
2

The pre-QCD era

2.1 The quark model

� We know that hadrons have mainly strong interactions. However, the number of observed hadrons
increases drastically in comparison with that of leptons. The classification of hadrons into multi-
plets has been facilitated by the discovery of internal symmetries, which play an important rôle for
obtaining relations among masses, magnetic moments and couplings of the hadrons. The classifica-
tion under the SU (3)F group (named flavour at present) [7] has been successful, where hadrons are
characterized under their isospin I , hypercharge Y , baryon number B and strangeness S. Therefore,
the pions are placed in the same pseudoscalar octet as the K , K̄ and η, while the vector mesons
ρ, ω, φ fill another octet, . . . The splitting of hadron masses was expected, due to SU (3)F breaking
that originated from strong interaction forces, whereas the SU (2) isospin subgroup was found to be
almost symmetric. This led to the concept of charge independence, which has played an important
rôle in nuclear physics, where the proton and neutron form an SU (2) doublet.

� However, none of the fundamental representations SU (3)F were realized by the observed hadrons,
which led Gell-Mann and Zweig [8,9] to postulate that the observed hadrons, like the atoms, are
not elementary, but are built by more elementary quark1 constituents q having three flavours up,
down and strange. Their charge Q in units of the one of the electron are:

Qu = 2/3 , Qd = Qs = −1/3 . (2.1)

In this picture, the mesons are bound states of quark–anti-quark, while the baryons are made by
three quarks. The quarks internal quantum numbers are given in Table 2.1.

The SU (3)F decomposition into products of 3 and 3∗ representations gives for mesons:

q̄q : 3∗ ⊗ 3 = 1 ⊕ 8 (2.2)

and for baryons:

qqq : 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10 , (2.3)

1 The name quark did not exist in the English dictionary, and may have been inspired from the following poetry Finnengan’s wake
of J. Joyce:

“Three quarks for Muster mark!
Sure he has’not got much of bark
and sure any he has it’s all beside the mark.”

However, quark is a well-known German word as it means curdy milk, but more commonly it means a mess.
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2 The pre-QCD era 11

Table 2.1. Additive quark-quantum numbers

Quark u d s

Charge Q 2
3 − 1

3 − 1
3

Third component of isospin I3
1
2 − 1

2 0

Hypercharge Y 1
3

1
3 − 2

3

Baryon number 1
3

1
3

1
3

Strangeness 0 0 −1

Fig. 2.1. The nine mesons built from the u, d, s quarks.

from which one can built a simple but complete Periodic Table of Hadrons. These classifications
are given in Figs. 2.1 to 2.3. In this sense, the quark model was a modern version of the Sakata [10]
model.

� Masses and mass-splittings of hadrons have been explained by using Gell-Mann–Okubo-like mass
formulae [11], and by introducing the so-called constituent quark masses with the values [12]:

Mq ≈ 300 MeV , (2.4)

and by assuming the quark-mass differences:

Md − Mu ≈ 4 MeV , Ms − Md ≈ 150 MeV . (2.5)

� The compositeness hypothesis for the hadrons has been supported by the measurement of the proton
magnetic moment which has a value of about 2.8 in units of µp = eh̄/2Mp , while it is expected to
be unity from a point-like spin 1/2 object.
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12 I General introduction

Fig. 2.2. The octet baryons built from the u, d, s quarks.

Fig. 2.3. The ten spin 3/2 baryons built from the u, d, s quarks.
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2 The pre-QCD era 13

2.2 Current algebras

Reviews on current algebras can be seen in [13]. In the following, we shall discuss some
main features of the approach.

2.2.1 Currents conservation

� Although we have more forces in nature, electromagnetism plays a capital rôle. The theory of
electron (muon) interacting with the photon field is the only one where the concepts of quantum
field theory work in a satisfactory manner. Indeed, within Quantum ElectroDynamics (QED), one
has been able to perform higher order approximate calculations which are confirmed by experi-
mental measurements at an impressive, high level of accuracy (anomalous magnetic moment of the
leptons, . . . ). Although more complicated, due to the presence of strong interactions, the study of the
electromagnetic interaction of hadrons has been facilitated by the property of the electromagnetic
current conservation leading to the concept of universality, which allows us to put, for example, at
the same footing, an e−, a π− and a p−, and to show, for instance, that the physical charges of these
three particles remains the same after renormalizations. Moreover, current conservation allows the
use of soft photon theorems in order to relate the cross-section to the static properties of the hadrons
(charge, magnetic moments, . . . ). It is also one of the basis of the popular Vector Meson Dominance
Model (VDM) [14]. As a consequence of the current conservation, the corresponding charge is a
constant of motion, such that the only non-vanishing matrix elements of this charge are between
equal-mass states.

� In the case of weak current, current conservation gives a well-defined meaning to the idea of universal
weak coupling which has been successfully tested experimentally in the case of non-strange weak
vector currents. However, difficulty arises when one tries to explain strangeness-violating transition
such as the ratio of the K + → π0e+νe over the π+ → π0e+νe. It can only be explained by the
introduction of the Cabibbo angle θc [15] allowing the mixing of the strange quark with the down
quark, with the experimental value sin θc = 0.220 ± 0.003 [16]. In this case, the idea of weak
universality appears also to work in the process involving the strange quark.

