], we
know that for any positive integer k,

- Fofore
A "= s
;) k(n)q f13f4k+2

where here and throughout this paper, f; is defined by

fi=]]a-4" m<1

r=1

Employing generating function manipulations, Andrews and Paule [1] proved that for
any integer n > 0,

Ay(2n + 1) = 0 (mod 3). (1.1)

Soon after, Hirschhorn and Sellers [5] found an explicit representation of the
generating function for A;(2n + 1) which implied (1.1). Mortenson [7] reproved (1.1)
by developing a statistic on the partitions enumerated by A;(2n + 1) which naturally
breaks these partitions into three subsets of equal size. Recently, Fu [4] presented
a combinatorial proof of (1.1). He also employed his combinatorial approach to
naturally define a generalisation of broken k-diamond partitions which he termed k
dots bracelet partitions. To define k dots bracelet partitions, Fu first gave the definition
of the ‘infinite bracelet with k dots’. For k > 3, an ‘infinite bracelet with k dots’ is the
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FiGure 3. Infinite bracelet with k dots.
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FiGure 4. k — 1 different half bracelets.
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configuration shown in Figure 3. It is composed of repeating ‘diamonds’ and ‘dots’
with k — 2 ‘dots’ between two consecutive ‘diamonds’.

It is easy to see that there are essentially k — 1 different ways to cut an infinite
bracelet with k dots in half. For each different ‘cut’, we get a half bracelet (the right
half) in different configuration. Graphically, see Figure 4.

For any positive integer k, a ‘k dots bracelet partition’ is a partition which consists
of the k — 1 different half bracelets (in the sense of different configuration) as shown
in Figure 4 above. Fu utilised By (n) to denote the number of k dots bracelet partitions
of n and proved that

Z Ben)g' = 2? (12)

Fu also established various congruence properties for Bi(n) modulo primes and
modulo powers of 2. Very recently, Radu and Sellers [8] extended the set of
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congruences proven by Fu by proving three congruences modulo squares of primes
for %5(}1), 587(71) and fBll(l’l).

The aim of this paper is to prove some congruences modulo powers of 2 for Bs(n).
The proofs mainly rely on some 2-dissections of certain infinite products. Recall that
the m-dissection of the power series P(q) = )., a,q" is the presentation of P(q) as

P(q) = Po(q) + P1(q) + - - + Pu-1(q),

where

(o9

Pk(q) = Z amn+kqmn+k-
n=0

The main results of this paper can be stated as follows.

THeorem 1.1. For any integer n > 0,

Bs(4n + 3) = 0 (mod 22), (1.3)
Bs(8n + 7) =0 (mod 24), (1.4)
Bs(16n + 7) = 0 (mod 2°), (1.5)
B5(32n + 31) = 0 (mod 2°). (1.6)

THeOREM 1.2. Let n be a nonnegative integer. We have
Bs(32n + 15) = 2*Bs(8n + 4) (mod 2°). (1.7)
If24n + 11 is a prime, then

Bs(32n + 15)
{24 (mod 2°) if 24n+ 11 is of the form 11x*> + 108xy + 396y

or 44x% + 108xy + 99y?, where x and y are integers, (1.8)
0 (mod 2°)  otherwise.

Tueorem 1.3. For all nonnegative integers nandi=1,2,3,4,

B5(32n + 19) = 0 (mod 2°), (1.9)
Bs5(64n + 51) = 0 (mod 2°), (1.10)
Bs5(64n + 59) = 0 (mod 2°), (1.11)
B5(128n + 91) = 0 (mod 2°), (1.12)
Bs5(640n + 128i + 27) = 0 (mod 2°) (1.13)

and

4 (mod 2%) if n=Py,

0 (mod 2%) otherwise, (1.14)

Bs(64n + 3) = Bs5(640n + 27) = {

where Py is either of the kth generalised pentagonal numbers k(3k + 1)/2.
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THeoreM 1.4. Let n and k be nonnegative integers. We have

22k+3 +1

%5(22k+3 "t -

) = B5(8n + 3) (mod 23). (1.15)

Tueorem 1.5. For all nonnegative integersnandi=1, 2,3, 4,
Bs(20n + 4i + 2) = B5(40n + 22) = 0 (mod 2)

and

1 (mod?2) ifn=~,

Bs(40n +2) = {0 (mod 2) otherwise,

where Py is either of the kth generalised pentagonal numbers k(3k + 1)/2.

