STABILITY THEOREMS FOR WEDGES
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(Received 21st November 1969)

1. Introduction

We are concerned with the stability properties of uniformly closed wedges
in C(E) (resp. C*(E)), the real-valued (resp. non-negative) continuous functions
on a compact space E, and solve the following problems in this area:

(a) Let A be a closed semi-algebra in C*(E) such that

f.geA=fgl(l1+g)e A.
Is A an ideal of a type 1 semi-algebra?

(b) Let W be a closed wedge in C*(E) stable under some continuous
F: R*>R* with lim (F(x)—x+1)=0. Is W stable under all increasing

X =0
convex G: R*->R* with G(0) = 0?

(¢) Let n be a positive integer and let 4, denote the semi-algebra of vectors
in R"*! whose first n differences are non-negative. Is A, stable under all
F: R*->R* whose first n differences are non-negative?

Here, W is said to be stable under F if

feW=FofeW.

We give affirmative answers to (@), (b), (c) in §§ 2, 3, 4 respectively. Question
(c) has irked us for some time—chiefly because it is tempting to guess that A,
is the restriction to {i/n: 0 < i £ n} of the corresponding semi-algebras on
[0, 1] (which motivated early semi-algebra theory). But this is false: in fact,
already for n = 3 the vector (0, 0, 1, 3) cannot be obtained in this way. A
special case of (b) under the additional hypothesis that F is increasing and
convex was proved by the second author in (9), and the ““ convexity >’ assumption
was removed by F. F. Bonsall in (5) where the problem is raised in its present
form and a positive answer conjectured. Problem (a) is already implicit in (4)
and was considered in (1). Our solution is obtained as a consequence of a
general stability theorem which has other interesting implications which we
discuss also in §2 (Theorems 3 and 4).

We wish to thank Professor F. F. Bonsall for a pre-publication copy of (5),
and Professor E. J. Barbeau for finding a slip in the statement of Theorem 1.

2. A general stability theorem

Before stating the main theorem of this section (Theorem 1) we give a
general condition for the existence of a suitable * choice * function to be used
in the proof.
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Let & denote the class of all continuous functions F: R*—>R* which are
increasing, convex, and satisfy F(0) = 0.

Lemma 1. Let Fe & be non-linear and let W be a closed wedge in C*(E)
stable under F. Then there exists a sequence (F,) of functions in & such that

() W is stable under F,, n = 1,2, ...,
@ii)) F(x)-0 (x<1), F,(x)> o0 (x>1).

Proof. Let (W) denote the set of functions in & under which W is stable.
&L (W) is clearly composition closed and stable under multiplication by positive
constants.

By the definition of convexity,

F(ta) = F(ta+(1—~1)0) < tF(@)+(1—-t)F0) = tF(@) (aeR*,0<t<1).
Since Fis non-linear there exist a € R* and ¢ with 0 <z <1 such that F(ta) < tF(a).
In particular F(a) = 5> 0 and we define G € (W) by

G(x) = b™*F(xa) (xeR™).
Since G(1) = 1, G(t) <t we have
Gx)<x (O<x<l), GXx)>x (x>1).
In fact, with « = x/t, B = (x—1)/(1—1), y = B~, we have
G(x) = Glar+(1—-a)0) < aG()+(1—-)G0)<x (O<x<t),
G(x) = BG(N)+(1-P)G()<x (t<x<1),
G(x) Z y~ (G- (1 —G({t)>x x>1).
We define F, € #(W) by
Fi,=G,F,=GoF,.; (n=23.).
For x <1, the bounded sequence (F,(x)) is monotonic decreasing to a fix-point
of G and hence converges to zero. For x> 1, the monotonic increasing sequence
(F,(x)) must be unbounded for otherwise it would converge to a fix-point of
G greater than 1. As each F, belongs to &(W) this completes the proof.
Notation. Let W be a closed wedge in C*(E). We write
[W] = {fe C*(E): fg € W whenever g € W}.
Note that [ W] is a closed semi-algebra which contains the unit function, that
W < [W]if and only if W is a semi-algebra, and that W is then an ideal of
[w].
Theorem 1. Let W be a closed wedge in C*(E) stable under a continuous
function G: (R*)*>R* such that, for each y, G0, y) = 0 and
lim G(x,y)=y.
x=vo0,y Yy
Then [ W] is stable under all continuous increasing H: R*—R*. In particular
[W]is a type 1 semi-algebra.
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If, in addition, W is stable under some non-linear F € & then W is an ideal
of the semi-algebra [W] and, in particular, W is stable under all elements of & .

