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Existence of Multiple Solutions for a
p-Laplacian System in RN with
Sign-changing Weight Functions

Hongxue Song, Caisheng Chen, and Qinglun Yan

Abstract. In this paper, we consider the quasi-linear elliptic problem

−M
(∫

RN
|x|−ap|∇u|pdx

)
div
(
|x|−ap|∇u|p−2∇u

)
=

α

α + β
H(x)|u|α−2u|v|β + λh1(x)|u|q−2u,

−M
(∫

RN
|x|−ap|∇v|pdx

)
div
(
|x|−ap|∇v|p−2∇v

)
=

β

α + β
H(x)|v|β−2v|u|α + µh2(x)|v|q−2v,

u(x) > 0, v(x) > 0, x ∈ RN ,

where λ, µ > 0, 1 < p < N, 1 < q < p < p(τ + 1) < α + β < p∗ = N p
N−p , 0 ≤ a < N−p

p ,

a ≤ b < a+1, d = a+1−b > 0, M(s) = k+ lsτ , k > 0, l, τ ≥ 0, and the weight H(x), h1(x), h2(x) are
continuous functions that change sign in RN . We will prove that the problem has at least two positive
solutions by using the Nehari manifold and the fibering maps associated with the Euler functional for
this problem.

1 Introduction

By the fibering method, Drabek and Pohozaev [13], Bozhkov and Mitidieri [3] stud-
ied respectively the existence of multiple solutions to the following p-Laplacian single
equation:

(1.1) −4pu = λa(x)|u|p−2u + c(x)|u|α−1u in Ω, u = 0 on ∂Ω,

and system:

−4pu = λa(x)|u|p−2u + (α + 1)c(x)|u|α−1u|v|β+1, x ∈ Ω,

−4qu = µb(x)|v|q−2v + (β + 1)c(x)|u|α+1|v|β−1v, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

where p, q > 1, 4pu = div(|∇u|p−2∇u), Ω ⊂ RN is a bounded and connected
domain with smooth boundary ∂Ω, λ and µ are positive parameters, α and β are
positive numbers, and a(x), b(x), c(x) ∈ C(Ω) are given functions that change sign
on Ω.
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Recently, Brown and Zhang [5] studied a special case (p = 2) of the problem
(1.1) by the Nehari manifold [18] and fibering maps. They discuss how the Nehari
manifold changed as λ changes and show how existence and non-existence results for
positive solutions of this problem are linked to properties of the manifold.

Systems involving quasi-linear operators of p-Laplacian type have been studied by
various authors [8, 11, 16, 17, 24]. Among other results, existence and non-existence
theorems were obtained. For such purpose, the method of sub-super solutions, the
blow-up method, and the Mountain Pass Theorem have been used (see e.g., [11,17]).
For example, Miyagaki and Rodrigues [17] have studied the existence of a positive
weak solution to the quasi-linear elliptic system with weights

− div(|x|−ap|∇u|p−2∇u) = λ|x|−(a+1)+c1 uαvγ , x ∈ Ω,(1.2)

− div(|x|−bp|∇v|q−2∇v) = λ|x|−(b+1)+c2 uδvβ , x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

where Ω is a bounded smooth domain of RN with

0 ∈ Ω, 1 < p, q < N, 0 ≤ a < N−p
p , 0 ≤ b < N−q

q ,

0 ≤ α < p − 1, 0 ≤ β < q− 1, δ, γ, c1, c2 > 0,

θ = (p − 1− α)(q− 1− β)− γδ > 0.

By the lower and the upper-solution method, they proved that problem (1.2) pos-
sesses a positive weak solution (u, v) ∈ W 1,p

0 (Ω, |x|−ap) ×W 1,q
0 (Ω, |x|−bq) for each

λ > 0. Similar research can be found in [6,15,24] and the references therein. Up un-
til now, much attention has been paid to the existence of solutions for the problems
(1.1)–(1.2) in a bounded domain. But for these problems in an unbounded domain
Ω or RN , the existence of a multiplicity of solutions has been a more complicated
question.

In this paper, we consider the quasi-linear elliptic problem of the form

(1.3)



−M
(∫

RN

|x|−ap|∇u|pdx
)

div
(
|x|−ap|∇u|p−2∇u

)
=

α

α + β
H(x)|u|α−2u|v|β + λh1(x)|u|q−2u,

−M
(∫

RN

|x|−ap|∇v|pdx
)

div
(
|x|−ap|∇v|p−2∇v

)
=

β

α + β
H(x)|v|β−2v|u|α + µh2(x)|v|q−2v,

u(x) > 0, v(x) > 0, x ∈ RN ,

where λ, µ > 0, 1 < p < N, 1 < q < p < p(τ + 1) < α + β < p∗ = N p
N−p ,

0 ≤ a < N−p
p , a ≤ b < a + 1, d = a + 1− b > 0, M(s) = k + lsτ , k > 0, l, τ ≥ 0, and

the weight H(x), h1(x), h2(x) are continuous functions that change sign in RN .
Problem (1.3) is called nonlocal because of the presence of the term M, which im-

plies that equations in (1.3) are no longer pointwise identities. The problem is analo-
gous to the stationary case of equations that arise in the study of string or membrane
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vibrations, namely,

utt −
(

k + l

∫
Ω

|∇xu|2dx

)
4xu = g(x, u),

where u denotes the displacement, g(x, u) external force, while l is related to the in-
trinsic properties of the string (such as Young’s modulus). Equations of this type
were first proposed by Kirchhoff in 1883 to describe the transversal oscillations of
a stretched string, particularly, taking into account the subsequent change in string
length caused by oscillations.

