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ON m-COVERS AND m-SYSTEMS

ZHI-WEI SUN
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Abstract

Let A = {a;(mod ns)}ls‘=0 be a system of residue classes. With the help of cyclotomic fields we obtain
a theorem which unifies several previously known results related to the covering multiplicity of A. In
particular, we show that if every integer lies in more than my = LZLI 1/ns] members of A, then for
any a =0, 1, 2, ... there are at least (La’;’nooj) subsets 7 of {1, ..., k} with >, 1/ns =a/ng. We also
characterize when any integer lies in at most m members of A, where m is a fixed positive integer.
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1. Main results

Fora € Zandn e ZT ={1, 2, 3, ...}, we simply denote the residue class
{x €Z|x =a (mod n)}

by a(n). For a finite system
A ={as(no)l_, (1.1)

of residue classes, the function wy : Z - N={0, 1, 2, .. .} given by
wa(x) =[{1 <s <k |x €ag(ng)l (1.2)

is called the covering function of A. Obviously wy4(x) is periodic modulo the least
common multiple N of the moduli n1, ..., ng, and it is easy to see that the average
SV wa(x)/N equals Y5, 1/n,. As in [13] we call m(A) = minyez wa(x) the
covering multiplicity of system (1.1).

Let m be any positive integer. If wy(x) > m for all x € Z (that is, m(A) > m),
then (1.1) is said to be an m-cover of Z asin [11, 12], and in this case Zle 1/ng > m.
Covers (that is, 1-covers) of Z were first introduced by Erd6s [2] and they are also
called covering systems. If wa(x) =m for all x € Z, then we call (1.1) an exact

Supported by the National Natural Science Foundation (grant 10871087) of China.
© 2009 Australian Mathematical Publishing Association Inc. 0004-9727/2009 $16.00

223

https://doi.org/10.1017/5S0004972709000641 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972709000641

224 Z.-W. Sun 2]

m-cover of 7Z as in [12, 13] (and in this case Zle 1/ng =m). By [8, Theorem
1.3], when m > 2 there are exact m-covers of 7Z that cannot split into two covers
of Z. If wya(x) <m for all x € Z, then we call (1.1) an m-system, and in this case
Zle 1/ns < m; any 1-system is said to be disjoint.

The reader may consult Guy [5, pp. 383-390] and Simpson [9] for some problems
and results in covering theory. Covers of Z have many surprising applications; see, for
example [1], [5, Sections A19 and B21], [14, 20, 21]. Sun [19] showed that m-covers
of Z are related to zero-sum problems for abelian groups. Also, the topic of covering
systems stimulated the birth of some new algebraic results (see [15, 17]).

Throughout this paper, for a, b € Z we set [a, b] = {x € Z | a < x < b} and define
[a, b) and (a, b] similarly. As usual, the integral part and the fractional part of a real
number « are denoted by |« | and {«}, respectively.

For system (1.1) we define its dual system A* by

A*={a; +rng) |1 <r <ng, 1 <s <k} (1.3)

As {a; + r(ns)}f;f)l is a partition of Z for any s € [1, k], we have wa (x) + wa=(x) =
k for all x € Z. Thus w4 (x) < m for all x € Z if and only if wa=(x) >k — m for all
x € Z. This simple and new observation shows that we can study m-systems via covers
of Z, and construct covers of Z via m-systems.

By a result in [12], if (1.1) is an m-cover of Z then for any m1, . .., mj € Z* there
are at least m positive integers in the form ) _, ms/ng with I C[1, k]. Applying
this result to the dual A* of an m-system (1.1), we obtain that there are more than
k — m integers in the form Zle xs/ng with xg € [0, ny); equivalently, at most m — 1
of the numbers in [1, k] cannot be written in the form le{:l mg/ng =k — le‘: 1 (ng —
my)/ng withmy € [1, ng]. This implies the following result stated in [16, Remark 1.3]:
if (1.1) is an m-system, then there are my, . .., my € Z* such that Zle mg/ng = m.

The following theorem unifies and generalizes several known results.

THEOREM 1.1. Let A = {ay (ns)}ls‘zo be a finite system of residue classes with m(A) >

m= LZle mg/ng |, where my, ..., my € 7t. Then, for any 0 < a < 1, either
(—D! exp(Zm’ 3 ‘”") ) (1.4)
1Sk ser s

ngl mg/ng=(a+a)/no

foranya €N, or

fena gt () o

sel 7S no
foralla=0,1,2,....

