
The Treatment of Arithmetic Progressions by Archimedes.

By Professor GIBSON.

The following paper was written last summer, and was sub-
mitted to Dr Mackay with a view to eliciting his opinion
particularly on the curious passage referred to in § 3, and on
the remarks contained in § 8. I was not aware of the intention of
Mr T. L. Heath to follow up his excellent edition of Apollonius by
an edition of Archimedes on similar lines, and when I saw the
announcement of his Archimedes in the month of October, I at
once concluded that the notes I had made would have been
anticipated by him. Since reading his masterly work, however,
I am disposed to think there is still sufficient interest in the notes
I have written to justify me in laying them before the Society;
I therefore submit them in their original form, although I should
have omitted certain details had I been acquainted with Mr Heath's
work before writing the paper.

1. In his books On Helices and On Conoids and Spheroids,
Archimedes has effected the evaluation of areas and of volumes by
methods which are very closely analogous to the modern algebraical
methods, depending as they do largely on the sum of arithmetical
progressions. The main difference is to be found in the almost
exclusive use by Archimedes of inequality theorems which are
required for the application of the method of exhaustion, while the
modern treatment replaces this by a more or less rigorous use of
convergent series. This peculiarity has to a certain extent obscured
the really complete command he had of such progressions, but a
careful study of his works is sufficient to show that, where he did
not enunciate his theorems in forms giving the sum of the series in
closed terms, he took this course, not from inability to give the
closed form, but chiefly because the inequality theorems were those
of which almost exclusively he was in need, and also because their
statement was much more concise. The undoubted prolixity of
enunciation and demonstration is due much more to the want of an
algebraic symbolism than to anything in the method of proof; and
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one can hardly be surprised that he should have chosen the simpler
form for his theorems, when nothing was to be gained but rather
something would have been lost by enunciating them as equalities.

2. In presenting the methods of Archimedes it is, I think, a
mistake to adopt the modern method of using symbols merely for
the first term, the common difference, and the number of terms, as
the real simplicity of the proofs is thereby obscured. The chief
defect of his notation—and it is one that causes great prolixity
both in statement and in demonstration—is the absence of a symbol
for the number of terms. In this paper, therefore, I use distinct
letters to represent the terms of the series; in Archimedean
language the terms are straight lines, and these are specified some-
times by one letter only (as in this paper) and sometimes by two;
I employ, however, a symbol for the number of terms as well as the
modern algebraic or geometric symbolism. Throughout the paper
the first term of the arithmetic progression will be denoted by a,
the second by b, etc., the last by I, the second last by k, etc., while,
unless it be otherwise stated, the number of terms will be n ; it
will also be supposed, unless otherwise specified, that a is the
greatest and I the least term.

3. Though Archimedes enunciates (Opera I., p. 290 *) and
repeatedly uses the theorem that when I is the common difference
twice the sum of the n lines a, b, c,...l is greater than na and
twice the sum of the n- 1 lines b, c,...l is less than na, he gives
no distinct proposition in proof of these inequalities. But in the
11th Proposition of the Book On Helices he indicates how they may
be proved, and in the course of the 10th Proposition of the same
book he states and proves the exact theorem, namely—

further, in this same proposition he uses this value for the sum
repeatedly, so that he was evidently quite familiar with it.

On the other hand, it is rather curious that in the only proposi-
tion where he requires to use the exact value, he has, if we accept
the text of Heiberg, fallen into error. In Conoids and Spheroids,
Prop. 21 (Opera, I., p. 392) he has to compare the sum of the

* The references are to Heiberg*s edition.
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w - 1 lines 6, c,...l with (n - l)a, and he says that (n - l)o is greater
than twice the sum of b, c,...l, though his own diagram shows
clearly the equality of the two expressions. The two sentences in
lines 14-18 are quite conclusive as to the mistake, and the editor,
by referring to page 290, where the inequalities are stated, leads
one to infer that he, too, has failed to notice the slip. Archimedes
would seem not to have observed that the number of lines b, c,...l,
is the same as the number of lines a with which he was comparing
them. The slip is no doubt a trivial one, and does not affect the
final conclusion, but it appears to indicate the subordinate position
which the exact theorem occupied in his collection of results. *

It will be noticed that the least term is assumed to be equal to
the common difference; it will be seen later how Archimedes gets
over that restriction when a series occurs not satisfying that
condition.