The nonlocal effect also finds its applications in biological systems. A parabolic
equation of (1.3) can, in theory, be used to describe the growth and movement of a
particular species. The movement, modelled by the integral term, is assumed depen-
dent on the energy of the entire system with u being its population density. Alter-
natively, the movement of a particular species may be subject to the total population
density within the domain (for instance, the spreading of bacteria), which gives rise
to equations of the type ut − l(

∫
Ω

udx)4u = g. Chipot and Lovat [9] and Corrêa
[10], for example, studied the existence of solutions and their uniqueness for such
nonlocal problems as well as their corresponding elliptic problems.

Motivated by [3, 5, 8, 10, 13, 17, 24], we are concerned here with the existence of
multiple positive weak solutions of problem (1.3). Our purpose is to show how to
use an idea and a method similar to those in [5] to investigate the p-Laplacian sys-
tem (1.3), and then get the existence result for multiple positive weak solutions. Many
authors proved the existence of multiple solutions for the quasi-linear elliptic equa-
tion involving the concave and convex nonlinear terms by Nehari manifold and the
fibering maps; see [1, 2, 7, 21, 22] and the references therein. Since Ω = RN is an
unbounded domain, the loss of compactness of the Sobolev embedding renders vari-
ational technique more delicate.

In fact, in order to preserve this compactness in our problem (1.3), we introduce
a weighted Sobolev space and impose some conditions on the weighted functions
H(x), h1(x), and h2(x). The following Gagliardo–Nirenberg–Sobolev inequality [6]
will be needed. There exists a constant S = S(N, p) > 0 such that for every u ∈
C∞0 (RN ),

(1.4)
(∫

RN

|x|−bp∗
|u|p

∗
dx
) 1/p∗

≤ S
(∫

RN

|x|−ap|∇u|pdx
) 1/p

,

where−∞ < a < N−p
p , a ≤ b < a + 1, d = a + 1− b, and p∗ = N p

N−p .

Let X be the completion of the space C∞0 (RN ) endowed with the norm of

‖u‖1 =
(∫

RN

|x|−ap|∇u|pdx
) 1/p

.

From the standard approximation argument, it is easy to see that inequality (1.4)
holds on X.

Let Lp∗

b (RN ) be the completion of the space C∞0 (RN ) endowed with the norm of

‖u‖
Lp∗

b
=
(∫

RN

|x|−bp∗
|u|p

∗
dx
) 1

p∗
.
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Throughout the paper, we assume that H(x), h1(x), h2(x) satisfy the following
conditions:

(A1) hi(x)|x|bq ∈ Lθ(RN ) ∩ L∞(RN ), θ = p∗/(p∗ − q), i = 1, 2;
(A2) H(x)|x|b(α+β) ∈ Lδ(RN ) ∩ L∞(RN ), δ = p∗/(p∗ − α− β), i = 1, 2;

We set

(1.5) h1θ =
(∫

RN

(|h1||x|bq
) θ

dx)1/θ, h2θ =
(∫

RN

(|h2||x|bq)θdx
) 1/θ

with θ = p∗/(p∗ − q).
The natural functional space to study (1.3) is E = X×X with respect to the norm

‖(u, v)‖ =
(∫

RN

(|x|−ap|∇u|p + |x|−ap|∇v|p)dx
) 1/p

.

Then E is a reflexive Banach space endowed with the norm ‖(u, v)‖.

Definition 1.1 A pair of functions (u, v) ∈ E is said to be a weak solution of
problem (1.3) if for any (ϕ,ψ) ∈ E, there holds

M(‖u‖1)

∫
RN

|x|−ap|∇u|p−2∇u∇ϕdx(1.6)

+ M(‖v‖1)

∫
RN

|x|−ap|∇v|p−2∇v∇ψdx

− α

α + β

∫
RN

H|u|α−2u|v|βϕdx − β

α + β

∫
RN

H|v|β−2v|u|αψdx

− λ
∫

RN

h1|u|q−2uϕdx − µ
∫

RN

h2|v|q−2vψdx = 0.

By the assumptions (A1) and (A2), all the integrals in (1.6) are well defined and con-
vergent.

Our main result is the following theorem.

Theorem 1.2 Assume (A1) and (A2) are fulfilled. There exists Λ0 > 0 such that if
the parameters λ, µ > 0 satisfy

0 < λh1θ + µh2θ < Λ0,

then problem (1.3) has at least two positive solutions, where h1θ, h2θ are given by (1.5).

This paper is organized as follows. In Section 2, we give some properties of the
Nehari manifold and set up the variational framework of problem (1.3). In Section 3,
we prove Theorem 1.2.
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2 Preliminaries

It is clear that problem (1.3) has a variational structure. Let J(u, v) : E → R1 be the
corresponding Euler functional of problem (1.3), which is defined by

J(u, v) =
k

p
‖(u, v)‖p +

l

σ
‖(u, v)‖σ − 1

m

∫
RN

H|u|α|v|βdx − 1

q
F(u, v),

where σ = p(τ + 1), m = α + β, and

F(u, v) = λ

∫
RN

h1|u|qdx + µ

∫
RN

h2|v|qdx.

Then we see that the functional J ∈ C1(E,R1) and for for all (ϕ,ψ) ∈ E, there
holds

〈 J′(u, v), (ϕ,ψ)〉 = M(‖u‖1)

∫
RN

|x|−ap|∇u|p−2∇u∇ϕdx(2.1)

+ M(‖v‖1)

∫
RN

|x|−ap|∇v|p−2∇v∇ψdx

− α

m

∫
RN

H|u|α−2u|v|βϕdx − β

m

∫
RN

H|v|β−2v|u|αψdx

− λ
∫

RN

h1|u|q−2uϕdx − µ
∫

RN

h2|v|q−2vψdx,

where 〈 · , · 〉 denotes the usual duality. In particular, it follows from (2.1) that〈
J′(u, v), (u, v)

〉
= k‖u, v‖p + l‖u, v‖σ −

∫
RN

H|u|α|v|βdx − F(u, v).