� Inspired again by the quark model, Gell-Mann [7] suggested that the vector and axial charges
satisfy a SU (3) ⊗ SU (3) algebra. This picture naturally leads to the existence of larger multiplets
of particles having the same spins but with both parities, which has been confirmed by the data. The
rôle of partially conserved axial current (PCAC) was found to be related to the existence of the light
(compared with the ρ and p) pseudoscalar particle, the π , which has been understood, later on, from
the spontaneous Nambu–Goldstone [17] nature of the symmetry breaking. More precisely, the exact
current conservation of the axial current is realized when the pion is massless. Again inspired by
the soft photon theorem which is a consequence of the conservation of the electromagnetic current,
one can also derive soft pion theorems obtained from phenomenological Lagrangians satisfying the
non-linear realizations of chiral symmetry.

2.2.2 Currents and charges

The next development is the construction of hadron currents built from quark fields in much
the same way as one can write a current for lepton fields. The quark electromagnetic and
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14 I General introduction

charged weak currents can be written as:

Jµ
em = 2

3
ūγ µu − 1

3
d̄γ µd − 1

3
s̄γ µs + · · · ,

Jµ

weak = ūγ µ (1 − γ5) d + · · · , (2.6)

where we ignore to a first approximation the mixing among quark fields due to the Cabibbo
angle. In the massless quark limit (m j = 0), the free quark Lagrangian density Lq(x):

Lq(x) = i
n∑

j=1

ψ̄ jγµψ j , (2.7)

possesses a SU (n)L × SU (n)R global chiral symmetry and is invariant under the global
chiral transformation:

ψi (x) → exp(−iθ ATA)ψi (x) ,

ψi (x) → exp(−iθ ATAγ5)ψi (x) , (2.8)

where T A(A ≡ 1, . . . , n2 − 1) are the infinitesimal generators of the SU (n) group acting
on the quark-flavour components. The associated Noether currents are the vector and axial-
vector currents:

V A
µ (x) = ψ̄ iγµ T A

i j ψi (x) ,

AA
µ(x) = ψ̄ iγµγ5 T A

i j ψi (x) , (2.9)

which are the ones of the algebra of currents of Gell-Mann [69,13] (n = 3 in the original
paper). The corresponding charges which are the generators of SU (n)L × SU (n)R are:

Q A =
∫

d3x V A
0 (x) ,

Q A
5 =

∫
d3x AA

0 (x) . (2.10)

The charges in Eq. (2.10) are conserved in the massless quark limit, and obey the com-
mutation relations (simplified notations):

[Qα, Qβ] = i fαβγ Qγ ,[
Qα

5 , Qβ

5

] = i fαβγ Qγ ,[
Qα, Qβ

5

] = i fαβγ Qγ

5 , (2.11)

i.e. QV and Q A generate a closed algebra. They also imply:

[Qα, V β] = i fαβγ V γ ,

[Qα, Aβ] = i fαβγ Aγ ,[
Qα

5 , V β
] = i fαβγ Aγ ,[

Qα
5 , Aβ

] = i fαβγ V γ . (2.12)
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2 The pre-QCD era 15

2.2.3 Chiral symmetry and pion PCAC

In the Nambu–Goldstone [17] realization of chiral symmetry, the axial charge does not
annihilate the vacuum, which is the basis of the successes of current algebra and pion
PCAC [13]. In this scheme, the chiral flavour group G ≡ SU (n)L × SU (n)R is broken
spontaneously by the light quark (u, d, s) vacuum condensates down to a subgroup H ≡
SU (n)L+R , where the vacua are symmetrical:

〈ψ̄uψu〉 = 〈ψ̄dψd〉 = 〈ψ̄ sψs〉 . (2.13)

The Goldstone theorem states that this spontaneous breaking mechanism is accompa-
nied by n2 − 1 massless Goldstone P (pions) bosons, which are associated with each
unbroken generator of the coset space G/H . For n = 3, these Goldstone bosons can be
identified with the eight lightest mesons of the Gell-Mann eightfoldway (π+, π−, π0, η,

K +, K −, K 0, K̄ 0). On the other hand, the vector charge is assumed to annihilate the vac-
uum and the corresponding symmetry is achieved à la Wigner–Weyl [18]. In the vector
case, the particles are classified in irreducible representations of SU (n)L+R and form parity
doublets. In addition to the electromagnetic mass which the Goldstone bosons can acquire
[19], they get a mass mainly from an explicit breaking (mi 	= 0) of the SU (n)L × SU (n)R

global symmetry. In this case, the divergence of the axial-vector current does not vanish
and reads (in the case of the u, d quarks):

∂µ Aµ(x)i
j = (mi + m j )ψ̄ i (iγ5)ψ j , (2.14)

to which are associated the quasi-Goldstone parameters defined as:

〈0|∂µ Aµ(x)i
j |π〉 =

√
2 fπm2

π �π , (2.15)

where �π is the pion field and fπ = 92.4 MeV is the pion decay constant which controls the
π → µν decay width. In this case, the divergence of the vector current reads:

∂µV µ(x)i
j = (mi − m j )ψ̄ i (i)ψ j , (2.16)

to which is presumably associated the a0(980) scalar meson (the best experimental
candidate).