4. The most important theorems are those dealing with the sums
of squares, and it was possibly the summation of the series that
constituted a portion of the difficulties referred to in the letters to
Dositheus, prefixed to the books on Helices and Conoids and
Spheroids.

The use to which these series are put may help to explain their
origin. In finding the volume of a segment of a conoid or spheroid,
Archimedes employed three sets of cylinders.

* The text of Heiberg in this passage differs considerably from that of
Torelli, but it is hardly possible that the latter can be correct. The sentence
(Torelli, p. 287, at foot) "'Apa xal 6 dXos Ki\ivSpos K.T.X" is a mere repetition
of that preceding it, while the position of &pa at the beginning of the sentence
is at variance with Greek usage. The deletion of jroXXy before &pa is stated
in Heiberg's note to be due to Commandine, and it is easy to understand the
deletion, for in Torelli's text the inscribed figure is only compared with the
whole of the circumscribed cylinder and not also with a part of it as in
Heiberg's text. In all the texts there is a certain ambiguity as to the precise
meaning of the phrases "all the lines" and "all the lines cut off between
AB, BA, but lines 14-16 in Heiberg make the meaning quite clear, for there it
is explicitly stated that the circumscribed cylinder diminished by one of its
elementary cylinders is more than double of the inscribed figure while it is
obviously exactly double. Heath's rendering of the proposition is, of course,
quite accurate in its mathematics, but in the condensation of the original text
the erroneous statement has apparently been overlooked. So far as I am
aware, the slip has not been previously pointed out.
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The first set consisted of a single cylinder, E, whose axis was
that of the segment, whose lower base was the base of the segment
and whose upper base was in the tangent plane parallel to the base
of the segment.

The second set, C, formed a figure circumscribing the segment;
it was built up of cylinders of equal altitudes, with generators
parallel to the axis of the segment, whose lower bases were the base
of the segment and the sections in which the segment was cut by
planes drawn parallel to its base through points dividing its axis
into any number, say n, of equal parts.

The third set, I, formed a figure inscribed in the segment in the
same way as the circumscribed figure C.

C, containing n cylinders, is greater than the segment, and I,
containing n — 1, is less. Archimedes shows that C — I can be made
less than any given solid, and he finds limits for the ratios of
C to K and of I to K. In finding these limits he has to sum the
series o2 + 62+ . . +P.

It is perhaps worth remarking that if the method just described
be applied to the known theorem (Euclid XII., 7) that a pyramid
on a triangular base is a third of the prism on the same base and of
the same altitude, the inequality theorems may be at once deduced.
The pyramid and prism being supposed to have a common edge
divided into n equal parts, and planes being drawn through the
points of section parallel to the base, the sets C, I may be taken as
prisms with edges parallel to the common edge, while the whole
prism will represent K. If a be one side of the triangular base, the
sides of the triangular sections parallel to a will with a form an
A, P, a,b,...l, and we shall have

£ g ' + y + . . . + p j_ 62+ ... + r-
K ^ ' K = no?

But C/K>£ and I/K<-£-;
hence 3(o2 + 6'+ ... +?).>na2>3(62+ ... +P).

Whether this theorem on the relation between the pyramid and
prism which Archimedes himself cites (Opera I., p. 4) as one
established by Eudoxus in a manner generally accepted as sound,
may have led him to these inequalities, can only be matter of
conjecture. In any case, his proof is quite different, as will now be
shown.

https://doi.org/10.1017/S0013091500032211 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500032211


5. The 10th Proposition of the Book On Helices is as follows,
I being the common difference:—

and the corollary is 3(aa + 6a+ ... +P)>nar>3(b!1+ ... +P)

The proof is very peculiar. I t is obvious that
a=b+l=c+k=d+j= etc. =l + b

Hence squaring the n - 1 values of a, adding results and increasing
each side of the equation by 2aa he gets

He next shows that
a> + bi+...+P

by proving that each side of the equation is equal to

Now this transformation is certainly very artificial, but it seems
to me not impossible that this last step was really the first in order
of discovery.