THeorEM 1.6. For all nonnegative integers n,
Bs(4n + 1) = bs(n) (mod 2),

where bs(n) is the number of 5-regular partitions of n.

By Theorem 1.6 and some results proved in [3, 6], we can obtain the following
corollaries.

CoroLLARY 1.7. For all nonnegative integers n, B5(8n + 1) is odd if and only if 12n + 1
is a perfect square and Bs(16n +5) is even unless 24n + 7 = 2x> + 5y* for some
integers x and y.

CoroLLARY 1.8. For all nonnegative integers n, Bs5(80n + 21), Bs(80n + 53), and
Bs5(4624n + 261) are even numbers.

CoroLLARY 1.9. Suppose that p is any prime greater than 3 such that —10 is a
quadratic nonresidue modulo p, u is the reciprocal of 24 modulo p?, and p | r. Then,
for all nonnegative integers n, Bs(16p*n + 16u(pr — 7) + 5) is even.

2. Two lemmas
In this section, to prove our main results, we first present two lemmas.
Lemma 2.1. The following 2-dissection holds
A i
A

2.D

Equation (2.1) follows from Entry 25 (v) and (vi) in [2, page 40]. The authors also
presented another proof of (2.1) in [11].
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Lemma 2.2. The following 2-dissections hold
s fsfy N fi fiofao

= 2.2
fi fifao qf;fsfzo 22

and
ﬁ _ f2f8f230 _qf42f40
fS f4f130f40 f8f12().

Equation (2.2) was proved by Hirschhorn and Sellers in [6]; see also [10, 11]. It is
easy to check that for any odd integer k > 1,

2.3)

fi(=q) = f—gk 24
JicSak
Replacing g by —¢g in (2.2) and employing (2.4),

Afafiy _ fsfz  fifiofao

Bfsho  frfwo 1 Bfifo’

which yields (2.3).

3. Proofs of the main results

In this section, we provide proofs of Theorems 1.1-1.6 and Corollaries 1.7-1.9 by
employing Lemmas 2.1 and 2.2.
Setting k =5 in (1.2),

N ffs
Bs(n)g" = . 3.1
; s(n)q 7 fio 3.1)

From (2.1), (2.2) and (3.1), we see that

i Bs(n)q" = ﬁﬁi _ f ( 414 4 fffél)(fsfzzo N f43f10f40)

= == +
por fofi ft fio\fA S 1 20 N f3 fao qfffsfzo
14 2 17 2 5 2 5 (3
f2 fgf10f40 fz fngO fz f10f40 fz f20
which yields
X L 5 fifo
Bs(2n)g" = +4 (3.2)
2, B = s T
and
R 57 fao LR
Bs2n + 1)q" = +4 . (3.3)
; e e fio f'fsfo
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In view of (2.1) and (2.3), we deduce that, modulo 32,

217f20 +4 22f45f12() _ 217f20L 4 fzfsflo 1 f1
ffifio f' o fifio £l o f2fs
17 2 4 2 £5 2 2 4 3 2
2 f20 4f8 4 2f4f10 4fg 3 foszo f4f40
- 4 4 _
fffo(f;“fg‘ i qu'ﬂ) T (f2‘4f§‘+ T ) (f4f130f4o qfsffo)

7 14 2 4
G Jj‘i)o((fz"‘fg )+ 16‘1(%)3]22—{5)

(3.4)
f4f10 4 3 414 2f42f5? f2f8f230 f42f40
() + 12al ) o N e - 02
f20 f2 fg fz fg f4f10f40 f8f1()
51 46 39
4 f20 4 fzo 4 f20
= +4 + 16g———
PR P T fofo P F o
49 34 22 37
- q 4(;1 1J;4O + 169 35f43f20 — 164 ’ ]:6 Ju
f2 fg f20 f2 fgf10f40 f2 fng
Combining (3.3) and (3.4), we find that, modulo 32,
= 152 fio 2 fo 5
Bs(dn + 3)q" =16 -4 + 16 . (3.5)
21 S = s i e T T oo