Current algebra also tells us that the two-point correlator associated with Eq. (1.15) is
related to the axial-current one via a current algebra Ward identity [20,13], up to equal-time
commutator terms (in the following we shall suppress flavour indices):

qµqν

µν

5 = �5(q2) − qν

∫
d4xeiqxδ(x0)〈0[A0(x), (Aν(0))† ]0〉

+ i
∫

d4xeiqxδ(x0)〈0[∂µ Aµ(x) , (A0(0))†]0〉 , (2.17)

with:

�5(q2) = i
∫

d4xeiqx 〈0|T∂µ Aµ(x)(∂µ Aµ(0))†|0〉 ,



µν

5 (q2) = i
∫

d4xeiqx 〈0|TAµ(x) (Aν(0))† |0〉 . (2.18)
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16 I General introduction

At q = 0, the previous identity reduces to:

�5(0) = −i(mu + md )〈0[ψ̄d (0)iγ5ψu(0), Q†
5]0〉 , (2.19)

where Q5 is the axial-charge generator. In the Nambu–Goldstone realization of chiral
symmetry, one has:

Q5|0〉 	= 0 . (2.20)

Therefore, we get:

�5(0) = −(mu + md )〈ψ̄dψd + ψ̄uψu〉 . (2.21)

Using Eq. (2.15) in the definition of �5(q2) and equating this with Eq. (2.19), we have
the well-known pion PCAC (Gell-Mann et al. [21]) relation at q = 0 (recall that fπ =
92.4 MeV):

−(mu + md )〈ψ̄dψd + ψ̄uψu〉 = 2m2
π f 2

π . (2.22)

2.2.4 Soft pion theorem and the Goldberger–Treiman relation

Let’s consider the matrix element of the axial-vector current between two nucleon states
shown in Fig. 2.4.

Using invariance properties, it can be parametrized as:

〈N (p2)|Aµ|N (p1)〉 = ū(p2)[γµgA(q2) + qµgP (q2)]γ5u(p1) , (2.23)

where q = p2 − p1 is the momentum transfer between the nucleon states, and where
experimentally gA(0) = 1.26. The matrix element of the current divergence reads:

A ≡ 〈N (p2)|∂µ Aµ|N (p1)〉 = ū(p2)[2MN gA(q2) + q2gP (q2)](iγ5)u(p1) , (2.24)

where the relation for the Dirac spinors:

qµū(p2)(iγ µγ5)u(p1) = 2MN ū(p2)γ5u(p1) , (2.25)

has been used. The PCAC hypothesis in Eq. (2.15) yields in the massless pion (chiral) limit:

2MN gA(q2) + q2gP (q2) = 0 . (2.26)

N(p1) N(p2)

q

Fig. 2.4. Axial-vector scattering with nucleon.
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2 The pre-QCD era 17

where the divergence of the axial-vector current is zero. If g(q2) has no singularity at
q2 = 0, then Eq. (2.26), would imply either MN = 0 or gA = 0. However, none of these
requirements are true. Therefore, gP should have a pole at q2 = 0:

lim
q2→0

gP (q2) = −2MN gA

q2
. (2.27)

The matrix element in Eq. (2.24) between a one pion state and the vacuum is the same as
if there were a term in Aµ(x) of the form

√
2 fπ∂µ �π (x). Therefore, in the chiral limit, the

matrix element has a pole, and reads:

〈N (p2)|Aµ|N (p1)〉 =
√

2 fπqµ〈N (p2)| �π |N (p1)〉 = 2 fπqµ

−q2
gπ N N (q2)ū(k2)(iγ5)u(k1) ,

(2.28)

where gπ N N (q2) is the π N N vertex function. Its physical coupling is defined at q2 = m2
π

at has the experimental value of 13.50 ± 0.15 [16]. Solving these last two equations, one
can derive the Golberger–Treiman relation (GT) [22] in the chiral limit:

fπ gπ N N (0) = MN gA(0) . (2.29)

In the case of massive quarks, one can write the matrix element in Eq. (2.24) as:

A =
√

2 fπm2
π 〈N (p2)| �π |N (p1)〉 = 2 fπm2

π

−q2 + m2
π

gπ N N (q2)ū(k2)(iγ5)u(k1) . (2.30)

By identifying Eqs. (2.24) and (2.30), and setting q2 = 0, one would obtain the previous
GT relation in Eq. (2.29), which one can identify with the physical coupling assuming that
the coupling is a smooth function of q2 from 0 to m2

π , which is valid as there is no one-pion
pole in this function. One should remark that only gP (q2) has a pion pole term, and it is of
the form:

gP (q2) =
√

2 fπ
m2

π − q2

√
2gπ N N , (2.31)

such that at q2 = m2
π , Eqs. (2.30) and (2.24) leads to a trivial equality.