It may be assumed (Cantor, Gesch der Math., I., p. 153) that
Archimedes was familiar with the process of building up a square
of side a by starting with a square of side I and adding successively
the gnomons (F-P), (f -&)...(a?-b3),

and hence that o3= (a2 - 62) + (62 - c2) + ... + (k*-P) + P
= l[(a+b) + (b +c)+ +(* +l) + l }
= \a +2(b + c+ ... +k +1)]

since l = a — b — b — c=...=k — l.
Indeed this is the form in which he expresses the value of a" in the
transformation, though his proof of this value is no doubt quite
different. If the supposition be made that he started from this
value of a3, and the corresponding values for the other squares, he
would get for the sum of the n squares

+ d+
d+

I)]
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that is,

or l

or since 2l = k, 3l=j...(n-2)l = c, (n-\)l = b

l(a + b+ +Z) + 2(lb + kc+jd+...+ck + bl)

If this were the form first found for the sum of the squares, the
property that each term in the product consisted of two factors
whose sum was a would lead to the squaring of the n-1 values
b + l, c + k, etc.

The actual demonstration given by Archimedes is no doubt
quite different, but the artificiality of the transformation referred
to above leads to the suspicion that the traditional method of
representing a square as a sum of gnomons may have played a more
important part than the completed proof suggests.

The fact that in the enunciation the series

a + b+ ... + l
is not summed can not be due to ignorance of that sum, seeing that
in the course of the demonstration the summation is repeatedly
effected ; the reason for the form given seems to be simply that he
had no need for the exact sum of the squares in any part of his
work, as the inequalities of the corollary contained all he required.
Besides, the series are only auxiliary to the determination of areas
and volumes; it should not therefore surprise us that he does not
put the expression for the sum into a form which his whole
discussion shows he might have done had he been treating the series
for their own sake.

At the same time, it is to be observed that his substitution of
the inequality theorems of the corollary for the exact theorem of
the proposition obliges him to treat the ellipsoid in a different way
from the hyperboloid, as will be seen in § 8.

6. The theorem of the preceding paragraph assumes the common
difference to be equal to the least term, but obviously cases arise
where that condition is not satisfied, and Archimedes provides
for such cases in the 11th proposition of the same book
(Opera II., 42-50). The diagram to that proposition makes the
common difference equal to the least term, but the enunciation
omits the characteristic phrase expressive of this condition and the
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demonstration is also independent of it, while the repeated applica-
tions of the theorem in the Book On Helices show that he understood
it in its most general form.

It will be convenient to take the number of terms as n +1, and
the proposition may then be put in the form

The theorem will be proved, he says, if it be proved that

To effect the proof, he subtracts I from each term and thus reduces

the progression a, b,...k, I [n+1 terms]

to the progression a-l, b-l...k-l [n terms]

in which the least term k -1 is equal to the common difference, and
to which therefore the results of Prop. 10 are applicable.

Thus ai + b2+...+k2=(a-lf+...+(k-lf + nP

+ 2l[(a-l) +...+(*-!)]

and ncd + ^n

But (a -

and (a -I) + ...+(£-I) >%n(a-t)

Hence a? + b2 + ... + k2>nal+ $n(a-lf
and in the same way the other inequality is established.

The transformation here adopted brings the general A. P. within
the range of his methods, and would have enabled him to sum the
squares of any number of terms even when the least term is not
equal to the common difference. I t would, however, have been
rather troublesome to work out the details and express the sum
in a purely geometrical form, though Archimedes certainly shows
remarkable skill in dealing with complicated cases like this.

7. Another extension of the theorem of §5 is needed for his
cubatures in Conoids and Spheroids, and it is found in the
2nd proposition of that book.

Let a, b,...l be n lines in A.P. of which the common difference
is I, and p any other line and let S denote the sum
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then the following inequalities hold, namely,

S
^ ^ ( A )

n(pa + a?) p + a n(pa + a?)
The proof is effected by considering separately the sums

p(a + b+...+l) and a?+bi+...+F

and applying to these the proper inequality theorems.

In order to make the obervations in the next section more
easily understood, I will indicate the bearing of this theorem on the
cubature of the hyperboloid of revolution. Suppose a segment cut
off by a plane at right angles to the axis at distance a from the
vertex; let the distance a be divided into n equal parts, the distances
from the vertex of the points of section forming the A.P. a, b,...l,
and let the figures described in § 4 be constructed. Then if p be
the transverse axis of the hyperboloid, the bases of the cylinders
forming the set C are proportional to

(pa + a?), (pb + V), . . , (pl + P)

and of those forming the set I, to

(pb + b*), . . . (pl + P).