Corollary. The closed ideals of the type | semi-algebras in C* (E) are precisely
those closed semi-algebras A in C*(E) which have the following property:

f,ge A= fg(l1+9)7 ! € A.

Remark. E. J. Barbeau showed in (1) that a closed semi-algebra in C*(E)
which is an inf-wedge is an ideal of a type 1 semi-algebra—a fact we can deduce
from Theorem 1 by taking G(x, y) = xAy and F(x) = x? (since a semi-algebra
admits squaring). On the other hand there exist ideals of type 1 semi-algebras
which are not inf-wedges—see (4, p. 113). Thus, of the functions x Ay and
xy/(14+y) on (R*)?, which both satisfy the conditions of Theorem 1, stability
under the first implies stability under the second but not vice-versa. There is
scope here for study of two-dimensional stability properties in more generality.

Proof of theorem. Since 1e[W] we may as well consider continuous
increasing H: R*—>R* with H(0) = 0. Suppose that fe [W] but Ho f¢[W]
for some such H. Then there exists g € W such that (Hof)g¢ W. By the
version of the Hahn-Banach theorem appropriate to ordered spaces there is a
continuous linear functional x on C(E) such that

Hof)g) =1, uh)=0 (heW). ¢y
For a>0, n a positive integer we define K, , and u, by

K, n=Geo((@7'f)g, 9)
and
1 fx)>a,
0 f(x) S
Because | | is a countably-additive measure there exists a countable set
I'< R* such that E, = {x € E: f(x) = a}is | ¢ |-null for a e R* ~T, and it is
easy to check that, outside E,, K, , converges pointwise to gu, as n—o0. Since
G is bounded on R* x range g it follows that K, , is bounded uniformly with

respect to n, and an application of Lebesgue’s dominated convergence theorem
shows that

ua(x) = {

lim J‘K,, Wdn = Iguadu (aeR*~1). 03]

n=ow

But [W] is a semi-algebra so that (x~'f)'g € W and hence K, ,e W. In
conjunction with (1) and (2) this proves that

fgu,dp<0 (xeR*~D). €))
Now fix £>0 and choose a4, a5, ..., € R* ~ T, &g = 0, such that

O<oy <o, < ... <o, maxf=a, Hu)—H(a-)<e, k=1,..,n
E
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Defining h = Y, (H(oy)— H(at,~1))Uq g, we deduce from (3) that | hdu <0,
k=1

and a little calculation shows that | { (Ho f)g—h)du| < e | gd |u|. For small
¢ these inequalities contradict (1) and establish the first part of the statement of
the theorem. The particular choice H(x) = x(1+x)~! shows that [W] is a
type 1 semi-algebra.

Now suppose that W is F-stable for some non-linear F in &. Let (F,) be
a sequence of the kind guaranteed by Lemma 1, and redefine K, , by

Ka,n =Go (Fn° (a-lf)’ g)’
where g and f are fixed elements of W. Repetition of the previous argument
shows that (H-f)g € W. Taking H(x) = x we see W is a semi-algebra and
hence an ideal of [W]. The final assertion follows from the fact that every
Fe & can be written as xH(x) where H is increasing on R*. Thus

feW=Fof=(Hof)fe W.

Remark. Our method of proof is based on the technique employed by
F. F. Bonsall in obtaining Theorems 1,2 of (5). His results are stated for general
topological spaces E when C(E) has the topology of uniform convergence on
compacta—the extension of the preceding theorem to that case is straightforward.
Theorem 2 of (5) is an easy corollary of our result and a similar extension of
Theorem 1 of that paper is given below.