It is well known that the weak solution of problem (1.3) is the critical point of the
Euler functional J(see [20]). As J is not bounded below on E, it is useful to consider
the functional J on the Nehari manifold

N =
{

(u, v) ∈ E\(0, 0) | 〈 J′(u, v), (u, v)〉 = 0
}
.

Thus, (u, v) ∈ N if and only if

k‖(u, v)‖p + l‖(u, v)‖σ −
∫

RN

H|u|α|v|βdx − F(u, v) = 0.

In particular, on N we have

J(u, v) = k
( 1

p
− 1

q

)
‖(u, v)‖p + l

( 1

σ
− 1

q

)
‖(u, v)‖σ

−
( 1

m
− 1

q

) ∫
RN

H|u|α|v|βdx

= k
( 1

p
− 1

m

)
‖(u, v)‖p + l

( 1

σ
− 1

m

)
‖(u, v)‖σ −

( 1

q
− 1

m

)
F(u, v).

(2.2)

Furthermore, we define

Φ(u, v) =
〈

J′(u, v), (u, v)
〉
, ∀(u, v) ∈ E.
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Then for any (u, v) ∈ N, we have

〈Φ′(u, v), (u, v)〉

= kp‖(u, v)‖p + lσ‖(u, v)‖σ −m

∫
RN

H|u|α|v|βdx − qF(u, v)

= k(p − q)‖(u, v)‖p + l(σ − q)‖(u, v)‖σ − (m− q)

∫
RN

H|u|α|v|βdx

= k(p −m)|(u, v)‖p + l(σ −m)‖(u, v)‖σ − (q−m)F(u, v).

(2.3)

It is natural to split N into three parts:

N+ = {(u, v) ∈ N, | 〈Φ′(u, v), (u, v)〉 > 0},
N0 = {(u, v) ∈ N, | 〈Φ′(u, v), (u, v)〉 = 0},
N− = {(u, v) ∈ N, | 〈Φ′(u, v), (u, v)〉 < 0}.

(2.4)

We now derive some properties of N.

Lemma 2.1 J is coercive and bounded below on N.

Proof Since hi(x)|x|bq ∈ Lθ(RN )∩L∞(RN ), θ = p∗/(p∗− q), (i = 1, 2), we obtain
from the Hölder and Caffarelli–Kohn–Nirenberg inequalities that∫

RN

h1|u|qdx ≤
(∫

RN

(|h1||x|bq)θdx)1/θ

(∫
RN

|x|−bp∗
|u|p

∗
dx

) q/p∗

≤ h1θS
q

(∫
RN

|x|−ap|∇u|pdx

) q/p

≤ h1θS
q‖(u, v)‖q.

Similarly, we have
∫

RN h2|u|qdx ≤ h2θSq‖(u, v)‖q. Then

(2.5) F(u, v) ≤ (λh1θ + µh2θ)Sq‖(u, v)‖q.

It follows from (2.2) and (2.5) that

(2.6) J(u, v) ≥ k
( 1

p
− 1

m

)
‖(u, v)‖p + l

( 1

σ
− 1

m

)
‖(u, v)‖σ

−
( 1

q
− 1

m

)
(λh1θ + µh2θ)Sq‖(u, v)‖q.

Since q < p ≤ σ < m, inequality (2.6) shows that J is coercive and bounded below
on N. Thus, the proof is completed.

Lemma 2.2 There exists Λ1 > 0 such that N0 = ∅ for all λ, µ, which satisfy 0 <
λh1θ + µh2θ < Λ1, where h1θ and h2θ are given by (1.5).

Proof In fact, we let

(2.7) Λ1 =
k(m− p)

(m− q)Sq

( k(p − q)

(m− q)HδSm

) (p−q)/(m−p)
,
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where δ = p∗/(p∗ −m) and

Hδ =
(∫

RN

(|H||x|bm
) δ

dx)1/δ < +∞.

Suppose otherwise; thus, there exist λ and µ that satisfy 0 < λh1θ + µh2θ < Λ1, such
that N0 6= ∅; that is, there exists (u, v) ∈ N0. Then, it follows from (2.3)–(2.5) that

(2.8) ‖(u, v)‖ ≤
( (m− q)(λh1θ + µh2θ)Sq

k(m− p)

) 1/(p−q)
.

By (A2) and the Hölder inequality we have∫
RN

H|u|mdx ≤
(∫

RN

(
|H||x|bm

) δ
dx

) 1/δ(∫
RN

|x|−bp∗
|u|p

∗
dx

)m/p∗

≤ HδS
m‖(u, v)‖m,

Similarly, we have
∫

RN H|v|mdx ≤ HδSm‖(u, v)‖m. Hence,

(2.9)

∫
RN

H|u|α|v|βdx ≤ HδS
m‖(u, v)‖m.

Therefore, from (2.3)–(2.4) and (2.9) we have

(2.10) ‖(u, v)‖ ≥
(

k(p − q)

(m− q)HδSm

)1/(m−p)

.

Relations (2.8) and (2.10) give that λh1θ + µh2θ ≥ Λ1, which is a contradiction. This
completes the proof.

By Lemma 2.2, we write N = N+ ∪N− for 0 < λh1θ + µh2θ < Λ1 and define

δ+ = inf
(u,v)∈N+

J(u, v), δ− = inf
(u,v)∈N−

J(u, v).

Also, as proved in Binding, Drabek, and Huang [5] or in Brown and Zhang [2], we
have the following lemma.