2.2.5 The Adler–Weisberger sum rule and soft pion theorems

In the case of the Golberger–Treiman relation, we have used a one-pion soft theorem
for estimating the pion-nucleon-nucleon matrix element. Here, we shall be concerned by
low-energy theorems for pion-nucleon scattering amplitudes involving two soft pions. The
process is depicted in Fig. 2.5.

The amplitude can be written as:

〈πi (q2)N (p2)|π j (q1)N (p1)〉 = i(2π )4δ4(p1 + q1 − p2 − q2)Ti j , (2.32)
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18 I General introduction

π(q1)

N(p1) N(p2)

π(q2)

Fig. 2.5. Forward pion-nucleon scattering process.

which can be decomposed in terms of two invariants (isospin-even and -odd):

Ti j = δi j T
(+) + 1

2
[τi , τ j ]T

(−) , (2.33)

where i, j are isospin indices. Using standard reduction formula discussed in the next
section, one can apply the soft pion theorem, which gives:

Ti j = i
(−q2

2 + m2
π

)〈N (p2)| �π i (0)�π j (q1)N (p1)〉

= qµ

2

(−q2
2 + m2

π

)
√

2 fπm2
π

〈N (p2)|Ai
µ(0)|π j (q1)N (p1)〉 . (2.34)

For q2 → 0, we can take T (−) = 0 since it is odd under crossing. Also, the non-singular
part of the amplitude vanishes (Adler’s consistency condition) [23]:

T (+)
(
ν = 0, νB = 0, q2

1 = m2
π , q2

2 = 0
) = 0 , (2.35)

where:

ν ≡ q1(p1 + p2)/2 , νB = −q1 · q2/2 , (2.36)

are kinematic variables. Similarly, when q2
1 → 0, one obtains:

T (+)
(
ν = 0, νB = 0, q2

1 = 0, q2
2 = m2

π

) = 0 . (2.37)

Applying two times the soft pion theorems, one can reduce the amplitude as:

Ti j = i
(
q2

1 − m2
π

)(
q2

2 − m2
π

) 1

2m4
π f 2

π

∫
d4x eiq1x 〈N (p2)|T ∂µ Aµ(x)∂µ Aµ(0)|N (p1)〉 .

(2.38)

Using the current algebra Ward identity:

qµ

1 qν
2

∫
d4x eiq1xT Ai

µ(x)A j
ν(0) =

∫
d4x eiq1x

[T ∂µ Ai
µ(x)∂µ A j

µ(0)

− iqµ

1 δ(x0)
[
A j

0(0), Ai
µ(x)

] + δ(x0)
[
Ai

0(0), ∂µ A j
µ(x)

]]
,

(2.39)
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2 The pre-QCD era 19

one can see after sandwiching between two nucleon states that the first term is the nucleon
matrix element of a time-ordered product of two-pion operators; the second term can be
evaluated from the current algebra commutation relation:

δ(x0)
[
Ai

0(0), A j
µ(x)

] = −iδ(x)εi jk Vk,µ(x) , (2.40)

while the last term gives the pion-sigma term, which is symmetric in i, j , and then this
t-channel state must have isospin 0 or 2 since the pion has isospin 1. However, since the
nucleon has isospin 1/2, only I = 0 state can contribute, and therefore:

σ i j = δi jσN . (2.41)

In the low-energy limit, the following soft-pion theorems are obtained:

lim
ν→0

ν−1T (−)(ν, 0, 0, 0) = (
1 − g2

A

)/
f 2
π , (2.42)

and

lim
ν→0

ν−1T (+)(0, 0, 0, 0) = −σN / f 2
π . (2.43)

It is also expected and assumed that T (−), which is odd under the change ν → −ν, obeys
an unsubtracted dispersion relation in the variable ν:

T (−)(ν, q2 = 0)

ν
= 2

π

∫ ∞

ν0

dν ′

ν ′2 − ν2
ImT (−)(ν ′, 0) . (2.44)

Its imaginary part can be related to the π N cross-section if one assumes a smoothness
assumption:

ImT (−)(ν, 0) � ImT (−)
(
ν, m2

π

) = ν
[
σ

π+ p
tot (ν) − σ

π− p
tot (ν)

]
. (2.45)

Using the previous GT relation in Eq. (2.29) for eliminating fπ in Eq. (2.42), the dispersion
relation gives the Adler–Weisberger relation [24]:

1 − 1

g2
A

= 2M2
N

πg2
π N N

∫ ∞

ν0

dν

ν

[
σ

π+ p
tot (ν) − σ

π− p
tot (ν)

]
, (2.46)

which is an interesting low-energy sum rule.