Theorem 2. Let W be a closed wedge in C*(E) stable under a continuous
Sfunction G: (R*)?>R™* such that, for each y, G(0,y) = y and

lim G(x, y)=0.
x=r0, y' =y
Then [W] is stable under all continuous H: R*—R*. In particular [W] is a
type 0 semi-algebra.
If, in addition, W is stable under some non-linear F e & then W is an ideal
of the semi-algebra [W] and is itself stable under all continuous H: R* -R*
with HQO) = 0. Moreover W— W is a closed subalgebra of C(E) and

W = (W-W)nC*(E).

Corollary. The closed ideals of the type O semi-algebras in C*(E) coincide
with the positive parts of the closed subalgebras of C(E) and are precisely those
closed semi-algebras in C*(E) which have the following property :

figed=f(14+9)" e A.

Proof of theorem. A method similar to the previous proof shows
first that [W] is stable under decreasing continuous H: R*—-R™* and hence

(taking H(x) = 1—1—) is a type O semi-algebra. That the closed type 0 semi-
+x

algebras are the positive parts of the closed unital subalgebras of C(E) is the
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first result of semi-algebra theory (F. F. Bonsall (3)) and it follows that the word
‘ decreasing ’ can be omitted. The proof that W is an ideal if F-stable for
non-linear F in & is also similar to the previous proof and the remaining
assertions follow easily from the fact that a closed ideal of a type O semi-algebra
is the positive part of a closed subalgebra. This is a simple consequence of
results in (4) but does not appear to have been explicitly stated. We give the
following argument for completeness. Let W be a closed ideal in a closed type
0 semi-algebra A. W is obviously a type 1 semi-algebra and is thus of the
form

W = {fe C*(E): f(x) £ f(y) whenever x <y yand f(x) =0 (xeN)},
where <y is the partial order defined by
xSwyefix) 2/(y) (feW)
and N is the null set of W,
N={xeE: f(x) =0 (fe W)}

We note also that the positive part of a closed subalgebra can be characterized
in a similar fashion (via the Stone-Weierstrass theorem) where the partial order
is, in fact, an equivalence relation. Accordingly it will suffice to prove that

feW,0<f()<f() = x £wy.
Given fe W, y € E, it follows that f(y)1 —fe A— A, hence that
(fON-NHvoe4,
and consequently g = (f(»)f—f2)v0e W. Butif 0<f(x)<f(y), then
g(x)>0 = g(»).
This proves (1) and yields the required result.

Remarks. Theorem 2 is of less interest than Theorem 1, in the sense that
whereas a two-dimensional stability function seems appropriate to characterize
type 1 ideals among the wedges in C*(FE), it is over-powerful for the type 0
ideals, where in fact a pair of one-dimensional functions will suffice. We
recall from (6), Theorem 3 that a closed wedge W in C*(E) is a type 1 semi-
algebra if and only if

feW=f*e Wand f—1f?e W whenever || || £ 1.

This together with a slight extension of the argument at the end of the preceding
proof shows that W is an ideal of a type 0 semi-algebra if and only if

feW=f*e Wand (f-3f)* e W.

(Of course the latter condition implies (Af—f3)* € W for all fe W, 1 = 0.)
It is natural to ask whether the pair of functions x2, (x—3x2)* can be replaced
by any non-linear F e & together with any non-zero continuous G: R* -R*
such that G(0) = lim G(x) = 0.

X ®
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A summary of our knowledge of type 1 ideals in C*(E) may be in order.
We have given an algebraic description of those wedges which can be ideals of
a suitably chosen type 1 semi-algebra. E.J. Barbeau (1, p. 212) has character-
ized the class #, of ideals of a given type 1 semi-algebra 4 in C*(E) in terms
of an elementary subclass & of #,: a result ““ discovered ” recently by the
second author and at least one other worker in the field. Barbeau’s result is
as follows:

Let % denote the class of all closed upper sets in E with respect to the order
<, Forany ue C(E)* define

I,,={feA: f fdngforaler%}.
U

Then I, is an ideal of 4 and the set & of all such I, is an elementary class for
4

In the special case where E is a compact subset of R with the usual ordering,
A. K. Roy (10) has recently characterized those u for which I, admits inf, sup,
or both, and has shown that each ideal of one of these types is an intersection
of I, of the same type; while B. A. Barnes (2) has found a simple description
of those u for which J, = {fe 4: u(f) = 0} is an ideal of 4 (which occurs if
and only if J, and I, coincide).