Lemma 2.3 For 0 < λh1θ + µh2θ < Λ1. Suppose (u0, v0) is a local minimizer for J
on N. Then if (u0, v0) 6∈ N0, then (u0, v0) is a critical point of J.

Lemma 2.4 If λ and µ satisfy 0 < λh1θ + µh2θ <
q
p Λ1, then

(i) δ+ < 0,
(ii) ∃γ0 > 0 such that δ− > γ0.

Proof (i) Let (u, v) ∈ N+. It follows from (2.3) and (2.4) that

(2.11)

∫
RN

H|u|α|v|βdx <
k(p − q)

m− q
‖(u, v)‖p +

l(σ − q)

m− q
‖(u, v)‖σ.

Then by (2.2) and (2.11), we have that

J(u, v) < −k(p − q)(m− p)

pqm
‖(u, v)‖p − l(m− p)(σ − q)

pσm
‖(u, v)‖σ < 0,
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which gives

δ+ = inf
(u,v)∈N+

J(u, v) < 0.

(ii) Let (u, v) ∈ N−. From (2.2) and (2.5) we have

J(u, v) ≥ k
m− p

mp
‖(u, v)‖p − m− q

mq
(λh1θ + µh2θ)Sq‖(u, v)‖q

= ‖(u, v)‖q
(

k
m− p

mp
‖(u, v)‖p−q − m− q

mq
(λh1θ + µh2θ)Sq

)
.

(2.12)

Thus, it follows from (2.10) and (2.12) that

J(u, v) ≥
( k(p − q)

(m− q)HδSm

) q
m−p

×
(

k
m− p

mp

( k(p − q)

(m− q)HδSm

) p−q
m−p − m− q

mq
(λh1θ + µh2θ)Sq

)
.

If 0 < λh1θ + µh2θ <
q
p Λ1, then there exists γ0(p, q, α, β,Hδ, S) > 0 such that

δ− > γ0. Thus, the proof of Lemma 2.4 is completed.

For each (u, v) ∈ E with
∫

RN H|u|α|v|βdx > 0, we set

z(t) = kt p−q‖(u, v)‖p + ltσ−q‖(u, v)‖σ − tm−q

∫
RN

H|u|α|v|βdx.

Then z′(t) = t p−q−1E(t), where

E(t) = k(p − q)‖(u, v)‖p + l(σ − q)t pτ‖(u, v)‖σ − (m− q)tm−p

∫
RN

H|u|α|v|βdx.

Set

t∗ =
( l(σ − q)pτ‖(u, v)‖σ

(m− q)(m− p)
∫

RN H|u|α|v|βdx

) 1/(m−σ)
.

Then it is easy to see that E(t) achieves its maximum at t∗, increasing for t ∈ [0, t∗)
and decreasing for t ∈ (t∗,∞). Since E(0) > 0 and E(t) → −∞ as t → ∞,
E(t∗) > 0 and there exists a unique 0 < t∗ < tl such that E(tl) = 0 and z(t)
achieves its maximum at tl, increasing for t ∈ [0, tl) and decreasing for t ∈ (tl,∞).
In particular, for l = 0, we have

(2.13) t0 =
( k(p − q)‖(u, v)‖p

(m− q)
∫

RN H|u|α|v|βdx

) 1/(m−p)

and E(t0) = E(tl) = 0 implies t0 ≤ tl for l ≥ 0. Thus,

(2.14) z(tl) ≥ k
m− p

m− q
t p−q

l ‖(u, v)‖p ≥ k
m− p

m− q
t p−q

0 ‖(u, v)‖p = z(t0).

Lemma 2.5 Assume
∫

RN H|u|α|v|βdx > 0 and 0 < λh1θ + µh2θ < Λ1.

(i) If F(u, v) ≤ 0, there exists unique t− > tl such that (t−u, t−v) ∈ N− and

J(t−u, t−v) = sup
t≥0

J(tu, tv).
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(ii) If F(u, v) > 0, there exist 0 < t+ < tl < t− such that (t+u, t+v) ∈ N+,
(t−u, t−v) ∈ N− and

J(t+u, t+v) = inf
0≤t≤tl

J(tu, tv), J(t−u, t−v) = sup
t≥0

J(tu, tv).

Proof Set

Ψ0(t) = Φ(tu, tv) = 〈 J′(tu, tv), (tu, tv)〉

= kt p‖(u, v)‖p + ltσ‖(u, v)‖σ − tm

∫
RN

H|u|α|v|βdx − tqF(u, v),

Ψ1(t) = 〈Φ′(tu, tv), (tu, tv)〉

= kpt p‖(u, v)‖p + lσtσ‖(u, v)‖σ −mtm

∫
RN

H|u|α|v|βdx − qtqF(u, v),

Ψ2(t) = J(tu, tv)

=
kt p

p
‖(u, v)‖p +

ltσ

σ
‖(u, v)‖σ − tm

m

∫
RN

H|u|α|v|βdx − tq

q
F(u, v).

Then

(2.15) Ψ0(t) = tq
(

z(t)− F(u, v)
)
.

(i) F(u, v) ≤ 0: There exists a unique t− > tl such that z(t−) = F(u, v).
It follows from (2.15) that Ψ0(t−) = 0 and (t−u, t−v) ∈ N. Then, Ψ1(t−) =
(t−)q+1z′(t−) < 0, which implies that (t−u, t−v) ∈ N−. By simple calculation,
we obtain that Ψ′2(t) = tq−1(z(t)− F(u, v)). Furthermore, Ψ′2(t) > 0 for t ∈ [0, t−),
Ψ′2(t) < 0 for t ∈ [t−,+∞). Then Ψ2(t) gets its maximum at t−; that is,

J(t−u, t−v) = sup
t≥0

J(tu, tv).

