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Abstract

In this paper we present a Kaleckian-type model of a business cycle based on a nonlinear
delay differential equation. A numerical algorithm based on a decomposition scheme is
implemented for the approximate solution of the model. The numerical results of the
underlying equation show that the business cycle is stable.

1. Introduction

This paper deals with a class of nonlinear differential equations that arises in the
study of economic dynamics and business cycles. Models of business cycles that
include time lags represent a growing field of study in economic dynamics (see [3]
and [10]). Economic environments are modelled either as discrete dynamical systems
[12] or as continuous dynamical systems [19]. Discrete dynamical systems give rise to
difference equations and have been used in most applied and theoretical formulations
of economic models (see [17] and [18]). Continuous dynamical systems give rise to
differential equation models and have been used in formulations of the business cycle
as in the Keynesian tradition [11] and in structural macro economics [20].
In this paper we shall consider the Kaleckian model (see [4]) given by

K() = (g - n) K@) — (g + m) K@t —1)—eK*(), (LD)

where K (¢) represents capital stock, t represents the gestation period in production
and € is small. The triplet (a, n, m) represents economic parameters: a represents
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the proportion of profits that is reinvested by firms in the economy and usually ranges
from 0.8 to 0.95, n represents the degree of responsiveness of investment to the level
of capital stock K (z) in the economy (the higher the capital stock, the less profitable
the investment) and m is the same as n but for the nonlinear capital stock.

There are four main assumptions that form the fundamental core of Kaleckian
theory. First, investment is the main driver of business cycle activity and hence any
model of the business cycle should be a model of investment dynamics. Second,
Kalecki assumed that in a capitalist economy the main motive for the decision to
invest is the profit motive. Third, the capital stock forms a depressing factor on
investment. Fourth, in modern economics where investment involves the installation
of machinery, there exists a time lag between the decision to invest and the actual
realisation of investment. This is known in the modern literature as the time-to-build
([3] and [16])).

Equation (1.1) is a consequence of the assumed relation between investment (1),
profits (o) and capital stocks (K') as given in [13]:

I=f(mK), ‘ (1.2)

where dI/0n > Oand 0/ /90K < 0. Sincethereisatime lag, T, between the decisionto
invest and the actual delivery and installation of investment equipment, (1.2) becomes
I = f(@(r(t— 1), K(t — t)). A possible choice of a nonlinear dependence given in
[4] is G = G(K (t), K(t — 1)) with T being the time lag. The function G represents
the effect on capital accumulation from —7 up to the present. In [4] G was given by-

G(t) =nK@) +mK(@ — 1)+ eK3(2). (1.3)

The nonlinearity € K> captures the increasing negative effect of capital stock on prof-
itability. As the capital stock becomes larger, its effect on profit increases dispropor-
tionally. Substituting (1.3) in (1.2) and using the identity (see [14])

()= (K@+7)- K@)/t

we get (1.1) and when € = O we get the linear version of (1.1), (see [4])
. a a
R(r) = (? - n) K@) - (; + m) K( - 7). (1.4)

It has been argued in [4] that the nonlinear term € K*(7) captures the increasing
negative effect of capital stock on profitability and leads to a stable cycle. In this paper
we will present a numerical scheme based on a decomposition method to solve (1.1)
and show that the nonlinearity leads to a stable cycle.

The balance of the paper is as follows. In Section 2, we will give a brief description
of the method, while in Section 3 we will solve (1.1) using the decomposition method
and show that the numerical results lead to a stable cycle for a large range of the
parameters a, n and m.
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2. The method

In this section we first briefly describe the Adomian decomposition method as it is
applied to general nonlinear ordinary differential equations. For a detailed description
of the decomposition method, we refer the reader to [1, 2,5, 6, 8, 9].

Let L represent the highest-ordered differential operator and R the remainder of
the ordinary differential operator, including the nonlinear term. For example, L is
d/dt and R acting on K yields the expression on the right-hand side of (1.1). Using
this notation, a general nonlinear ordinary differential equation can be rewritten as

LK = R(K)+g, 2.0

where g represents a known function. In (1.1), LK = K@, R(K) = (% - n) K@) -
(2+m)K(t—1)—eK*()and g = 0.

For problems like (1.1), we define the inverse operator L~! of L = d/dt as the
integration operator. For example, in (1.1), L = d/dt implies that L' = fo' and
hence L~'LK = K () — C, with C being the integration constant.

Applying L~! to (2.1), we obtain

K@) = C+ L7'R(K). (2.2)

The decomposition method assumes a series solution for K given by

o}

K= K=K+ Ki+ K+, 23)

n=0

with K identified as C in (2.2). Assuming R(K) is analytic, we can write

R(K) =Y Ru(Ko, K1, ..., Ka), 2.4)
n=0

where R, are the specially generated Adomian polynomials that depend only on the
Ko to K, components. To be more specific, we define the order of the component K jf"
to be j m, and the order of K{"K7 to be im + jn. Then the Adomian polynomial Ry
depends upon K, with order O, R, depends upon K, and K, with order 1, etc. For
example, if R(K) = K?, then the expansion of R(K) is

RK)=K3+ K} + K} + K] +---+3K2K, + 3K2K, + 3K2Ks + - --
+3K}Ko+3K}Ky +3KIK3+ - + 3K} Ko + 3K2K, + 3K?K;
4+ 4+ 6KoK K, + 6KoK K3 +6KoK Ky + - - -

+ 6K, K:Ki + 6K\ K Ky + - .
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Therefore the first five Adomian polynomials in (2.4) for R(K) are:

Ro = K3(#), R, =3Kl)K\(),
Ry = 3K2(1) K1 (1) + 3Ko (D K1),
Ry = K} (1) + 3K () K3(2) + 6Ko(1) K1 (1) Ka(2),

Substituting (2.3) and (2.4) into (2.2), we have
Ko+ Ki+ Ko+ =CH+L'"Ry—L'Ry —L'Ry +---.