Theorem 3. If W is a closed inf-wedge in C*(E) then the following are
equivalent:

(1) W is stable under some non-linear Fe & .
(i) W is stable under all Fe F.
(iii) W is a type 1 semi-algebra ideal.
The closed inf-wedges in C*(E) satisfying the equivalent conditions (i);(iii)
are the subsets W of C*(E) of the form W = () A where for x;€ E, u; a
iel

non-negative measure on E,

X1y Bt

Arm= {f € C*(E): f fdp; = f(x;) and f(x) = f(x;) (x € supp ﬂ.-)}-

Proof. A wedge W is an inf-wedge if it is stable under G(x, y) = xAy so
that the equivalence of (i), (i), (iii) follows from Theorem 1. It is elementary
to verify that n4,, , is an inf-wedge satisfying (i). Let us suppose then that
W is a closed inf-wedge satisfying (ii). By the celebrated Choquet-Deny
theorem (7),

W=\ W,,, where W, , = {fe C*(E): ffdu,- §f(x,-)}.
iel
If u; = O there is no difficulty. Suppose that for some 7, we have

F(x)>f(x,) for some x € supp (i,).
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Then [ (f—f(x))+dp;>0 = (f—f(x)))+(x;), and this leads to a contradiction
since W is stable under the function F(x) = (x—4),, for constant A = 0.

Remark. The implication (i) = (ii) under the above conditions with
““ concave * replacing “ convex ” is of long standing. (See (8), Theorem 1.)

In general the stability properties of wedges in C(F) are more complicated
than those of wedges of non-negative functions. It is of interest therefore to
reduce the structure theory of inf-wedges in C(E) stable under squaring to the
case covered by Theorem 3. The obvious way to obtain a wedge of this kind
is to take all elements of a closed subalgebra of C(F) whose restrictions to
some closed subset F of E form a square-stable inf-wedge in C*(F). In fact
this simple process exhausts the possibilities.

Theorem 4. Let W be a closed inf-wedge in C(E) which is stable under
squaring. Then there exists a closed subalgebra A of C(E), a closed subset F of
E, and a closed inf-wedge W' in C*(F) stable under squaring, such that

W={feA: flreW'},
where f | is the restriction of fto F. In particular W is a semi-algebra.

Proof. Let U = (— W)nC*(E). Then from Theorem 4 of (5) it follows
that U < Wn(— W) and U is the positive part of a closed subalgebra of C(E).
We show first that W is a semi-algebra. Since W is an inf-wedge,

feW=>—f_=fa0eW.
Hence for each fin W, f_eUc Wn(-W). Also fv0=f, =f+f_eW.
By Theorem 1, WnC™*(E) is a semi-algebra, so that

figeW=f,g,,f-g_-€eW.
Now fix f, g € W. By square-stability, for'each 1>0,
(9-—Af+) = g2 —20fsg-+AfleW.
Since g_ € U, it follows that g2 e (U~ U)NC*(E) = U< — W, so that
—fig_+¥fie W, Ai>0.

Letting 2—0, we deduce that —f,g_e W, and similarly we obtain that
—g+f-€W.

It is now clear that fg = (f, —/_-)g+—g_) € W, and we have proved that
W is a semi-algebra.

Let F = {xe E: f(x) = 0 (fe U-U)} and define the relation ~ on E~F
by

x~y<f(x) =f(y) (feU-U).
Let 4 be the closed subalgebra defined by

A = {fe C(E): f(x) = f(y) whenever x~ y}.
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We now show that W respects ~. In fact, given x, y € E~ F with x~ y there
exists Ain U— U such that 2 = 0 and A(x) = A(y) = 1. But

U = (U-U)nC*(E)
so that he U < — W. Then, for each fin W, hf, and Af_ belong to
—WnAC*(E)=U,
so that
hf = hfy—hf_ e U-U,
and hence

f(x) = Kx)f(x) = kfQ) = f)-
It is clear that the restriction to F of each f in W is non-negative (since
f- € U whenever fe W) and it follows immediately that these restrictions form
a closed inf-wedge W’ which is stable under squaring. Finally suppose that
geA,g = fon Ffor some fin W. Then g—f belongs to closed subalgebra
U— U (by the Stone-Weierstrass theorem) and, since U-U < W,

g=r+g-New.
This completes the proof.