(ii) F(u, v) > 0: Since 0 < λh1θ + µh2θ < Λ1, by (2.7) and (2.13)–(2.14), we get
that

0 < F(u, v) ≤ (λh1θ + µh2θ)Sq‖(u, v)‖q ≤ z(t0) ≤ z(tl).

Then there exist t+ and t− such that 0 < t+ < tl < t− and z(t+) = z(t−) =
F(u, v). Similar to the argument in (i), we have (t+u, t+v) ∈ N+ and (t−u, t−v) ∈
N−. Since Ψ′2(t) < 0 for t ∈ [0, t+) and Ψ′2(t) > 0 for t ∈ [t+, tl), J(t+u, t+v) =
inf0≤t≤tl J(tu, tv). Furthermore, it is easy to find that Ψ′2(t) > 0 for t ∈ [t+, t−),
Ψ′2(t) < 0 for t ∈ [t−,+∞) and Ψ2(t) ≤ 0 for t ∈ [0, t+]. Since (t−u, t−v) ∈ N−,
by Lemma 2.4(ii), we have Ψ2(t−) > 0. Then J(t−u, t−v) = supt≥0 J(tu, tv). This
completes the proof of Lemma 2.5.

For each (u, v) ∈ E with F(u, v) > 0, we set

η(t) = kt p−m‖(u, v)‖p + ltσ−m‖(u, v)‖σ − tq−mF(u, v), t > 0.

Then it is easy to check that η(t) → −∞ as t → 0+, η(t) → 0 as t → +∞, and η(t)
achieves its maximum at some t = Tl.
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Lemma 2.6 For each (u, v) ∈ E with F(u, v) > 0 and 0 < λh1θ + µh2θ < Λ1, the
following hold:

(i) If
∫

RN H|u|α|v|βdx ≤ 0, then there exists unique t+ < Tl such that (t+u, t+v) ∈
N+ and

J(t+u, t+v) = inf
0≤t≤Tl

J(tu, tv).

(ii) If
∫

RN H|u|α|v|βdx > 0, there exist 0 < t+ < Tl < t− such that (t+u, t+v) ∈ N+,
(t−u, t−v) ∈ N− and

J(t+u, t+v) = inf
0≤t≤Tl

J(tu, tv), J(t−u, t−v) = sup
t≥0

J(tu, tv).

Proof Note that Ψ′2(t) = tm−1(η(t)−
∫

RN H|u|α|v|βdx), similar to the argument in
the proof of Lemma 2.5, we can obtain the results of Lemma 2.6.

As proved in [23], we have the following lemma.

Lemma 2.7 If un ⇀ u0, vn ⇀ v0 weakly in E, then there exists a subsequence of
{(un, vn)}, still denoted by {(un, vn)}, such that

lim
n→+∞

∫
RN

h1|un|qdx =

∫
RN

h1|u0|qdx, lim
n→+∞

∫
RN

h2|vn|qdx =

∫
RN

h2|v0|qdx,

lim
n→+∞

∫
RN

H|un|α|vn|βdx =

∫
RN

H|u0|α|v0|βdx,

3 Existence of Positive Solutions

First, we will use the idea of Ni–Takagi [19] to get the following results.

Lemma 3.1 For each (u, v) ∈ N+, there exists ε > 0 and a differential function
t : Bε(0, 0) ⊂ E → R1 such that t(0, 0) = 1, the function t(ν, ω)(u− ν, v − ω) ∈ N+

for (ν, ω) ∈ Bε(0, 0), and

〈(t ′(0, 0), (ϕ,ψ)〉

= −[k(p − q)‖(u, v)‖p + l(σ − q)‖(u, v)‖σ − (m− q)

∫
RN

H|u|α|v|βdx]−1

· [(kp + lσ‖(u, v)‖pτ )

∫
RN

|x|−ap|∇u|p−2∇u∇νdx −
∫

RN

αH|u|α−2u|v|βϕdx

− β
∫

RN

H|u|α|v|β−2vψdx − λ
∫

RN

h1|u|q−2uνdx − µ
∫

RN

h2|v|q−2vωdx]

(3.1)

for any (ϕ,ψ) ∈ E.
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Proof For (u, v) ∈ N+, we define G(u,v)(t, (ν, ω)) : R+ × E→ R1 by

G(u,v)

(
t, (ν, ω)

)
=
〈

J′
(

t(u− ν), t(v − ω)
)
,
(

t(u− ν), t(v − ω)
)〉

=
(

k + l‖(t(u− ν), t(v − ω)
)
‖pτ )‖

(
t(u− ν), t(v − ω)

)
‖p

−
∫

RN

H|t(u− ν)|α|t(v − ω)|βdx − F
(

t(u− ν), t(v − ω)
)
.

Then G(u,v)(1, (0, 0)) = 〈 J′(u, v), (u, v)〉 = 0 and by (2.3)–(2.4),

∂

∂t

[
G(u,v)(t, (0, 0))

]
|t=1

=
(

kp + lσ‖(u, v)‖pτ
)
‖(u, v)‖p −m

∫
RN

H|u|α|v|βdx − qF(u, v)

= k(p − q)‖(u, v)‖p + l(σ − q)‖(u, v)‖σ − (m− q)

∫
RN

H|u|α|v|βdx > 0.