2.2.6 Soft pion theorem for ρ → π+π− and the KSFR relation

We discuss here a further use of soft pion theorems. We consider the process in the chiral
limit where the pions are massless:

ρ0 → π+π− . (2.47)

It is described by the amplitude:

T i j
νµ = i

∫
d4x exp(iqx)〈0|T Ai

ν(x)A j
µ(0)|ρ(p)〉 , (2.48)
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20 I General introduction

where i, j are isospin indices. Taking its divergence, one obtains:

qνT i j
νµ =

{
U i j

µ ≡ −
∫

d4x exp(iqx)〈0|T ∂ν Ai
ν(x)A j

µ(0)|ρ(p)〉
}

−
∫

d4x exp(iqx)δ(x0)〈0|[Ai
0(x), A j

µ(0)
]|ρ(p)〉 . (2.49)

Using the commutation relation given previously, one can deduce the Ward identity:

qνT i j
νµ = U i j

µ − i f i jk〈0|Vµ,k |ρ(p)〉 , (2.50)

where Vµ is the vector isovector current. In the massless pion limit, the axial current is
conserved such that U i j

µ vanishes. The coupling of the neural ρ-meson to the isovector
current is introduced as (from now, we shall suppress the isospin indices):

〈0|Vµ|ρ(p)〉 = M2
ρ

2γρ

εµ . (2.51)

where, experimentally, γρ = 2.55, with the normalization:

�ρ→e+e− � 2

3
πα2 Mρ

2γ 2
ρ

. (2.52)

εµ is the polarization of the ρ meson which ensures the conservation of the vector current.
Contracting again with the pion momentum q ′, one obtains:

qνq ′µTνµ = (ε · q ′)
M2

ρ

2γρ

. (2.53)

Introducing the ρππ coupling as:

〈π (q ′), π (q)|ρ(p)〉 = εν(q ′ − q)νgρππ , (2.54)

and taking the limit q ′ → q → 0, one obtains the soft pion relation:

M2
ρ

2γρ

= 4 f 2
π gρππ . (2.55)

If one assumes ρ-universality from the vector meson dominance model [14], one has:

M2
ρ

2γρ

= M2
ρ

gρππ

. (2.56)

The two equations give the Kawarabayashi–Suzuki–Ryazuddin–Fayazuddin (KSFR)
relations [25]:

g2
ρππ = M2

ρ

4 f 2
π

, (2.57)

or:

f 2
π = M2

ρ

16γ 2
ρ

, (2.58)
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2 The pre-QCD era 21

which are useful in different phenomenological applications. One can check from the data
that the predictions given by these two relations are unexpectedly good despite the crude
approximation used for deriving them.

2.2.7 Weinberg current algebra sum rules

Another important consequence of the commutation relation of currents are the different
current algebra dispersion sum rules, based on the assumption that the SU (3) ⊗ SU (3)
symmetry is realized asymptotically. Though conceptually difficult to digest, this asymp-
totically free hypothesis has been very successful in different applications [13] (Weinberg
and Das–Mathur–Okubo (DMO) sum rules [26,27], Adler–Weisberger sum rule [24] dis-
cussed previously, . . .). Here, we shall discuss briefly the Weinberg and DMO sum rules.
They are based on the assumed asymptotic behaviour of the absorptive amplitudes, with the
assumption that the SU (2)L × SU (2)R chiral symmetry is asymptotically realized in nature.
Weinberg has derived two superconvergent sum rules, well-known as Weinberg sum rules
(WSR) [26]. In order to show this result, it is appropriate to study the two-point correlator:

W µν

L R ≡ i
∫

d4xeiqx 〈0|T Jµ

L (x)
(
J ν

R(0)
)† |0〉

= −(gµνq2 − qµqν)
(1)
L R + qµqν


(0)
L R , (2.59)

where Jµ

L and Jµ

R are left- and right-handed charged currents, which read in terms of the
quark fields:

Jµ

L ≡ ūγ µ(1 − γ5)d , Jµ

R ≡ ūγ µ(1 + γ5)d . (2.60)



(1)
L R and 


(0)
L R are respectively the transverse and longitudinal parts of the correlator. In the

asymptotic limit (q2 → ∞) or in the chiral limit (mu,d → 0), where the SU (2)L × SU (2)R

chiral symmetry is realized, W µν

L R tends to zero. Using the Källen–Lehmann representation
of the two-point correlator:

(



(J )
L R ≡ (


i j (J )
)

L R

) (
q2, m2

i , m2
j

) =
∫ ∞

0

dt

t − q2 − iε

1

π
Im


(J )
L R(t) + · · · , (2.61)

where · · · represent subtraction points, which are polynomial in the q2-variable, one can
transform the previous property of W µν

L R into superconvergent sum rules for its absorptive
parts [26]: ∫ ∞

0
dt Im

(



(1)
L R + 


(0)
L R

) ≈ 0 ,

∫ ∞

0
dt t Im


(1)
L R ≈ 0 , (2.62)

where the first WSR comes from the qµqν component of W µν

L R and the second WSR comes
from its gµν part. These WSR express in a clear way, the global duality between the long-
range (spectral function measurable at low-energy) and the high-energy (asymptotic theory)
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parts of the hadronic correlators. This quark-hadron duality is one of the basic idea behind
QCD spectral sum rules, which we shall discuss in detail in the next part of the book.

