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1. Introduction

LetZE, A and A, denote the collections of all non-negative integers, isols
and regressive isols respectively. An w-group is a pair («, p) where (1) « < E,
(2) p(x,y) is a partial recursive group multiplication for « and (3) the function
which maps each element of « to its inverse under p has a partial recursive exten-
sion. If G = (a, p) is an w-group, we call the recursive equivalence type of « the
RET or order of G (written o(G)). Let Gg = {TeARl T = o(G) for some w-group
G} . It follows from the version of the Lagrange Theorem given in [4] that Az — Gg
is non-empty and has cardinality c. In this paper we characterise the isols in Gg
as follows: A regressive isol T belongs to Gy if and only if T€E or T is infinite
and there exist a regressive isol U £ T and a function a, from E into E — {0}
such that U £,a, and T = Iya,. (The “<,” relation is defined in [2]). In
presenting the proof of this result, we shall assume that the reader is familiar with
either [3] or [4]. The proof that, given a, and U £,a,, a group of order Iya,
exists is based on the natural trick—one constructs a direct product of disjoint
cyclic groups of order ag, a,,--- indexed by elements of a set of RET U . The proof
that any regressive group G has order of the form Ila, is trivial for finite groups;
the proof for infinite regressive groups is based upon the construction of an
ascending chain of finite subgroups G; of G such that U,f";o G; = G and
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2. Characterization of G

In the following we shall write pf to denote the range of a function f.

THEOREM 1. Let G = (t, p) be an w-group of order T, where TeAg. Then
379
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there exist a regressive isol U £ T and a function a, from E to E - {0} such
that U £, a, and T = Ia,.

Proor. We need consider only TeAg— E. Let ¢, be a regressive function
such that © = pt,. Let g(x) be a regressing function for ¢,. (We assume without
loss of generality that ¢, is the identity element of G.) We shall give simultaneous
inductive definitions of an increasing function d(n), an increasing sequence {G,}
of finite subgroups of G such that U,,“’:O G, = G and a function a, such that
tim) S a,. We will then show that v 7 —v, where v = pt,,,, and complete
the proof by showing that T = Ilya,, where U = Regq(v).

We first note that given a finite subset o of t if we alternately apply ¢ and
take the group closure we can effectively enumerate the smallest subgroup G(o)
of G containing ¢ and closed under g and the group operation. Since 7 is isolated
G(o) is finite and we can decide when G(o) has been obtained. We now proceed
with the necessary definitions.

G, = ¢

i=0 (1) do) =1
(2) Go = G({t;})
(3) ao = o(Go)

i=n+1 (1) dn+1) = (u)[t,¢G,]
(2) Guii = G({tan+1)})

0(G,+4)

(3) a,41 = (G,

It follows immediately from the definition above that both the function d(n)
and the sequence of sets {G,} are increasing. Given t,.,, one can find t5,1;, -, ty)
and determine all elements of each G;, 0 < i < n. This information is sufficient
for the computation of ag,a,, -, a,. Hence t;,, £ 4 a,. Similarly given x = t, e,
there is a number m such that xeG,, — G,,_, and one can use the definition
above to compute ;) ', tym)- This information is sufficient to determine
whether or not x ev. Hence v[r — .

We now prove that o(G) = ITya,. We use the notation of [3]. Let y denote
the set of all indices of finite functions fsuch thatd, f < v and (Vr)[ f(1,,) < a,].
Since Req(y) = Ilya,, we need only show that y ~ 7. Using Proposition 1 of
[1], we shall prove this by describing a one-to-one function a(x) mapping z onto
y such that a(x) and «~(x) have partial recursive extensions. a(x) is defined as
follows: For each meE, let

Ym = {n |ney and ty,, €d,r, and [t,4,€d,r, > k < m]}.
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We write G and y as disjoint unions of finite sets as follows:
Yy =P UV Up, U

G = {tostys s tay=1) Y {taay > tazy= 13 Y I {taays s tagma )= 1 J I -

We observe that the nth finite set in the decomposition of G is merely G, — G, _; .
It is easily seen that the cardinality of the nth set in each decomposition above is
(apa; - a,) —(apa, - a,_,) for n > 1 and a, for n = 0. Furthermore, given any
element of either y, or G, — G,_;, we can (uniformly) effectively recover ,,,
and list all elements of both y, and G, — G, _, in increasing order. Let a(x) be the
function from 1 to y which pairs the elements of each set G, — G,_, with the ele-
ments of y, in increasing order. The preceding discussion shows that both a(x)
and o~ !(x) have partial recursive extensions. This completes the proof.
Let a, be a sequence of positive integers.

ProposiTioN 1. If T £,4a, and Te Ay — E, then Ilya,cAg.
ProoF. Left to the reader.

THEOREM 2. Let TeAr — E and let a, be a sequence of positive integers
such that T Z,a,. Then there exists a regressive w-group of order lya,.

Proor. Let By be the group of all permutations of E which leave all but
finitely many numbers fixed, and let f <> f* be any Godel numbering of B which
is one-to-one and bi-effective. It was shown in [5] that P(E) = {f*|fe B;} is
an w-group under the induced multiplication f* - g* = (fo g)*. We shall con-
struct a subgroup of P(E) of order I1;a,. We will use the recursive pairing func-
tion j(x, y) and associated projection functions k(x) and I(x) defined in [1]. Let
t, be any regressive function such that range (t,) e T. Let y, denote the cyclic
permutation

(j(tn’O)J(tn’ 1)’ ""j(tn’an - 1))

Let [y,*] denote the cyclic subgroup of P(E) generated by yy. Let G be the sub-
group of P(E) generated by {y,,*l n < E}.

Since the permutations 7y, move disjoint sets of numbers, G is the weak
direct product of the cyclic groups [y,*]. Thus G is an w-group with non-trivial
elements of the form an=1 y,’ff‘, where 0<[;<a,, i=1,---,k. Let a(x) be the
function with domain G which maps x = [Ji-, 7#%to the index of the finite

function f defined by

f(x) - {0’ x¢{tnl"”’t'lk}

and maps the identity permutation to the constant function f(x) = 0. It is readily
seen that « maps G one-to-one onto the set

liy x=1t, forsome i, 1 £i<k

https://doi.org/10.1017/51446788700010867 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010867

382 M. J. Hassett [4]

B = {n, 0.1, S pt, and (Vk)[r, (1) <a,]}.

Since the RET of g is 1,4, , we need only show that «(x) and a~*(x) have partial
recursive extensions to complete the proof. We leave this straightforward verifi-
cation to the reader.
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