According to the implicit function theorem, there exist ε > 0 and a differential func-
tion t : Bε(0, 0) ⊂ E→ R1 such that t(0, 0) = 1 and

〈(t ′(0, 0), (ϕ,ψ)〉

= −[k(p − q)‖(u, v)‖p + l(σ − q)‖(u, v)‖σ − (m− q)

∫
RN

H|u|α|v|βdx]−1

· [kp + lσ‖(u, v)‖pτ )

∫
RN

|x|−ap|∇u|p−2∇u∇νdx − α
∫

RN

H|u|α−2u|v|βϕdx

− β
∫

RN

H|u|α|v|β−2vψdx − λ
∫

RN

h1|u|q−2uνdx − µ
∫

RN

h2|v|q−2vωdx]

for any (ϕ,ψ) ∈ E. Additionally, for any (ν, ω) ∈ Bε(0, 0),

G(u,v)

(
t(ν, ω), (ν, ω)

)
= 0, for any (ν, ω) ∈ Bε(0, 0),

which is equivalent to〈
J′(t(ν, ω)(u− ν, v − ω)), t(ν, ω)(u− ν, v − ω)

〉
= 0;

that is,
t(ν, ω)(u− ν, v − ω) ∈ N.

Since

〈Φ′(u, v), (u, v)〉 = k(p − q)‖(u, v)‖p + l(σ − q)‖(u, v)‖σ

− (m− q)

∫
RN

H|u|α|v|βdx > 0,

by the continuity of function Φ′(ν, ω), t(ν, ω) and t(0, 0) = 1, we have that for any
(ν, ω) ∈ Bε(0, 0),

〈Φ′(t(ν, ω)(u− ν, v − ω)), t(ν, ω)(u− ν, v − ω)〉
= k(p − q)‖t(ν, ω)(u− ν, v − ω)‖p + l(σ − q)‖t(ν, ω)(u− ν, v − ω)‖σ

− (m− q)

∫
RN

H|t(ν, ω)(u− ν)|α|t(ν, ω)(v − ω)|βdx > 0
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if ε > 0 is sufficiently small. This implies that t(ν, ω)(u − ν, v − ω) ∈ N+ for any
(ν, ω) ∈ Bε(0, 0). This completes the proof of Lemma 3.1.

Lemma 3.2 Assume (A1) and (A2). Let Λ0 = min{ q
p Λ1,Λ2}, where

Λ2 =
( k(m− p)

m− q

) q/p 1

Sq

(
m− σ
σ − q

( k(p − q)

m− q

)m/(m−p) 1

(HδSm)m/(m−p)

) (p−q)/p

.

Then for 0 < λh1θ + µh2θ < Λ0, there exists a minimizing sequence {(un, vn)} ⊂ N+

such that,
J(un, vn)→ δ+, J′(un, vn)→ 0 in E∗ as n→∞.

Proof By the Ekeland variational principle [14], there exists a minimizing sequence
{(un, vn)} ⊂ N+ such that

J(un, vn) < δ+ +
1

n

J(un, vn) < J(ν, ω) +
1

n
‖(un − ν, vn − ω)‖ for each (ν, ω) ∈ N+.(3.2)

By taking large n, from Lemma 2.4(i), we have

J(un, vn) = k
( 1

p
− 1

m

)∥∥ (un, vn)
∥∥ p

+ l
( 1

σ
− 1

m

)∥∥ (un, vn)
∥∥σ − ( 1

q
− 1

m

)
F(un, vn)

< δ+ +
1

n
<
δ+

2
.

(3.3)

This implies

(3.4) − mq

m− q

δ+

2
< F(un, vn) ≤ (λh1θ + µh2θ)Sq‖(un, vn)‖q.

Consequently, (un, vn) 6= (0, 0) and putting together (3.3), (3.4), and the Hölder
inequality, we obtain

‖(un, vn)‖ >
(
− mq

m− q

δ+

2

1

(λh1θ + µh2θ)Sq

) 1/q
,(3.5)

‖(un, vn)‖ <
( p(m− q)

kq(m− p)
(λh1θ + µh2θ)Sq

) 1/(p−q)
.(3.6)

Now, we will show that ‖ J′(un, vn)‖E∗ → 0 as n → ∞. Applying Lemma 3.1 with
(un, vn) to obtain the functions tn : Bεn (0, 0) ⊂ E → R1 for some εn > 0, such that
tn(ν, ω)(un − ν, vn − ω) ∈ N+ for any (ν, ω) ∈ Bεn (0, 0). Fixed n ∈ N, we choose
0 < ρ < εn. Let (u, v) ∈ E\{(0, 0)} and (νρ, ωρ) = ρ(u,v)

‖(u,v)‖ ; then (νρ, ωρ) ∈ Bεn (0, 0)
and

(ϕρ, ψρ) = tn(νρ, ωρ)(un − νρ, vn − ωρ) ∈ N+.

Thus, we deduce from (3.2) that

J(ϕρ, ψρ)− J(un, vn) > −1

n
‖(ϕρ − un, ψρ − vn)‖
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and by the mean value theorem, we have〈
J′(un, vn), (ϕρ−un, ψρ−vn)

〉
≥ −1

n

∥∥ (ϕρ−un, ψρ−vn)
∥∥+o

(
‖(ϕρ−un, ψρ−vn)‖

)
.

Therefore,

(3.7) 〈 J′(un, vn),−(νρ, ωρ)〉 + (tn(νρ, ωρ)− 1)〈 J′(un, vn), (un − νρ, vn − ωρ)〉 ≥

− 1

n
‖(ϕρ − un, ψρ − vn)‖ + o(‖(ϕρ − un, ψρ − vn)‖).

It follows from tn(ν, ω)(un − ν, vn − ω) ∈ N and (3.7) that

− ρ
〈

J′(un, vn),
(u, v)

‖(u, v)‖

〉
+ (tn(νρ, ωρ)− 1)

〈
J′(un, vn)− J′(ϕρ, ψρ), (un − νρ, vn − ωρ)

〉
≥ −1

n
‖(ϕρ − un, ψρ − vn)‖ + o

(
‖(ϕρ − un, ψρ − vn)‖

)
.