Congruence (1.3) follows from (3.5).
Employing (2.1) and (2.3), we have, modulo 8,

VA el Il T fifo fi¢ s
5 fio LN fots ) Z fao ¥ fao 7S \10
_ 42 4J3 0 J4 ) 47478
7 (f;“fg*+ )(f4f130f4o "fgfﬁo) fi3flo(f214f84+ 1 ;0)
34 2 4 3 2
f10 4 4f8 1 fafs 20 f4f40
422 4 _
£ fao (f214fg ’ )(ﬂffofm quffo)
_ f239f10( )(fzfsffo B f42f4o)_fz49fzo( i )0
AR FE o\

Pfio 1 fi 249f20L+4 234f120Lﬂ

(3.6)

fifofo T Rfh

34 3 2
BB 25

fafi fao quflzo
Y5 4 12 fao 1 fro Vi 4 1 fao

4 —4q — +4 —4q .
7 £37 1 74 T 2
IR f5 1L fao Yo S e B fofio 217 o
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Combining (3.5) and (3.6), we see that, modulo 32,

< 120 f 1% fg
Bs(8n +7)q" = 16 +16 .
Zﬁ ST Y fo

Congruence (1.4) follows from (3.7).
By (2.1) and (2.3), we have, modulo 2,

1% f 1 f1 f125f20
A
lezofzo T2 Bfsf  fifo
= 4 -
7 (f;“f‘*+ D ) (f4f0f40 "fsffo)
lezsfzo( i 4 f42f3)

+4q
o\ .

fszzo( i )22( hfsfz _qﬁf40)+f2125f20( 4
f437 4f8 f4f10f40 f8 2 7flO 24fg
_ 4270f20 73f20f40 f4 85fZO
T AV o fo f2188f88 10 f2197f92f

It follows from (3.7) and (3.8) that, modulo 32,
By o 3o

Z Bs(l6n+7T)¢" =16

+
g f1187 f4?7 f53 f20 f1197 f492 fS
and
- f2273f10f20
Z 585(161’1 + 15)qn = 16@
n=0 1 JaJs
It is easy to see that for any positive integer k, modulo 2,
fk2 = fok-
Employing (3.11), we deduce that, modulo 2,
f270f4
1872 87 1(3) = f15f5’
f[ f4 f5 f20
7% fio
157 2 = f15f5
f] ff f5
and
57 fiofao
~8 o 2 = 2/
KR0S
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From (3.9), (3.12) and (3.13), we see that, modulo 32,
Z Bs(16n +7)¢" = 0.
n=0

Congruence (1.5) follows from (3.15).
In view of (3.10) and (3.14), we obtain, modulo 32,

D" 85320+ 15)¢" = 16 i fio
n=0

and

D" 85320+ 31)q" =0,
n=0

which yields (1.6).
Let c(n) be defined by

fifio=1+) conq"

n=1

In [9], Sun proved that if 24n + 11 is a prime, then

—1 if 24n + 11 is of the form 44x? + 108xy + 99y,

0  otherwise.

{1 if 24n + 11 is of the form 11x% + 108xy + 396y?,
c(n) =

Congruence (1.8) follows from (3.16), (3.17) and (3.18).
By (3.5) and (3.11), we find that, modulo 8,