EXAMPLE 1.2. Erd6s observed that {0(2), 0(3), 1(4), 5(6), 7(12)} is a cover of Z
with the moduli

np=2, n;=3, ny=4, n3=6, ng=12
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distinct.  As LZ?:l 1/ng] =0, by Theorem 1.1 in the case « =0 we have
Y ses 1/ng=1/ng=1/2 for some I C [1, 4]; we can actually take / = {1, 3}. Since
Z?:l 1/ng < (5/6+1)/np=11/12, by Theorem 1.1 in the case o =5/6 the set
IT={IC[1,4]: ) ;o 1/ny=5/12} cannot have a single element; in fact, 7 =
{{1, 4}, {2, 3}} and

(=D exp27i (0/n1 +7/n4)) + (=D exp2ri(1/ny + 5/n3))
= —exp(mwi/6) + exp(wi/6) =

COROLLARY 1.3. If A= {as(ns)}‘]::0 is a finite system of residue classes with
wyg(x) >m= LZSZI 1/ng] for all x € Z, then

H[cn kl: Z———H (La/ oJ) foralla € N. (1.6)

sel

In particular, if (1.1) has covering multiplicity m(A) = LZle 1/ng], then

ng[l,k}; lenH><m(A)) for eachn € N. 1.7)
n

sel 'S

PROOF. Observe that the left-hand side of (1.4) is nonzero in the case « =a =0.
So (1.6) follows from Theorem 1.1 immediately. In the case ng =1 this yields the
latter result in Corollary 1.3. O

REMARK 1.4. Let (1.1) be an exact m-cover of Z. Then Zle 1/ng =m and
L2 serikpgey 1/nsl=m —1 for any t=1,... k. So Corollary 1.3 implies the
following result in [13]: forany t € [1, k] and a € N,

-1
frevmin 2=l ()

sel

As m(A) = Zle 1/ng, the inequality [{I C[1,k]: Y o, 1/ns=n}| > (7) also
holds for all n =0, 1, ..., m, which was first established in [10] by means of the
Riemann zeta function.

COROLLARY 1.5. Let (1.1) be an m-system with m = [Zle 1/ng], where [a]
denotes the least integer not smaller than a real number o. Then

k J—
H(ml,...,mwezk:mse[l,ns],zﬂzn}>(" ’”) (1.8)
= ns n—m

foreveryn=m, ..., k.
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PROOF. Letn € [m, k]. Clearly the left-hand side of (1.8) coincides with

ng

k k
Xs
L:=|{{(x1,...,xx): x5 €][0, ng — 1], E ———E — —n=k—n
H(l k) s [ K ] SZlnS }

s=1 s

Since ZIS‘ZI 1/ng>m —1, wa(x) =m for some x € Z. As the dual A* of (1.1)

has covering multiplicity m(A*) =k — m, applying Corollary 1.3 to A* leads to
L> (l,‘;';l’) = (k_m). This concludes the proof. O

n—m
REMARK 1.6. When (1.1) is an exact m-cover of Z, it was proved in [13] (by a

different approach) that for each n € N the equation Zle xs/ng = n with x5 € [0, ny)
has at least (k;m) solutions.

COROLLARY 1.7. Let A= {as(ns)}f:0 be a finite system of residue classes with
m(A) >m = LZI;:] mg/ng]|, where my, ..., my € Z*. Suppose that J C [1, k] and
YoserMs/ng =Y c;mg/ng forno I C[1, k) with I # J. Then

:noZ?}+{nOZZ£}<1, (1.9)

s N

seJ seJ
where J =[1, k] \ J. Also
My my
—>m or — >m. (1.10)
ses s veg s

PROOF. Letv =73 _; ms/ng, a = {nov} and b = |nov]. Then (& + b)/no = v and

Z (—1)|1| exp(Z?Ti Z asms)

1C[1,k] sel §
2ser Ms/ns=v
= (—DVI exp(2m’ Z aSmS) #0.
sed $

By Theorem 1.1, inequality (1.5) holds for any a € N. Applying (1.5) with a =
mng +ng — 1 we find that Zse] mg/ng = (o +mng +ng — 1)/ng for some I C
[1, k], therefore Z’;:] mg/ng =>m+ (@ +ng—1)/ng. As LZle mg/ns| =m, we
must have
k k
-1
{Zﬁ} > m, thatis,n0—1+a<n0{ Zﬂ} < nyg.
ng no ng

s=1 s=1
Therefore a < {no{Y_*_, ms/ns}} = {no Y*_, ms/ns}, which is equivalent to (1.9).