Hence,

(3.8)〈
J′(un, vn),

(u, v)

‖(u, v)‖

〉
≤ 1

nρ
‖(ϕρ − un, ψρ − vn)‖ +

o(‖(ϕρ − un, ψρ − vn)‖)
ρ

+
(tn(νρ, ωρ)− 1)

ρ

〈
J′(un, vn)− J′(ϕρ, ψρ), (un − νρ, vn − ωρ)

〉
.

Since

‖ϕρ − un, ψρ − vn)‖ ≤ ρ|tn(νρ, ωρ)| + |(tn(νρ, ωρ)− 1)| ‖(un, vn)‖,

lim
ρ→0

|(tn(νρ, ωρ)− 1)|
ρ

≤ ‖t ′n(0, 0)‖,

if we let ρ→ 0 in (3.8), then by (3.6) we can find a constant C2 > 0, independent of
ρ, such that 〈

J′(un, vn),
(u, v)

‖(u, v)‖

〉
≤ C2

n

(
1 + ‖t ′n(0, 0)‖

)
.

We are done once we show that ‖t ′n(0, 0)‖ is uniformly bounded with respect to n.
By (3.1), (3.6), and the Hölder inequality, we know that there exists some constant
C3 > 0, independent of n, such that∣∣ 〈t ′n(0, 0), (ϕ,ψ)〉

∣∣ ≤ C3‖(ϕ,ψ)‖
|Bn|

, ∀(ϕ,ψ) ∈ E

where

Bn = k(p − q)‖(un, vn)‖p + l(σ − q)‖(un, vn)‖σ − (m− q)

∫
RN

H|un|α|vn|βdx.

For our claim, it is sufficient to show that |Bn| ≥ C4 for some C4 > 0 and n
large enough. Suppose otherwise; thus, there exists a subsequence, again denoted

https://doi.org/10.4153/CMB-2015-035-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-035-4


430 H. Song, C. Chen, and Q. Yan

by {(un, vn)}, satisfying Bn → 0 as n→∞; that is,

An = k(p − q)‖(un, vn)‖p + l(σ − q)‖(un, vn)‖σ

= (m− q)

∫
RN

H|un|α|vn|βdx + on(1).

(3.9)

Combining (3.5) and (3.9), we can find a suitable constant C4 > 0 such that

(3.10)

∫
RN

H|un|α|vn|βdx ≥ C4

for sufficiently large n. In addition, (3.9) and the fact that (un, vn) ∈ N give that

F(un, vn) = k‖(un, vn)‖p + l
∥∥ (un, vn)

∥∥σ − ∫
RN

H|un|α|vn|βdx

= k
m− p

m− q
‖(un, vn)‖p + l

m− σ
m− q

∥∥ (un, vn)
∥∥σ + on(1)

and

‖(un, vn)‖ ≤
( m− q

k(m− p)
(λh1θ + µh2θ)Sq

) 1/(p−q)
+ on(1).(3.11)

If we denote

D =
m− σ

(σ − q)(m− q)m/(m−p)
,

then for large n,

Sn =
DAm/(m−p)

n

(
∫

RN H|un|α|vn|βdx)p/(m−p)
− F(un, vn)

= D(m− q)p/(m−p)An −
(

k
m− p

m− q
‖(un, vn)‖p + l

m− σ
m− q

‖(un, vn)‖σ
)

+ on(1)

= − kpτ

σ − q
‖(un, vn)‖p + on(1) < 0.

(3.12)

However, by (3.10), (3.11), and λh1θ + µh2θ < Λ0, we have

Sn ≥
D(k(p − q)‖(un, vn)‖p)m/(m−p)

(HδSm‖(un, vn)‖m)p/(m−p)
− (λh1θ + µh2θ)Sq‖(un, vn)‖q

≥ ‖(un, vn)‖q

[
D(k(p − q))

m
m−p (HδS

m)
−p

m−p

( m− q

k(m− p)
(λh1θ + µh2θ)Sq

) −q
p−q

− (λh1θ + µh2θ)Sq

]
> 0.

This contradicts (3.12). Thus, we get〈
J′(un, vn),

(u, v)

‖(u, v)‖

〉
≤ C5

n
.

This completes the proof of Lemma 3.2.

Similar to Lemmas 3.1 and 3.2, we can get the following lemma.
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Lemma 3.3 Assume (A1) and (A2). Then for 0 < λh1θ + µh2θ < Λ0, there exists a
sequence {(un, vn)} ⊂ N− such that, as n→∞,

J(un, vn)→ δ−, J′(un, vn)→ 0 in E∗.

Now, we establish the existence of a local minimum for J on N+.

Theorem 3.4 Assume (A1) and (A2). Then for 0 < λh1θ + µh2θ < Λ0, then func-
tional J has a minimizer (u+

0 , v
+
0 ) in N+ and it satisfies

(i) J(u+
0 , v

+
0 ) = δ+;

(ii) (u+
0 , v

+
0 ) is a positive solution of problem (1.3).

Proof Let {un, vn} ⊂ N+ be a minimizing sequence for J on N+ such that

J(un, vn) −→ inf
(u,v)∈N+

J(u, v), J′(un, vn) −→ 0 in E∗.

Since J(u, v) is coercive, {(un, vn)} is bounded on E. Thus, we may assume, without
loss of generality, that un ⇀ u+

0 , vn ⇀ v+
0 in X. By Lemma 2.4 and 2.7, we have

lim
n→+∞

J(un, vn) = δ+ < 0, lim
n→+∞

F(un, vn) = F(u+
0 , v

+
0 ).

It follows from (2.2) that

(3.13) J(un, vn) = k
( 1

p
− 1

m

)∥∥ (un, vn)
∥∥ p

+ l
( 1

σ
− 1

m

)∥∥ (un, vn)
∥∥σ − ( 1

q
− 1

m
)F(un, vn

)
.