3. Type 2 wedges
In this section we answer question (b) of the Introduction.

Lemma 2. Let F: R*—>R* be continuous with lim (F(x)—x+1) =0. Let
F,=F,andF,=FoF,_,(n=23,.). Then
1 F,(nx)-(x—-1)*
n
uniformly on R* as n—oo.

Remark. This result under the additional assumption that F be increasing
is proved by Bonsall (5, p. 140), and we make use of this result in the present
proof.

Proof. Define the functions U and L by
U(x)=sup {F(): 0=t < x} (xe

L(x) = inf {F(t): x S t<oo}
Since F is non-negative, and bounded on bounded intervals, U and L are finite,
non-negative, continuous and increasing, and satisfy

L(x) £ F(x) £ U(x) (xeR").
It follows at once from the definition of L that if for any ¢>0 we have
|F()—t+1 | = ¢

for all ¢+ = x,, then | L(xg)—x,+ 1| < &; replacing x, by any x = x, we have
| L(x)—x+1] < e (x = x0) and so

lim (L(x)—x+1) = 0.

R*).
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We now show that lim (U(x)—x+1) = 0. In fact, choose any £>0. There is
& € RY such that | F(x)—x+1 | <e (x = &;). Let

& = max (&, U(&o) +1+2¢).
For any x = ¢ we have U(x) = F(x)>x—1—¢ = £~1—¢so that
Ux)>U(p)+e.
There is ¢ £ x such that F(t)> U(x)—e>U(&,). Then t>¢&, by the definition
of U, so that

| F(t)—t+1 | <e.
We then deduce

x~=l—g<Fx)<Ux)<Ft)+e<(t—1+e)+e < x—1+2e.

Hence | U(x)—x}l |<2¢ (x = &) and it follows that lim (U(x)—x+1) = 0.
Now let U,, L, be the n-th iterates of U and L defined in the same way as
the F,. An inductive argument using the monotonicity of U and L shows
L(X)SFX=2Ux (xeR*',n=1,2..). 3.1

Now U and L satisfy the conditions of Bonsall’s lemma, so that n~ L, (nx),
n U, (nx)>(x—1)* uniformly on R* as n— o0, and the desired result follows
at once from (3.1).

Remark. Bonsall’s proof makes no use of the continuity of F, so that ours
uses it only in order to ensure that F is bounded on bounded intervals.

Theorem 5. Let F: R*—>R* be continuous with lim (F(x)—x+1) = 0, and
let W be a closed wedge in C*(E) stable under F. Then W is reductive, type 2,
and stable under all G e #F.

Remark. Reductive and type 2 mean stable under the functions (x—1)*,
x2/(1+ x) respectively.

Proof. Let {F,} be the sequence of the previous lemma. For any fe W,
Irothew (n=1,2,..).
n

As n— oo this sequence converges uniformly to (f—1)* and hence W is reductive.

That a closed reductive wedge in C*(E) is stable under all elements of %
is an early result of stability theory (see (9), (5)) and the type 2 property is a
particular case of this.

4. Semi-algebras of completely monotonic vectors
Notation. Given a continuous function F: [-R where I is an interval
(possibly infinite) in R, and given h e R*, we define A,F by

AF(t) = Ft+h)~F(¢t)
E.M.S.—O
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whenever ¢, t+he I. We write AZF for A,(A,F), etc., and we have the general
formula for the n-th difference of F (of length h):

ANF@H =Y (’:) (=1)"""F(t+rh)

r=0
defined whenever ¢, (t+h), ..., (t+nh) e L.

Definition. F is called n-fold monotonicif F =z O and fork = 1,2, ..., n and
each #>0 we have A{F(f) = 0 whenever it is defined.