Inequality (1.5) in the case a = b gives that (Lb/";oJ) < 1, thus |v] € {0, m}. As
no{v) — a = [no{v}] <no — 1, {v} < (@ +no — 1)/ng < {Xr_, my/ns}. I [v] =0,
then m+v<m+ {Zle mg/ng} = Zle mg/ng and hence ) ._jmg/ng>m.
Therefore (1.10) is valid. We are done. O
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REMARK 1.8. Let (1.1) be an exact m-cover of Z. [11, Theorem 4(ii)] asserts that if
W=+J C[l,klthen ) ., 1/ng=7) ., 1/ns for some I C[1, k] with I # J. This
follows from Corollary 1.7, for, A= {a; (nS)}f:O (where ap =0 and ng=1) is an
(m + 1)-cover of Z with ) ;7 1/ns = ZI;:I 1/ns =m.

In the 1960s Erdds made the following conjecture: for any system (1.1) with
1 <n;<---<ny,ifitis acover of Z then ZIS‘ZI 1/ng > 1, in other words it cannot
be a disjoint cover of Z. This was later confirmed by H. Davenport, L. Mirsky,
D. Newman and R. Radé who proved that if (1.1) is a disjoint cover of Z with
l<ny < --<np_1 <ngthenng_| =ny.

COROLLARY 1.9. Let (1.1) be an m-cover of Z with
n < Kngy <nip_jp1=---=n 0O<l<k). (1.11)

Then, for any r € [0, [l withr < ng/nj_,, either Zl;;g 1/ng > m or

l
< ) € D(ng) = { Z pxp | xp € N for any prime divisor p ofnk}.
4 plng
PROOF. Set A = {ay (ns)}]s‘:0 where ap =0 and ng = 1. Suppose that Zf;q 1/ng <
m. Then YX_ 1/ng <m 4 r/ng <m 4+ 1 <m(A). Since

1

ng[l,k]: Z—=m+iH =0< (’”)

g ng m
sel

by Theorem 1.1 we must have

> = exp<2m' 3 ﬁ) —0.

IC[1.A] sel s
Y ser ns=r/n

Observe that r/ny < 1/ng—; =min{l/n; | 1 <s < k — [}. Therefore,

0= > (—1)|]|exp<27riZZ—s) =(=1"%,,

IS(k—1,k] sel 7S
Dser V/ns=r/n

. dg
>, = expl| 27w — ).
= ¥ eo(miy )
I1C(k—1,k] sel
|I|=r

By [16, Lemma 3.1], ¥, = 0 implies that

where

l
(r> =1 S (k=1 k]:|I|=r}| € D(ng).

This concludes the proof. O
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REMARK 1.10. Let (1.1) be an m-cover of Z with (1.11). By Corollary 1.9 in the
case r =1, either [ > ng/ng_; > 1 or Zf;ll 1/ng > m; this is one of the main results
in [12]. Corollary 1.9 in the case r = 1 yields that either Z’f;ll 1/ng >morl € D(ng);
this implies the extended Newman—Znam result (see [7]) which asserts that if (1.1) is
an exact m-cover of Z (and hence Z]S: I 1/ng < Zle 1/ngy = m) then [ is not smaller
than the least prime divisor of ny.

Let (1.1) be an m-system with (1.11), and let r € N and r < ng/ng_;. With the help
of the dual system of (1.1), we can also show that either Zle 1/ng <m —r/ng or

I4+r—1 /
. = [{(Xk—t415 -+ s Xk) EN | Xpyp1 + - - - +xp =71}| € D(ng).

If (1.1) is disjoint with 1 <n; < - - < ng, then Zle 1/ng < 1 since (1.1) is not
a disjoint cover of Z; Erd6s [3] showed further that Z{::] 1/ng <1—1/2F. Now we
give a generalization of this result.

THEOREM 1.11. Let (1.1) be an m-system with k > m, ZI;:l 1/ng #m and n; <
-« ng. Then

| 1
Zn_sgm_zk—m—ﬁ—l’ (1.12)

and equality holds if and only if ng = 2mX=m+1L0} for gl s =1, ... k.