In order to parametrize the spectral functions, we use a narrow-width approximation and
assume that the π, A1 and ρ dominate the spectral functions. In this way, one can derive
the constraints:

M2
ρ

2γ 2
ρ

− M2
A1

2γ 2
A1

− 2 f 2
π ≈ 0 ,

M4
ρ

2γ 2
ρ

− M4
A1

2γ 2
A1

≈ 0 , (2.63)

where fπ = 92.4 MeV is the pion decay constant governing the π → µν decay; γV is the
V -meson coupling to the corresponding charged current:

〈0|V µ|ρ〉 =
√

2
M2

ρ

2γρ

εµ , (2.64)

where experimentally γρ � 2.55. Notice the extra
√

2 factor coming from the different
normalizations of the charged and neutral current discussed in the analysis of the ρ0 →
π+π− decay. From the above crude assumptions, one can predict by solving the two WSR
equations and by using the experimental values of the ρ and π parameters:

MA1 � 1.1 GeV , (2.65)

which is in good agreement with the present data [16]. If, in addition, one uses the relation
between fπ , γρ and Mρ (approximate KSFR relation [25]) discussed previously:

f 2
π � M2

ρ

16γ 2
ρ

, (2.66)

deduced, from ρ → ππ decays, using soft pion techniques, one arrives at the successful
Weinberg mass formula:

MA1 �
√

2Mρ , (2.67)

although one should notice that the data from hadronic experiments give a slightly higher
value [16].

2.2.8 The DMO sum rules in the SU (3)F symmetry limit

Electromagnetic current

Weinberg-inspired sum rules have been also derived from the asymptotic realization of the
flavour symmetry. The Das–Mathur–Okubo (DMO) sum rules [27] can be studied from the
two-point correlator:



µν

i (q2) ≡
∫

d4xeiqx 〈0|T V µ

i (x)
(
V ν

i (0)
)† |0〉

= −(gµνq2 − qµqν)
(1)
i (q2) , (2.68)
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where V µ

i (x) ≡ ψ̄ iγ
µψi (i ≡ u, d, s, . . .) are the flavour components of the electromag-

netic current:

Jµ

E M (x) = 2

3
V µ

u − 1

3
V µ

d + 2

3
V µ

c − 1

3
V µ

s + · · · (2.69)

In the asymptotic limit (q2 → ∞) or in the chiral limit (mi → 0), one can derive the
DMO sum rule [27]:∫ ∞

0
dt[Im
3(t) − Im
8(t)] ≡

∫ ∞

0
dt Im(
u + 
d − 2
s) (t) = 0 , (2.70)

which corresponds to the difference between the isovector and isoscalar spectral functions
associated with the SU (3)F symmetry. Saturating the spectral functions by the lowest mass
resonances, one can derive the well-known successful phenomenological relation among
vector mesons:

Mρ�ρ→e+e− − 3(Mω�ω→e+e− + Mϕ�ϕ→e+e− ) � 0 . (2.71)

One can also re-write the DMO sum rules in terms of the total cross-section for e+e− →
hadrons by using the optical theorem:

σ (e+e− → hadrons) = 4π2α

t
e2 1

π
Im
(t) . (2.72)

This relation is useful for testing the breaking of SU (3)F , as we shall see later on, because
we have complete data for the total cross-section.

Charged current

In the case of the charged vector or axial current:

V µ(x)i
j = ψ̄ iγ

µψ j , Aµ(x)i
j = ψ̄ iγ

µγ 5ψ j , (2.73)

the DMO sum rules read in the chiral limit:∫ ∞

0
dt Im
(1)(t)d

u =
∫ ∞

0
dt Im
(1)(t)s

u , (2.74)

where the spectral function can be measured in the τ → ντ+ hadrons decays. By saturating
the spectral function with the lowest resonances, one can deduce the constraint:

M2
ρ

γ 2
ρ

≈ M2
K ∗

γ 2
K ∗

. (2.75)

Using γρ = 2.55, Mρ = 0.776 GeV and MK ∗ = 0.892 GeV, it gives:

γK ∗ = 2.93 , (2.76)

which is already an interesting constraint as compared with the data from τ decay [16]. On
can notice that, as in the case of the WSR, the DMO sum rules give constraints between the
low-energy behaviour of the spectral functions and their asymptotic one.
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2.2.9 π+-π0 mass difference

Hadronic contributions to the electromagnetic π+-π0 mass difference have been derived by
Das et al. [19] by assuming a good realization of the SU (2)L × SU (2)R chiral symmetry
at short distance. In this way, by integrating the virtual photon with momentum q2, they
derive the result, in the chiral limit:

m2
π+ − m2

π0 � −i
6πα

f 2
π

∫
d4q

(2π )4

1

q2

∫ ∞

0

dt

q2 + t − iε

t

π
Im


(1)
L R

� − 3α

4π f 2
π

∫ ∞

0
dt

(
t ln

t

ν2

)
1

2π
Im


(1)
L R (2.77)

where the spectral functions enter the second WSR and ν is an arbitrary UV cut-off. Using
a lowest resonance saturation of the spectral functions in the narrow width appproximation
(NWA), and the constraints provided by the first and second sum rules, which guarantee
the convergence of the integral, one can derive the relation:

m2
π+ − m2

π0 � 3α

4π

M2
A1

M2
ρ

M2
A1

− M2
ρ

ln
M2

A1

M2
ρ

. (2.78)