It is easy then to see that

Q-- S d I B-(pa + a")
K ~ n(pa + a2) K ~~ n(pa + a'J)

and the theorem of this article proves that

K ^ p + a K
and the application of the method of exhaustion then shows that

segment _ \p + \a
K ~ p + a

8. In the case of the ellipsoid of revolution the corresponding
bases are proportional to

(pa-tf), (pb-P), . . . (pl-P)

and Zeuthen [Kegelschnitte itn Altertum, p. 450] expresses surprise
that Archimedes did not proceed in this case on the same lines as
the above treatment of the hyperboloid. But it is not, I think,
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hard to understand the difference of treatment; it is simply
impossible by means of the inequalities alone to establish the proper
relations for the ellipsoid. If <r represent the sum

(pa-a?) + (pb-b2)+ . . . +(pl-P)*

the relations required are

n(pa -a?) p - a n(pa - a')

but from the inequalities

p(a + b + .

it is only possible to conclude

pa + (pb - b-) + ... + (pi - P)>na($p - Ja)

and - a? + (pb-F)+... + (pi - P)<na(%p - la)

ip-ia <r-ap
n(pa - a2) p - a n(pa - a')

and this form is absolutely unsuitable. To get the proper form by

this method, we have to take the exact value of tr, namely,

o- = na(\p - \a) + \a(p -a- \l)
and therefore

a--(pa- or) = na($p - ^a) - %a(p -a + ̂ l)

In order that (B) may be true, therefore, it is necessary to have
p>a + \l, and though this condition is satisfied, it could not be
established by means of the inequalities alone.

From formula (A) of § 7 we get

JS > nla(\p + ia) >IS- l(pa + a2)

Hence the limit of IS for n = oc (or £ = 0, since nl = a) is
so that the result is equivalent to the integration

(
Jo

and in the same way the formula (B) is equivalent to

J
(px - x*)dx --

o

In the diagram of Archimedes (Opera I., p. 462),
p=BZ, a=BA, b=BE etc.
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The fact, however, that Archimedes did not establish the
theorem (B), which would have taken the place of the integral last
written, seems to be due to his preference for inequalities, which in
its turn was probably a consequence of his geometrical methods with
their prolix enunciations rather than, as Zeuthen seems to think
(p. 452), to the absence of a theorem corresponding to

U<t>(x) + f(x)]dx = [<f>(x)dx + U(x)

for negative as well as positive values of ^ (a;). There is no doubt
a great amount of truth in the general remarks of Zeuthen in the
passage referred to, but the difficulty of establishing the inequality
theorem (A) by a process equally applicable to theorem (B) or in
general of establishing theorems that shall be equally applicable to
positive and negative quantities is more than a difficulty of language.
There is unquestionably a difficulty of language, but there is also a
special difficulty arising from the use of inequalities, as in the case
of theorem (B). The difference between ancient and modern
methods introduced by the employment of negative quantities or
negative operators seems to me to go deeper than is sometimes
realised.

i>. Had Archimedes first investigated the inequalities (B) he
might have treated the cubature of the ellipsoid much more con-
cisely. I t may be noticed, however, that the transformation
required in the case of a segment of the ellipsoid is at bottom
identical with that of § 6. In dealing with the ellipsoid he requires
to sum the series

where a, b, c,...l are ra + 1 lines in A.P. of which the common
difference is not equal to the least line I. To effect the summation
he puts

? P ( ? i ) 2l{

where x is any of the lines a, b, c, etc. Applying the theorem of
§ 7 to the series of n terms with

as general term, he gets
u 2a+l u-(a--r-)

n(a2 - P)> 3(a +1) > n(a? - P)
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But since u = na'-(bi+ . . . +P)

this pair of inequalities is equivalent to

and these are the inequalities established in § 6. *

10. Nearly all the theorems referred to in this paper seem to be
due to Archimedes himself, and the whole treatment shows an
originality of conception and execution that is somewhat difficult
for us to recognise. The so-called geometrical algebra of the Greeks,
valuable and important as it is for many purposes, is but a clumsy
instrument compared with modern algebra in dealing with the
summations discussed above, and in reading Archimedes one cannot
fail to be struck with the prolixity of the enunciations and the
length of the demonstrations caused in part by the absence of mere
technical terms, but chiefly by the purely geometrical form in which
his work is cast. I t is, however, only an additional testimony to
his genius that he triumphed over such difficulties and was able to
carry the mensuration of the more common surfaces and solids to a
stage which is even now the limit of instruction that does not
involve the Integral Calculus.

* As another illustration of the application of the inequality theorems,
I had worked out the value of the area of a segment of a parabola from the
figure used in the mechanical quadrature, but as the method I followed is
identical with that given by Heath (p. cliv.), I omit my investigation.
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