REMARK 1.12. Letk > m > 1 be integers. Then m — 1 copies of 0(1), together with
the k — m + 1 residue classes

1(2), 2(22), e, 2k—m(2k_m+1)’

form an m-system with the moduli 2m&s—m+1.0} (g =1 k).

We will prove Theorems 1.1 and 1.11 in the next section. Section 3 deals with two
characterizations of m-systems one of which is as follows.

THEOREM 1.13. System (1.1) is an m-system if and only if, for any n € [m, k),

_ [0k ifa=o,
S(n, a)_{o 0 <a<1, (1.13)

where S(n, o) represents the sum

— LZ?: ms/ns) n . Aghig
Z (-1 1 (LZ’S‘ZI ms/nsj> exp(ZmZ - )

s=1

{Zle mg/ns}=a

Theorem 1.13 in the case m = 1 yields the following result.
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COROLLARY 1.14. If(1.1) is disjoint, then

k
3 exp(Zm' 3 “;ms) = (—=D* (1.14)

s=1 S

Yo my/ns=1

A residue class a(n) =a + nZ is a coset of nZ in the additive group Z with
[Z:nZ]=n. In [18] the author conjectured that if {aSGx}f:1 (I<k<oo)isa
disjoint system of left cosets in a group G with all the indices ny; = [G : G] finite,
then ged(ng, n;) > k for some 1 <s <t < k.

2. Proofs of Theorems 1.1 and 1.11

LEMMA 2.1. Let N € Z" be a common multiple of the moduli ny, . .., ny in (1.1).
Andletm, mq, ..., my € Z7T. If (1.1) is an m-cover of Z, then (1 — zN)m divides the
polynomial ]_[];:1 (1 — ZNms/ns expQuiagmg/ng)). When my, ..., my are relatively
prime tony, ..., ng respectively, the converse also holds.

PROOF. For any r=0,1,..., N — 1, clearly exp(2zxir/N) is a zero of the
polynomial ]_[le(l — ZNms/ns exp(miagmg/ng)) with multiplicity M, = |{s €
[1, k] : ng | ms(r + a5)}|. Observe that M, > wa(—r). If m; is relatively prime
to ny for each se[l, k], then M, =wa(—r). As (1—zV)"=T1",'1-
zexp(—2mir/N))™, the desired result follows from the above. O

PROOF OF THEOREM 1.1. Set mg =1, and let Ny be the least common multiple of

ng, ni, - . ., ng. In light of Lemma 2.1, we can write
k asm
P(z) = l_[(l — gMNoms/ns exp<2m' 2 S))
s=0 s

in the form (1 — zV0)"+1 Q(z) where Q(z) € C[z]. Clearly

k
, N
degQ:degP—(m+1)No=NO(Z’;i—m—1)<—°.
)

s=0 no
Also
l_[ (1 — ZNOms/nx exp (27_[1 AasMg ))
s=1 ng
m m no—1 a0
= Z(—l)n< )ZnNo Z 7 No/no exp(Znir—)Q(Z) (2.1)
n no
n=0 r=0
since

1 —zNo =
< : = Z 7"No/no exp 2nir@ .
1 — zNo/no exp(2miag/ng) =0 "0

https://doi.org/10.1017/5S0004972709000641 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972709000641

230 Z.-W. Sun [8]

Leta € N and

_ (_1\la/mol _ i : — s
C, = (—1)ta/mo Z (=1 exp(Zm Z(as ao)ns>.

IC[1,k] sel
Y ser ms/ns=(a+a)/ng

By comparing the coefficients of z¥0(@+@)/m0 on both sides of (2.1) we obtain that

N . asmg
Z (=1 exp<2mz py )

I1C(1,k] sel
Y ser Ms/ns=(a+a)/ng

— (_1)La/ﬂoJ <

" )exp(zmao{a/no})[z“NO/”O]Q(z>,
la/no]

where [z¢N0/10]1 0 (z) denotes the coefficient of z¢No/™0 in Q(z). Therefore

— _ : @ m aNo/n _ m
Ca=exp ( 2mano>(La/noJ>[Z 0 O]Q(Z)_(La/noj>co' @2

For an algebraic integer w in the field K = Q(exp(27i/Np)), the norm

N(w) = I or ()

1<r< Ny, ged(r,Ng)=1

(with respect to the field extension K/QQ) is a rational integer, where o, is the
automorphism of K (in the Galois group Gal(K /Q)) induced by o, (exp(27wi/Np)) =
exp(2rir/Ny). (See, for example, [6, Ch. 1].) As N((—1)L4/701C,) equals