Letting n → +∞ in (3.13), we see that F(u+
0 , v

+
0 ) > 0. Moreover, by Lemma 2.6,

there is a unique t+
0 < Tl such that (t+

0 u+
0 , t

+
0 v+

0 ) ∈ N+ and

Ψ0(t+
0 ) =

〈
J′(t+

0 u+
0 , t

+
0 v+

0 ), (t+
0 u+

0 , t
+
0 v+

0 )
〉

= 0.

Now we show that un → u+
0 , vn → v+

0 in X. Suppose otherwise; then

‖u+
0‖X < lim inf

n→+∞
‖un‖X or ‖v+

0 ‖X < lim inf
n→+∞

‖vn‖X.

Thus, as 〈
J′(tun, tvn), (tun, tvn)

〉
= kt p‖(un, vn)‖p + ltσ‖(un, vn)‖σ

− tm

∫
RN

H|un|α|vn|βdx − tqF(un, vn),〈
J′(tu+

0 , tv+
0 ), (tu+

0 , tv+
0 )
〉

= kt p‖(u+
0 , v

+
0 )‖p + ltσ‖(u+

0 , v
+
0 )‖σ

− tm

∫
RN

H|u+
0 |α|v+

0 |βdx − tqF(u+
0 , v

+
0 ),

it follows that 〈 J′(t+
0 un, t+

0 vn), (t+
0 un, t+

0 vn)〉 > 0 for n sufficiently large. Since
{(un, vn)} ⊆ N+, it is easy to see that 〈 J′(un, vn), (un, vn)〉 = 0, and for 0 < t < 1,
〈 J′(tun, tvn), (tun, tvn)〉 < 0. So we derive t+

0 > 1. But (t+
0 u+

0 , t
+
0 v+

0 ) ∈ N+, and so

J(t+
0 u+

0 , t
+
0 v+

0 ) < J(u+
0 , v

+
0 ) < lim inf

n→+∞
J(un, vn) = δ+,
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which is a contradiction. Hence, un → u+
0 , vn → v+

0 in X and so

J(u+
0 , v

+
0 ) = lim

n→+∞
J(un, vn) = δ+.

Thus, (u+
0 , v

+
0 ) is minimizer for J on N+. Since J(u+

0 , v
+
0 ) = J(|u+

0 |, |v+
0 |) and

(|u+
0 |, |v+

0 |) ∈ N+, by Lemma 2.3, we can assume that (u+
0 , v

+
0 ) is a nonnegative solu-

tion of problem (1.3). Furthermore, we obtain that u+
0 > 0, v+

0 > 0 by the maximum
principle; see [4, 12]. This concludes the proof.

Theorem 3.5 Assume (A1) and (A2); then for 0 < λh1θ+µh2θ < Λ0, then functional
J has a minimizer (u−0 , v

−
0 ) in N− and it satisfies

(i) J(u−0 , v
−
0 ) = δ−;

(ii) (u−0 , v
−
0 ) is a positive solution of problem (1.3).

Proof By Lemma 3.3, there exists a minimizing sequence for J on N− such that

J(un, vn) −→ inf
(u,v)∈N−

J(u, v), J′(un, vn) −→ 0 in E∗.

Since J(u, v) is coercive, {(un, vn)} is bounded on E. Thus, we can assume, without
loss of generality, that un ⇀ u−0 , vn ⇀ v−0 in X. By Lemma 2.4 and 2.7, we have

lim
n→+∞

J(un, vn) = δ− > 0, lim
n→+∞

∫
H|un|α|vn|βdx =

∫
H|u−0 |α|v

−
0 |βdx.

Furthermore, (2.2) gives that

J(un, vn) = k
( 1

p
− 1

q

)∥∥ (un, vn)
∥∥ p

+ l
( 1

σ
− 1

q

)∥∥ (un, vn)
∥∥σ

−
( 1

m
− 1

q

) ∫
RN

H|un|α|vn|βdx.

(3.14)

Letting n → +∞ in (3.14), we obtain that
∫

RN H|u−0 |α|v
−
0 |βdx > 0. Thus, by

Lemma 2.5, there is a unique t−0 such that (t−0 u−0 , t
−
0 v−0 ) ∈ N−.

We now show that un → u−0 , vn → v−0 in X. Suppose otherwise; then

‖u−0 ‖X < lim inf
n→+∞

‖un‖X or ‖v−0 ‖X < lim inf
n→+∞

‖vn‖X.

Since (un, vn) ∈ N−, Lemma 2.5 and a simple transformation imply that J(un, vn) ≥
J(tun, tvn) for all t ≥ 0. Then we have

J(t−0 u−0 , t
−
0 v−0 ) < lim inf

n→+∞
J(t−0 un, t

−
0 vn) ≤ lim

n→+∞
J(un, vn) = δ−,

which is a contradiction. Hence un → u−0 , vn → v−0 in X and so

J(u−0 , v
−
0 ) = lim

n→+∞
J(un, vn) = δ−.

Thus, (u−0 , v
−
0 ) is minimizer for J on N−. Since J(u−0 , v

−
0 ) = J(|u−0 |, |v

−
0 |) and

(|u−0 |, |v
−
0 |) ∈ N−, similar to the argument in Theorem 3.4, we can also get that

(u−0 , v
−
0 ) is a positive solution of problem (1.3).
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Proof of Theorem 1.2 By Theorems 3.4 and 3.5, we obtain that problem (1.3) has
two positive solutions (u+

0 , v
+
0 ) ∈ N+ and (u−0 , v

−
0 ) ∈ N−. Since N+ ∩ N− = ∅, the

solutions (u+
0 , v

+
0 ) and (u−0 , v

−
0 ) are distinct. This concludes the proof.
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