Notation. Let J be an interval {i: p <i < ¢} in Z and let x: J-R, so that
x may be thought of as a vector (x,, ..., x,) in space of g—p+1 dimensions.
Similarly to above we define the n-th difference of x by

(A"X); = ’go <:) (=D"" x4,

whenever p £ i £ i+n £ q. Clearly A"x is a vector with g—p—n+1 com-
ponents (n < g—p) but fails to be defined if n>g—p. We shorten (A"x); to
A"x,.

Definition. x is called completely monotonic (c.m.) if (A"x); = 0 whenever
it is defined.

Notation. We denoteby 4, (n =0, 1, 2, ...)thesetof all x: {0, 1, ...,n}>R
which are c.m.; which we can regard as a subset of R**1.

Clearly A4, is a cone in R"*!. With multiplication defined pointwise it is

well known that
A, is a semi-algebra.

Given continuous F: R*—>R" and x € 4, we denote by Fox the function
composition of F and x, so that in the vector notation F o x = (F(xy), ..., F(x,)).

Theorem 6. For n=0,1,2,... the semi-algebra A, is stable under all
F: R*—>R™* which are continuous and n-fold monotonic.

Corollary. Since the function t—t"[(1+1) is n-fold monotonic it follows that
A, is a type n semi-algebra.

Remark. The continuous analogue of this, namely that the semi-algebra
B, of n-fold monotonic functions in C[0, 1] is stable under all continuous,
n-fold monotonic F: R*—R*, is of long standing and easily proved by differen-
tiation, using induction and Lemma 3.

Preliminaries to the proof. 'We shall proceed by induction on #n. The next
lemma, a well-known result in the theory of convex functions, is used in reducing
the problem to one with a smaller value of n.

Lemma 3. Let F be as in the statement of the theorem. Then forn 2 2, F
is absolutely continuous and F' (suitable values being inserted at the points of a
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null set) is (n—1)-fold monotonic. For n 2 3 we have the stronger result that F
is continuously differentiable on R*.

For a fixed n, let 4, (0 £ k < n) denote the vector

()G

Lemma 4. Each x € R"*' is uniquely expressible as LA, where 1, = Ayx,.
In particular A, is precisely the conical hull of the u,.

Proof. Let S: R**'-R", R: R"*!-R" be the operators defined by
S(xO’ xl’ REAT] xn) = (xla X2y ees xn)’ R(x05 X5 eens xn) = (x03 X1s eves xn—l)'
Since R, S commuteand A = S—R we have
S =R+AY= Y (;) AR,
But for, 0 £k £ r, £=o
(R"7*A¥x)o = (A*x)o,
so that

(l:) 2, where 1, = Afx,,.
0

"M"

X, = (er)o =
k
Since (r) =0 for r4+1 £ k £ n we may replace zr: by i, thus
0 V]

k
x =3 a(,:) Osrsn),

k=0
so that

n
x =Y Al
o

The number of u;, is equal to the dimension of the space, so they form a
basis and the expansion is unique. Hence, if y = Zu,p, then g, = A¥y,,.

It follows that each y € 4, is a conical combination of the #,. Conversely,
let x = Ty, with g, > 0. We need to show that A%, = 0(0 < g < g+r £ n),
and this is true, since

A%x, = AIS"xo = A(R+A)xo

= 5 [TYpath, _ S (T
= k=Z0 <k> A Xo = kZO (k) Hg+k =0.

This completes the proof.

Proof of Theorem 6. Let P(n) denote the assertion of the theorem. Assume
inductively that P(m) holds for 0 < m<n, where n = 2. (It isJeasy to verify
that P(0) and P(1) are satisfied.)

Let a fixed n-fold monotonic function F be chosen.
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Notation. By a part of a vector (x,, ..., x,) we shall mean a * subvector ”
of the form (x,, ..., x,) where p < p’ £ ¢’ £ q. It s clear from the definition
that any part of a c.m. vector is c.m. From this fact and the fact that F is
certainly k-fold monotonic if 0 £ k<n, we deduce by the inductive hypothesis
that for

x€Ad, A(Fox),20 0=Zk<nO0ZLigi+k=<n)
so that it only remains to prove that for any x € 4,,.
AY(F o 3)o52 0,
this being the only n-th difference that exists.