Using the WSR relation M2
A1

= 2M2
ρ , one can deduce the result of [19]:

mπ+ − mπ0 � 3α

4π

M2
ρ ln 2

mπ

, (2.79)

which is in good agreement with the data mπ+ − mπ0 = 4.5936(5) MeV [16]. The improve-
ments of these prototype current algebra sum rules in the QCD context have been done in
[28–34] and will be discussed in details in the following sections.

2.3 Parton model and Bjorken scaling

Different deep-inelastic scattering experiments such as the unpolarized electroproduction
process ep → eX (X being the sum of inclusive produced hadrons) at high-energy virtual
photon with momentum Q, have been used to explore the quark structure of the proton.
This unpolarized process can be characterized by two measurable structure functions W1,2,
which parametrize the hadronic tensor and contains all strong interaction information about
the response of the target nucleon to electromagnetic probes:

dσ

d Q2dν
= πα2

4Mp E2 sin4 θ E E ′

{
2 sin2 θ

2
W1(Q2, ν) + cos2 θ

2
W2(Q2, ν)

}
. (2.80)

As shown in Fig. 2.6, they depend on the usual kinematic variables −q2 ≡ Q2 and ν:

ν ≡ p · q = Mp(E − E ′) , (2.81)

where ν/Mp is the energy transfer in the proton rest frame; p and Mp are the proton
momentum and mass; E and E ′ are the energies of the incident and scattered electrons in
the proton rest frame, and θ is the scattering angle (Q2 = 4E E ′ sin2 θ

2 ). For a point-like
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Fig. 2.6. ep → e+hadrons process.

proton, the structure functions are δ-functions:

W1(Q2, ν) = Q2

4M2
p

δ

(
ν − Q2

2

)
, W2(Q2, ν) = δ

(
ν − Q2

2

)
. (2.82)

It has been observed that, at large Q2, contributions from pointlike spin 1/2 objects
inside the proton still remain, while prominent contributions of resonances at low Q2 die
out quickly when Q2 increases. A rough estimate of the proton structure functions can
be done by assuming that the proton consists with pointlike spin 1/2 quark constituents
(called wee partons by Feynman [35]), each one carrying a given fraction ξi of the proton
momentum. Defining by fi (ξi ) the probability that a parton i has momentum fraction ξi , and
by W (i)

j the parton contribution to the structure function, then the proton structure function
becomes an incoherent sum of the one of the partons, and reads:

W1(Q2, ν) =
∑

i

∫ 1

0
dξi fi (ξi )W

(i)
1 (Q2, ν) = 1

2

∑
i

e2
i fi (x) ≡ F1(x)

W2(Q2, ν) =
∑

i

∫ 1

0
dξi fi (ξi )W

(i)
2 (Q2, ν) = M2

p

ν
x

∑
i

e2
i fi (x) ≡ M2

p

ν
F2(x) , (2.83)

where ei is the electric charge and:

x ≡ Q2

2ν
. (2.84)

This simple parton description of the proton, where the structure function depends only
on the kinematic variable x , is known as Bjorken scaling [36]. As a consequence of the
spin-1/2 assumption of the constituent quarks, one also obtains the Callan–Gross relation
[37]:

F2(x) = 2x F1(x) . (2.85)

These two QCD sum rules are well-satisfied by the data as shown in the Figs. 2.7 and 2.8,2

which then surprisingly suggest the existence of free point-like partons inside the proton,
in apparent contradiction with the confinement postulate.

2 Small logarithmic deviations from the parton model prediction are also seen, and are well explained in QCD (as we shall see
later on) after leading logs-resummation using the Altarelli–Parisi equation [38].
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Fig. 2.7. The proton structure function F2 versus x at two values of Q2, exhibiting scaling at the pivot
point x ≈ 0.14.

Fig. 2.8. The ratio 2x F1/F2 versus x for Q2 values between 1.5 and 16 GeV2.
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2.4 The S-matrix approach and the Veneziano model

2.4.1 The S-matrix approach

An alternative to the quark model was the so-called S-matrix (bootstrap) approach which
was very popular in the 1960s–1970s. It is based from a general Lagrangian, which should be
constrained from general principles (relativistic covariance, substitution rule, unitarity and
analyticity), and which limits the choice of the S-matrix. One of the main consequences
of this approach is the Regge poles theory [39], which gives a general classification of
hadrons (Regge trajectories) and predictions for high-energy data in terms of low-energy
parameters from the study of resonances. This approach can be illustrated by the scattering
process:

A + B → C + D (2.86)

and the crossed processes:

A + C̄ → B̄ + D , A + D̄ → B̄ + C , (2.87)

characterized by the two kinematic variables s and t . The amplitude can be written in a
dispersive form:

