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1. Introduction

LetlJS, A and AR denote the collections of all non-negative integers, isols
and regressive isols respectively. An co-group is a pair (a,p) where (1) a s E,
(2) p(x,y) is a partial recursive group multiplication for a and (3) the function
which maps each element of a to its inverse under p has a partial recursive exten-
sion. If G = (a, p) is an co-group, we call the recursive equivalence type of a the
RET or order of G (written o(G)). Let GR = {Te AR\ T = o(G) for some co-group
G} . It follows from the version of the Lagrange Theorem given in [4] that AR — GR

is non-empty and has cardinality c. In this paper we characterise the isols in GR

as follows: A regressive isol T belongs to GR if and only ifTeE or Tis infinite
and there exist a regressive isol U ^ T and a function anfrom E into E — {0}
such that U ^*an and T= Uvan. (The " g * " relation is denned in [2]). In
presenting the proof of this result, we shall assume that the reader is familiar with
either [3] or [4]. The proof that, given an and U ^*a«, a group of order Uvan

exists is based on the natural trick—one constructs a direct product of disjoint
cyclic groups of order ao,au--- indexed by elements of a set of RET U. The proof
that any regressive group G has order of the form Uoan is trivial for finite groups;
the proof for infinite regressive groups is based upon the construction of an
ascending chain of finite subgroups Gf of G such that \^)^L0 G, = G and

u

2. Characterization of GR

In the following we shall write pf to denote the range of a function / .

THEOREM 1. Let G = {i,p) be an co-group of order T, where TeAR. Then
379
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there exist a regressive isol U ^ T and a function an from E to E — {0} such
that U S*<*n and T = Tlvan.

PROOF. We need consider only TeAR— E. Let tn be a regressive function
such that x = ptn. Let q(x) be a regressing function for tn. (We assume without
loss of generality that t0 is the identity element of G.) We shall give simultaneous
inductive definitions of an increasing function d(n), an increasing sequence {Gn}
of finite subgroups of G such that (Jn°l0Gn = G and a function an such that
tdw = * an- We will then show that v ,T — v, where v = ptd(n), and complete
the proof by showing that T = n ^ , where U = Reg(v).

We first note that given a finite subset a of x if we alternately apply q and
take the group closure we can effectively enumerate the smallest subgroup G(a)
of G containing a and closed under q and the group operation. Since x is isolated
G(a) is finite and we can decide when G(a) has been obtained. We now proceed
with the necessary definitions.

G - ! = <f>

i = 0 (1) d(o) = 1

(2) Go = G({fJ)

(3) a0 = o(G0)

i = n + 1 (1) d(n + 1

(2) Gn+1 =

o(Gn+l)
a.4., =

o(Gn)

It follows immediately from the definition above that both the function d(n)
and the sequence of sets {Gn} are increasing. Given td{n) one can find to,t1,---,td(n)

and determine all elements of each G;, 0 ^ i ^ n. This information is sufficient
for the computation of a0, at, • • •, an. Hence td(n) g „. an. Similarly given x = tk e x,
there is a number m such that xeGm — Gm_, and one can use the definition
above to compute td(0), • • •, td(m). This information is sufficient to determine
whether or not xev. Hence v|x — v.

We now prove that o(G) = Uvan. We use the notation of [3]. Let y denote
the set of all indices of finite functions / s u c h that <5e/£ v and (V«)[/(fd(n))< a,] .
Since Re^(y) = Hvan, we need only show that y m x. Using Proposition 1 of
[1], we shall prove this by describing a one-to-one function a(x) mapping T onto
y such that oc(x) and a~1(x) have partial recursive extensions. <x(x) is defined as
follows: For each meE, let

ym = (n [ney and td(m)e5ern and [td(k)edern => k g m ] } .
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We write G and y as disjoint unions of finite sets as follows:

y = y0UyiU--KJynU---

G = {t0, ' l > " ' > ' d ( l ) - l } U { ' < J ( l ) > " " > ' d ( 2 ) - l } U ••• U { l « i ( n ) > " - ' ^ ( n + l ; - l } 1 " ' •"

We observe that the nth finite set in the decomposition of G is merely Gn — Gn-i.
It is easily seen that the cardinality of the nth set in each decomposition above is
(aoai •••<*„) — (aoa1 ••• an_j) for n > 1 and a0 for n = 0. Furthermore, given any
element of either yn or Gn - Gn_lt we can (uniformly) effectively recover td(n)

and list all elements of both yn and Gn — Gn_! in increasing order. Let a(x) be the
function from T to y which pairs the elements of each set Gn — Gn_ t with the ele-
ments of yn in increasing order. The preceding discussion shows that both a(x)
and a~i(x) have partial recursive extensions. This completes the proof.

Let an be a sequence of positive integers.

PROPOSITION 1. If T ^ * a n and TeA.R — E, then Il'raneAR.

PROOF. Left to the reader.

THEOREM 2. Let Te.\R — E and let an be a sequence of positive integers
such that T ^*an. Then there exists a regressive co-group of order TlTan.

PROOF. Let BE be the group of all permutations of E which leave all but
finitely many numbers fixed, and l e t / <-» / * be any Godel numbering of BE which
is one-to-one and bi-effective. It was shown in [5] that P(E) = {f*\feBE} is
an co-group under the induced multiplication/* • g* = ( / o g)*. We shall con-
struct a subgroup of P(E) of order TlTan. We will use the recursive pairing func-
tion j(x,y) and associated projection functions fe(jc) and l(x) defined in [1]. Let
tn be any regressive function such that range (tn) e T. Let yn denote the cyclic
permutation

(Ktn,O)J(tn,l),-,j(tn,an-l)).

Let [•)»„*] denote the cyclic subgroup of P(E) generated by y*. Let G be the sub-
group of P(E) generated by {yn* | n £ £} .

Since the permutations yn move disjoint sets of numbers, G is the weak
direct product of the cyclic groups [?„*]. Thus G is an co-group with non-trivial
elements of the form Yl^i ?*,'*> where 0 < /,- < an., i = 1, ••-,£. Let oc(x) be the
function with domain G which maps x = [~]f= t y*'t' to the index of the finite
function / defined by

clj, x = tn. for some i, 1 g i <; k
fix) = \

10,

and maps the identity permutation to the constant function/(x) = 0 . It is readily
seen that a maps G one-to-one onto the set

https://doi.org/10.1017/S1446788700010867 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010867


382 M. J. Hassett [4]

P = {n | 5ern c ptk and (Vfc)[rB(O < a j} .

Since the RET of /? is IT,-an, we need only show that a(x) and or 1(x) have partial
recursive extensions to complete the proof. We leave this straightforward verifi-
cation to the reader.
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