Bs(@n+3)q" =4 =
; KA fo

which yields

D Bs(8n+3)q" = PRAEY
n=0 fl

It follows from (2.2) and (3.11) that, modulo 2,

Lt fifio

ffs _ (Bfn  fifufuoy  fakfy
f _f4( 2 fao T 15 fafro )_ 7 fao ’
_ J2fa0
=fs+q o

By (3.19) and (3.20), we deduce that, modulo 8,

> Bs(16n+3)g" = 4f,
n=0
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and

> ®Bs(16n+ 11)g" = 4

n=0

S

Congruences (1.9) and (1.10) follow from (3.21).
In view of (2.3) and (3.11), we have, modulo 2,

fifo _ 5 (fzfsfzo f42f40): ffsfy  fifofio

q q
/5 fafipfao  fofly)  fafinfao faf}
_ Jsho
= qfao-
Employing (3.22) and (3.23), we find that, modulo 8,
Z Bs(32n + 11)g" = f‘}ﬁ
1

and

D" B5(32n+27)q" = 4.
n=0

Congruences (1.11), (1.12) and (1.13) follow from (3.25).
In view of (3.21) and (3.25), we have, modulo 8,

> Bs(64n +3)g" = ) Bs(640n +27)g" = 4.
= n=0

By Euler’s pentagonal number theorem,

Z( l)k kGk=1/2 _ 1 4 Z( 1 (qk(Sk /2 qk(3k+1)/2)_

k=—oc0

Combining (3.26) and (3.27), we deduce that, modulo 8,

369

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

D Bs(64n +3)g" = Z B3(640n + 27)g" = 4 + 4 Z( 1) (ghR=D2 4 ghGReDr2)

n=0 n=0 k=1

(o)

= 4+4Z(qk(3k—1)/2 + qk(3k+1)/2),
k=1

which yields (1.14).
From (3.19) and (3.24), we see that, modulo 8,

Bs(32n + 11) = Bs5(8n + 3).

By (3.28) and mathematical induction, we find that (1.15) is true.
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By (2.3), (3.2) and (3.11), we see that, modulo 2,

N fi By fifwo f2f4
Bs(2n)g" = — =
Z s2ma s faffao +qf8 o flO

which implies that, modulo 2,

Z Bs(an)g = 1112 flfz

and
D Bs@n +2)q" = fio.
n=0

Theorem 1.5 follows from (3.27) and (3.29).
Employing (2.3) and (3.11), we obtain that, modulo 2,

fifa Ffsfo f42f40)

5 =5 (f4f0f4o - qfsflzo

_ f2f8f2() _ f2f42f40 fg
A fa 1 S ff " fio +ahto.

which implies that, modulo 2,

D BsBn+4q" = fi fio.
n=0

Congruence (1.7) follows from (3.16) and (3.30).
By (3.3), (3.4) and (3.11), we find that, modulo 2,
fQSIfIO _ f5

Bs(dn+ 1)g' = 2210 =S5
ZO st DA = s =

[11]

(3.29)

(3.30)

(3.31)

Let bs(n) denote the number of 5-regular partitions of n. Adopting the convention that

bs(0) = 1, the generating function for bs(n) is then

i bs(n)q" = —
n=0

Theorem 1.6 follows from (3.31) and (3.32).

(3.32)

Using the theory of modular forms, Calkin et al. [3] proved a result equivalent to
the following: for all integers n > 0, bs(2n) is odd if and only if 12n + 1 is a perfect
square. Employing nothing more than Jacobi’s triple product identity, Hirschhorn and
Sellers [6] proved the following result: for all integers n > 0, bs(4n + 1) is even unless

24n + 7 = 2x* + 5y? for some integers x and y.

Corollary 1.7 follows from these two results and Theorem 1.6.
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In [3], Calkin et al. also proved that for all integers n > 0, modulo 2,
bs(20n+5)=0 (3.33)
and
bs(20n + 13) = 0. (3.34)
Hirschhorn and Sellers [6] discovered that, modulo 2,
bs(1156n + 65) = 0. (3.35)

Corollary 1.8 follows from (3.33), (3.34), (3.35) and Theorem 1.6.

Hirschhorn and Sellers [6] also proved the following result: Suppose that p is
any prime greater than 3 such that —10 is a quadratic nonresidue modulo p, u is the
reciprocal of 24 modulo p?, and p { r. Then, for all integers n, modulo 2,

b5(4p2n +4u(pr—7)+1)=0.

Corollary 1.9 follows from the above result and Theorem 1.6. This completes the
proof.
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