A(s, t) = 1

π

∫
ImA(s ′, t ′)

s ′ − s
ds ′, (2.88)

where one assumes that it converges for sufficiently large t , while it can be written as a sum
of poles:

A(s, t) = β(t)
∞∑

n=0

sn

α(t) − n
(2.89)

in the variable t at the solutions of the equations α(t0) = 0, α(tn) = n. Regge asymptotic
law gives rise for fixed t to:

lim
s→∞ ImA(s, t) ∼ β(t)sα(t) , (2.90)

where one can see a direct relation between the s and t-channels description of the
scattering. This relation can also be seen more conveniently from the finite energy sum
rule: ∫ L

0
ds sn ImA(s, t) = Lα(t)+n+1

α(t) + n + 1
. (2.91)

2.4.2 The Veneziano model and duality

The duality relation (crossing) between the s-channel resonance and t-channel Regge poles
suggests the duality bootstrap. This has been achieved by the Veneziano approach [40],
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where a complete (though approximate) description of scattering can be obtained in terms
of the s-channel resonances only. Inserting the resonance contributions from the particles
contained in the trajectory α(s) and in its daughters, one obtains:

A(s, t) =
∑

n

cn(t)

α(s) − n
=

∑
n

cn(s)

α(t) − n
, (2.92)

where the last equality is due to the duality constraints. cn(t) is a polynomial of order n
in t . The contribution of highest spin j = n comes from the α(s) = n intercept in the
leading trajectory, while the ones of lower spin come from the presence of lower ‘daughter’
trajectories. The solution to this equation is given by the well-known Veneziano beta-
function amplitude:

A(s, t) = �[−α(s)]�[−α(t)]

�[−α(s) − α(t)]
. (2.93)

The Veneziano dual-resonance model for the scattering amplitude can be summarized by
the following conditions:

� Only infinitely narrow resonances appear, and the only singularities are poles on the real axis.
� There is an exact crossing symmetry.
� There is an asymptotic Regge behaviour with linear trajectories with universal slope.

However, one should notice that straight line trajectories are very far from the
expectation from a field theoretical argument which suggests a Yukawa-like potential. In-
stead, they follow from a harmonic oscillator potential, and seem to be supported by the
data.

2.4.3 Duality diagrams

The previous discussion can be visualized using duality diagrams introduced in [41]. It
consists to represent the quark content of non-exotic (ordinary) hadrons as:

� Ordinary baryons composed of three quarks will be represented by three quark lines oriented in the
same directions.

� Mesons composed by quark–anti-quark will be represented by quark lines going in opposite
directions.

The process is represented by the topological structure of the graph:

� Planar diagrams can be drawn without crossing quark lines, which coı̈ncide with the ones suggested
by duality and ordinary hadrons, and which give a non-vanishing contribution to the imaginary part
of the amplitude.

� Non-planar diagrams are the other possibility, but do not contribute to the imaginary part as they
are real.
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π+ π+

π– π–

t-channel

s-channel

(a)

π+ π+

π– π–

(b)

Fig. 2.9. Duality diagrams for π+π− scattering: (a) planar (s, t) graph; (b) non-planar (s, s̄) or (t, s̄)
graph.

π– π–

π+ π+

= =

Fig. 2.10. Dual-resonance diagram for π -π scattering.

In order to illustrate these rules, we can consider the scattering process:

π+π− → π+π− (s − channel),

π+π− → π+π− (t − channel),

π+π+ → π+π+ (s̄ − channel), (2.94)

shown in Fig. 2.9.
From the previous discussion, only the planar diagram contributes to the imaginary part

of the amplitude. Duality invokes that a sum of resonances (or Regge poles) exchanged
in the s channel is equivalent to the sum of Regge poles (or resonances) exchanged in the
t channel, which is shown in Fig. 2.10. Similar planar diagrams can be drawn for π -N
scattering as shown in Fig. 2.11. In the case of N -N (or in general baryon–antibaryon)
scattering, one has the dual-resonance diagram (Fig. 2.12).

It shows that the planar graph represents exchange of non-exotic objects in the s channel,
but exchange of exotics in the t channel. This feature signals that without exotics, the
approach cannot consistently explain the hadronic world.
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t-channel

s-channel

π–

N N

π– N

π–

(a) (b)

Fig. 2.11. Planar diagrams for π -N scattering: (a) ((s, t) or (s̄, t); (b) (s, s̄).

= =

N

N

N

N

Fig. 2.12. Dual-resonance diagram for N -N scattering.

One has expected that the previous approach based on superconvergence and duality,
and implemented by the dual-resonance model suggested by Veneziano [40] will bring new
insights in the developments of the theory of strong interactions. Alas, after the discovery of
QCD, such theories became unsuccessful, although we know, at present, that the Veneziano
model (actually it can be viewed as a string model) revives as the basics of superstring
theories with which one wishes to unify the three electromagnetic, weak and strong forces
with gravitation.

https://doi.org/10.1017/9781009290296.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.007