If the series solution is convergent, then we can determine each term of the series
3 o K recursively:
Ko=C, Ki=-L""Ro(Ko),
Ky = —L7'Ri(Ko, K1),
........................ 2.5)
K, =—L""R,_1(Ko, Ky, ..., Kni),

The algorithm in (2.5) determines the K;’s and hence the solution K will be known.
The convergence of the series solution has been established in [7]. The two
Ihypothesés that are needed to prove convergence of Adomian’s algorithm as given in
[7] are:
(1) The nonlinear functional equation (2.1) has a series solution (2.3) such that
Z;’io(l + €)"|K,| < 0o where € may be very small.
(2) The nonlinear operator R is analytic and can be developed in the series R(K) =

pINY-W ¢
These two hypothesis are usually satisfied in physical problems.

3. Adapting the decomposition algorithm
to the business cycle equations

We will in this section adapt the decomposition method to solve (1.1), with the
initial condition
KO =C. 3.D
For simplicity, we leta = a/t — n and 8 = a/t + m. Then (1.1) becomes

K@) =aK(@)— BK(t — 1) — eK(0). (3.2)
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In this problem, the operator L is the differential operator d/d¢, and its inverse L~
is the integral over the interval [0, #]. Writing (3.2) in operator form, we have

LIK(D)] =aK (@) — BK(t — 1) — eK>(1). (3.3)
Applying L™ to both sides of (3.3) yields
K@) — K©) =aL™'[K(0)] - BL7'[K(t — )] — eL7'[K’ (D).
After using the initial condition (3.1) the above expression becomes
K@) = C+aL '[K@®)] - BL7'[K(t — )] — eL7'[K*(1)]. (3.4)

As discussed in Section 2, the decomposition method assumes that K (¢) has a
series solution K(¢) = Z?:o Ki(t) = Ko+ Ky + K; + -- -, and the expansion of
K30)is K3(t) = Ag(®) + A (1) + A, (1) + - - -, where A; (i = 1,2, ...) are Adomian
polynomials with

Ao = K3 (1), A =3K5(DK\ (1),

Az =3KZW) K (1) + 3Ko(DKE(D), (3.5)
As = K3(t) + 3KX(D K3 (1) + 6 KoK (DKo (8) + - -+,

As = 3K2(O)Ko(t) + 3Ko (1) K2(2) + 3K2(1) Ko (2) + 6Ko(t) Ky (D K3(1) + - -+,

Substituting into (3.4) we obtain

Ke() + Ki() + K () + - - -
= C+oaL '[Ke(t) + K\(t) + Ko(t) +---]
—BL' Kot — )+ K\t =)+ Kot —T) + - -]
—€eL7'[Ag(t) + A () + A2 () + -+ ].

We can now determine each term of the series recursively:

Ko(t) = C,
Ki(t) = aL7'[Ko(8)] — BL™'[Ko(t — T)] — eL7'[Ao(D)],
Ky() = aL7'[Ki ()] — BL7'[K (1 = T)] — €L 7' [A, ()], (3.6)
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FIGURE 1. The capital stock K (1) oscillates for 0 <1 < 15in Case 1.
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FIGURE 2. The capital stock K (#) oscillates for 0 < ¢t < 18 in Case 2.
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FIGURE 3. The capital stock K (¢) oscillates for 0 < ¢ < 20 in Case 3.
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with A;(t) (i = 0, 1,2,...) specified in (3.5). Applying L' = fo' to the K;’s in
(3.6), we can use the algorithm in these equations to determine the K;’s and hence the
solution K.

Applying L= = fo’ to the right-hand side expressions of (3.6), we can determine
an explicit expression for the K;'s:
Ko() = C, Ki(1) = (@ = B)Ct — eCs,
K2(t) = (@ — BYC /2 — € C*1*/2 — [B(a — B)C + €BC*] (17/2 — b1)
—3eC*[(a — B)C /2 — e C*1*/2],

Without loss of generality, C is assumed to be 1, the time delay T = 1 and ¢ = 0.01.
In the computation, we use the first nine terms to approximate K (¢), that is,

K(1) = Ko(t) + Ki(1) + - - + Kg(1).

We investigated the following three different cases:

Case a n m T (years) Stability

1 095 0.1 0.15 15 stable
2 095 O 0.2 18 stable
3 095 0 0.15 20 stable

The graphs of these three cases are shown in Figures 1, 2 and 3, respectively. In these
figures we can see the behaviour of the business cycles, which represent oscillations
in the real economy. The limit cycles are generated for large ranges of the parameters
and are stable for 0 < r < T, as listed in the above table. For larger T’s we can add
more terms in the approximation of K (¢).

In this paper we have presented an alternative method to study the stability of the
nonlinear delay equation (1.1). Since the method approximates the exact solution by
a series representation, we can only show that the bounded fluctuations in the business
cycle occur locally.
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