By Lemma 4, this is equivalent to proving the non-negativity on the positive
cone in R"*! of the function F() = F(ly, 4y, ..., 4,) = A(Fo x), where
x = ZAhu,. From the definitions,

o= £, () (£,4(2)

By Lemma 3, F is absolutely continuous, so that F'is also absolutély continuous
with respect to each 4,. Now,

x5, () (240
= (1) £ o (i) eenn (s () (1) = () ()

Setting s = r—k and discarding terms for which the inner binomial coeﬁiment
vanishes we obtain

a_ﬁ_ " n—k— s( k)
6lk_(>szo( 1) s ys,

oF ) .
A" %y,
a)’k (k Yo

where y = F’ o (X4, Xg415 ---» Xn)- NOW (X, ..., X,) is a part of the c.m. vector
x, and hence c.m., and provided k£ = 1 it follows by the inductive hypothesis
and Lemma 3 that y is c.m., whence

g>00n(R"“)+fork=1,. ,n

k
By absolute continuity we thus have for any (4, ..., 4,),

FQg, s A3) = F(20,0, ..., 0)
= A"(F ° Aotto)o
=A"(F(). (1,1, ..., 1)) =0.
This establishes the induction step and the theorem is proved.
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Remarks. (i) It is easy to extend this result to deal with the semi-algebra
of * n-fold monotonic ** vectors in R**? with m> n, that is, the set
Apo={x=(Xg; ..0r Xp): A*x;20for0< k< n,andalli
such that this is defined}.
For clearly x € 4,, , if and only if each of its parts, of “length” n+1, is
c.m. We thus obtain
F n-fold monotonic, x € A,, n=>F e Xx€ Ay, 5

(i) The case where F is defined on an open or closed bounded subinterval
of R* can be dealt with in much the same way but with more technical detail
since F will generally not be extendable to an n-fold monotonic function on R*,
and F’ may be unbounded even when F is bounded.

5. A problem on the representation of certain finite measures

Let X denote the space of continuous real functions on R* with the topology
of pointwise convergence. Then X*, which we endow with the w*-topology,
is the space of all measures of finite support on R*. The set

F, = {feX: fis n-fold monotonic}
is a closed wedge in X, being determined by the inequalities
k k —
B, e, (f) = ( Z‘o(r) (-1* 3:+m> ()20 (OLk<Zn; hteR*).
It is well known that the dual cone
Fl={ueX*: u(f)z0forall fe #,}

is therefore the closed conical hull of the measures p, , ,. Now Theorem 6
states that if 0 < k < n, x € 4, and v, denotes the measure

(l(;) 8y — <]1c> s,,k_l+...+(——1)" (:) Exo

then v (f) = A*(fo x)o = O for all fe &#,; thatis
v,e Fe (xe A

Hence each such v, is the limit of finite positive combinations of the p, , ;.
Note that g, , , is a particular case of a v,, in which

x=(t, t+h, ..., t+kh) € A,.

Question. Isit true that v is in fact a finite positive combination of measures
M, ., Without the intervention of a limit process? If not, is there a somewhat
extended representation possible, say one corresponding not to powers Af but
to products of different A, leading to measures of the form

wn=( 11 8) 50
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It is easy to verify a formula of the above form in case n = 2, and possible
but tedious for n = 3. The representation is not unique in either case, and it
would be of interest to find a canonical form and an algorithm for obtaining
this.

Example. In the case n = 2, let us represent an arbitrary
x = (Xg, X1, X3) € A,
in the form Agug+2A,u, +4,u, according to Lemma 4, where

Ug = (1’ 1, 1)9 Uy = (0: 1, 2)9 U = (09 0, 1)

Then
vo(f) = f(x2) = 2f(x1) +f(xo)
= f(A2+24, +20) =21 (A1 + 20) +f(4o)
= A,,fQA +20)+ A7, f(Ao)
so that

Vi = Hia, 225+ 40, 1t T Hay, 20, 2+
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