N - —ans
H Z (=1 exp(Zer(as ao)n ),

1<r<Ny I<[1,k] sel $
ged(rNo)=1 3 o ms/ng=(a+a)/ng
we have
. m
INCHl = T] ’ > (—1)|”6XP<27TZVZ(as—ao)—s>‘
1<r<No 1Sk sel N
ged(rNo)=1 " 3 scp my/ns=(a+a)/ng
m o +a)le?NO
<{1g[1,k]: —= } ,
ng no

sel

where ¢ is Euler’s totient function. Also

m m ©(No)
N(Cy|=|N N(Cp)| = N(Cp)|.
IN(Ca)l ‘ ((Wnol))‘X' (o) <La/noJ> IV(Col
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Suppose that Cp, # 0 for some b € N. Then N(Cp) # 0, and hence N(Cq) € Z is
nonzero. For any a € N,

chn k] : Z—:“+a}

sel s

®(No) m ®(No)
= [N(Cp)| > ( > ,
¢ la/no]

and hence (1.5) holds. This concludes the proof. d

PROOF OF THEOREM 1.11. We use induction on k.
In the case k = m, we have n; > 1 and hence

2": 1 L1 1

— +—<m—-g=m— =

pot ns Nk 2 2k—m~+1

also Y X_, 1/ng=m —1/2ifand only if ny = - - - =nz_; = 1 and nz = 2.

Now let k > m. Clearly Z'S:} 1/ng < Zle 1/ns < m. Assume that

bl
—_

1 1 1
ST S =

5 2k—m

Il
_

N

and that equality holds if and only if n; = 2™&{s=m+L0} for all 5 € [1, k — 1]. When
ng > 2k—m+1 ,

1 1 1 1 1
a + a <\m- 2k—m + 2k—m+1 =m- 2k—m+1"

If Y5 1/ng >m —1/ng, then [YX_ 1/n,1=m, thus Y5, my/ng=m for

some my, ..., my € Z* (by Corollary 1.5), and hence
ko
m — —>min—|1<s§k}=—
;ns :ns ng

This shows that indeed Z -1 1/ng <m —1/ng.  Provided that n; < L 2kmtl
inequality (1.12) holds, and also

£ 1 1 2k7m+1 d = 1 1
Zn_s_m_zk—m-i-l = k= an X;n_g_m_zk—m
— ey
= ny =20 forg =1,k — 1, k.
This concludes the induction step and we are done. (N
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3. Characterizations of m-systems

PROOF OF THEOREM 1.13. Like Lemma 2.1, system (1.1) is an m-system if and only
if f(z)=1—2zM)"/ ]_[]s‘:l(l — ZN/ns exp(2miag /ny)) is a polynomial, where N is
the least common multiple of ny, . . ., ng.

Set c=m — Zle I/ng. If f(z) is a polynomial, then deg f =cN and

[ZN1f(2) = (=)™ exp(—2mi YX_, as/ny).
For |z| < 1,

m k oo

f(Z) = Z (m) (_l)nZnN 1_[ Z eXp(ZT[i@>ZNXs/ﬂs'
n=0 n s=1 x3=0 ng

Let o > 0. Then

[Z(c+a)N]f(Z) _ i(_l)n <’Z> Z eXp(27'[i Z asXs>
n=0 X

s=1 s

Yk xg/ng=cta—n
- k
—1
- Z(—l)n (m) Z exp<27‘[i Z M)
n=0 n = ng
Sk mg/ng=atm—n

k
=(=D" exp<—2m' Z %)S(m, a),
s=1 "%

where S(n, o) (n € N) represents the sum

_ Z?: ms/ns—a n . asmg
2 b= (Zle ms/ng —06> exp(27n 2 ns >

s=1

ZI;:l mg/ns—aeN

which agrees with its definition in the case 0 < o < 1 given in Theorem 1.13.
(1) Suppose that (1.1) is an m-system. Then f(z) is a polynomial of degree ¢cN and
hence

K a (-Df ifa=0
_(_ 1\ . “s (c+a)N — s
S(m, a) = (—1) exp(an;ns>[z 1/ () {0 Fa e 0.

For any integer n > m, (1.1) is also an n-system and so (1.13) holds.

(i) Now assume that (1.13) holds for all n € [m, k). For any n >k, we also
have (1.13) by (i) because (1.1) is a k-system. If 0 < o < 1 then S(n, o) = 0 for any
integer n > m. Fix o > 0. If S(n, ) =0 for all integers n > m, then for any integer
n=>m,

Sm,a+1)=Sn, ) —S(n+1,a) =0

because (jfl) = ("']H) — (’;) for j=1,2,.... Thus, by induction, S(n, o) = 0 for
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alla >0andn=m, m+ 1, ....]Itfollows that [z“T®N] f(z) = 0 for any & > 0. So
f(2) is a polynomial and (1.1) is an m-system.
The proof of Theorem 1.13 is now complete. O

The following characterization of m-covers plays important roles in [11, 12].

LEMMA 3.1 (Sun [11]). Let m, my, ..., my € Z*. If (1.1) forms an m-cover of Z,
then

Z (_1)|l| <|.Zs€1 ms/”sJ) exp<2m' Z asms> —0 3.1)

n ng
IC[1,k] sel
{25er ms/ns}=0

forall0<O <1landn=0,1,...,m— 1. The converse also holds if my, ..., my
are relatively prime to ny, . . ., ng, respectively.

We can provide a new proof of Lemma 3.1 in a way similar to the proof of
Theorem 1.13.

LEMMA 3.2. Letn € ZT andl € [0, n — 1]. Then

> exp(Zni > %) = (=D (3.2)

JC[1,n) jeJ
ME

PROOF. Clearly we have the identity

y 1—2z"
l_[ (1 — ze*™i/m) = - =1l+z+---+7""

O<j<n
Comparing the coefficients of z/ we then obtain (3.2). O
Using Lemmas 3.1 and 3.2 we can deduce another characterization of m-systems.
THEOREM 3.3. System (1.1) is an m-system if and only if

k
L2 =1 xS/nSJ) exp(Zm’

n

k
asXs
) =0 (3.3)

xs€[0,ny) for se[1,k] ( s

{Zl_;:l x,\'/nx}:g

s=1

forall0 <0 < landn €0, k —m).

PROOF. The case k < m is trivial, so we just let k > m. Recall that (1.1) is an m-
system if and only if its dual A* is a (k — m)-cover of Z.

By Lemma 3.1 in the case m| = - - =my = 1, A* forms a (k — m)-cover of Z if
and only if for any 0 <6 < 1 and € [0, kK — m) the sum

k X L
; LZ =1 Xs/1s] . AsXg
—1 25:1 Xs s=1 2
xxe[O,nS)Xf;r se[l,k]( : ( n CXp\ <! ; n, i fs(xs)
{ZAI\S:] Xs/ns}=0
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vanishes, where

. J
fie) = ) exp<2m > —) = (D"
JCllny) jes s
[J]=xs
by Lemma 3.2. This concludes the proof. O
The following consequence extends Corollary 1.14.

COROLLARY 3.4. Let (1.1) be an m-system. Then we have

k—1— k_ my/n k
( Fomim/ ) exp(mi 2 asm“‘) = (=1,
myell,ny] for se[l,k] N M~ 25— M/ N s=1 s
m—Z];:l myg/ngeN

PROOF. If k < m, then the left-hand side of the last equality coincides with

k—1-— Zf:] ng/ng ) k agns\ 1 - .
( m_leczl ng/ng )exp(zﬂ'lz ng )_(m_k>_(_1) .

s=1

Now let k > m. As {—a; (ns)}ls‘:1 is an m-system, by Theorem 3.3 and the identity

(—1)”’1( ol ):k_mil(—l)”(x)
k—m-—1 = n

(see [4, (5.16)]) we have

k
1 Xxs/ng] —1 —doX
0= <|_Zsk—l x.s/nsjl ) exp(Zm’ Z a.sxs>
xs€[0,n5) for se[1,k] -m- = ns
{Z];=1 Xs/ng}=0
— <Z§:1(ns - mx)/ns - 1) exp<—2m’ Xk: as(ng — mv))
myell,n,] for se[1,k] k—m—1 =1 s
lec:l(nx _m.\')/n.\'EN
k—1-Y* , k. aomg
= ( Lt ms/n3> exp(2ni > a3m3>
myell,ns] for se[1,k] k—=1—m =1 s
Yk mg/ns€l0.k—1]
k—l—zk_lns/ns k agng
+ 5= exp| 27i .
( k—1-m P ; n,
So the desired equality follows. O
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