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A note on Omori-Lie groups

Sadayuki Yamamuro

The theory of differentiation in locally convex spaces
constructed by the author in Memoirs Amer. Math. Soc. 17 (1979)

is used to give a new form of the definition of Omori-Lie groups.

An Omori-Lie group (a "strong ILB-Lie group” in Omori's terminology)

is defined in [6] as follows. Let

K

{E, g k= O}

be a Sobolev chain, that is,
(1) all Ek are Banach spaces;
(2) Ek+l is linearly and densely imbedded in Ek 3

(3) E is the intersection of all Ek and has the inverse limit
topology defined by {Ek}
Then, a topological group G 1is called an Omori-Lie group if the

following seven conditions are satisfied.

(OL.1) There is an open neighborhood U of zero in Eo and a

homeomorphism
E:UnNE-~> 5

such that £(0) = e (the unit of G ), where U n E 1is given the relative
topology from E and U 1is an open neighborhood of e in @G .

(OL.2) There is an open neighborhood V of zero in E° such that
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E(VNE) =¢g(Vn E)‘l and &E(V n E’)2 c E(V n E)

(0L.3) Put nlu, v) = £ L[E(w)E(W)] ; then, for all k = 0 and

20, n can be extended to a Cr—map of (V n Ek+r] x (V n Ek) into

Un Ek .
(OL.4) Put nv(u) = n(u, v) ; then, for each v € V n Ek and
k=0, n, can be extended to a Cm—map of Vn Ek into itself.

v
(0L.5) Put 6(w, u, v) = (dn) (W) ; then, for all k =0 and

K+

r =20, 6 can be extended to a Cr-map of Ek+r X (V nE ) x (V n Ek)

<

into .

(oL.6) Put Z(u) = E_l[g(u)-l] ; then, for all k=0 and r»=>0 ,

4

+
1 can be extended to a Cr-map of Vn Ek ” into ¥V n .
(OL.7)} For any g € G there is an open neighborhood W of zero in

£° such that g-lE(W NnE)g < E(VnE) and the map

Ag DU E—l[g-la(u)g]

can be extended to a Cw—map of Wn Ek into itself for every k = 0 .

Examples of the Omori-Lie group include the group D(M) of all
Cm-diffeomorphisms of a compact manifold M and its various subgroups. In
fact, the notion of Omori-Lie groups has been introduced in order to
develop a general theory which covers these groups of diffeomorphisms. It
is the only general theory in existence today which has gained some success

in such an attempt.

In [7], I have introduced a notion of differentiability for maps in
locally convex spaces, which was called the TI-differentiability, and it
was used to define the TI'-manifolds. An outline of this study was also
published in [5]. In this note, we shall use this method to define the
I-Lie groups and then show a way to obtain another form of the definition
of Omori-Lie groups. This new method opens a way to the study of the group
D(M) with noncompact M .
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The basic concepts in [7], such as "calibrations", "TI'-families"”,
"T-~continuous maps", and "T-differentiable maps", will be used without

explanation.

A notion of differentiability similar to ours has been proposed by
Fischer [1], which contains various topics on the manifolds modelled on
locally convex spaces and the groups of smooth diffeomorphisms on compact

manifolds.

1. Gradings of calibrations

Let F be a T-family. Hence, F is a family of locally convex

spaces and [' is a family of maps on F such that the value Pr of

p €Il at E € F is a continuous semi-norm on Z, and the set
FE.:{pE.:pGT},

which is called the E-component of T , induces the topology of E .

A grading of T is a sequence

0= (ok)k=0,l,2,...
of maps
ok : T >T
such that

0k+1(p) > ok(p) and oo(p) =p .
Obviously, each Ok(F) is a calibration for F . We shall put
T, = ok(F) , k=0.

Since Fk also is a calibration for F , it has its E-component for each

E ¢ F . The space E equipped with this calibration is denoted by E(k)

Furthermore, we put

F : E € F}

(k) = Bz

and
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Foo={ : k= o0} .

Fx)

For each p € T , we define a semi-norm map o(p) on F0 by

olpl, =0(p).,
ﬁ(k) kYR

and put

Iy ={o(p) : p €T} .

In other words, the Ek—component of I“J is defined to be the ZA-component

of l‘k ; that is,

(rs)

o= (1), .
) (el

(1.1). L is a calibration for Fo which is an extension of the
ealibration T for F .

Proof. For E € F ,

o(plg = c(p)EO = oo(p)E =pg -

(1.2). For each E € F , E(k) = £ as topological linear spaces.

Proof. Since (l"k]E c I‘E , the topology of E(k) is weaker that that

of E . The converse follows from
ok(p) > oo(p) =p .
(1.3). For E,F€F, if nsk and j =m, then

I Eegys P < e Elmys Fa)) >

and the inclusion is Br‘o—continuous.

Proof. For u € LFO( () F(k)] , we have

1A
—
—

O(p)(E ](u) sup{cn(p)[u(x)] : 0 (p)(x)

(m)*F(n)

1A

tA
[
——

sup{Ok(p)[u(x)] : oj(p)(a:)
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In particular, if J =m ,

L. (B .\, F) <L, (B, \, F) ,
rst(d) Ty (m)
and the inclusion map is BTo—continuous.

For each p € T , let us denote by Z[p] the space E that is

regarded as a semi-normed space with respect to the semi-norm p . Then,

(1.4). ch(E(k)’ Fiyy) = pgr Lo, ()], Flo,(p)]) .

Proof. u €L [E , F ] if and only if, for each p € ' , there
Ty (k)2 7 (2)

exists Y = yv(p, k, 1) > O such that

oZ(p)[u(x)] < Yck(p)(x) for all x € E ,

which is equivalent to u € L(E[ok(p)], F[cz(p)]) for all p €T

2. Gelfand families and their gradings

A Gelfand space is a locally convex space which has a calibration

consisting of an increasing sequence of norms:
, n=0,1,2, ...,

which are pairwise coordinated: if a sequence of element is a Cauchy
sequence with respect to the nth norm and converges to zero with respect
to the (n-1)th norm, then it converges to zero with respect to the nth
norm. For detailed description of properties of Gelfand spaces, we refer
to [2], [3], and [4]. We owe the name "Gelfand space" to [2].

The most basic property of the Gelfand space is the following fact:
a complete locally convex space L 1is a Gelfand space if and only if there

m

18 a sequence {Eh} of Banach spaces sucn that E 18 linearly and

densely imbedded in E, for each n and E 1is the intersection of all

d

E, with the inverse limit topology.

When £ is a Gelfand space, the Banach spaces En can be chosen as
the completions of £ with respect to the nth norms.

Now let F Dbe a family of Gelfand spaces. Then each space E in F
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has a calibration consisting of

X
i}

lllg s 7= 05 1, 2,

Therefore, we can equip F with a calibration T which consists of

countable (semi-)norm maps:

pn, n=0,1, 2, ... ,

such that
®)e = Ilg,, -

A family of Gelfand spaces equipped with this calibration will be
called a Gelfand family. The calibration will be called the matural

calibration for this family.

Assume that F is a Gelfand family, and let I be the natural

calibration. Then we can define a grading of I by
Ok(pn) = Ppag » k,n=0,1, 2,

This grading will be called the natural grading of T . In this case, we

have
(Fk]Ew = {”’”E"k, ”.”E,k'l-l’ ...}
and

o)

E(k) = ok(pn)E= ”.”E,n+k for each p, €T .

In the sequel, we shall denote the Z-component of p, by ”'”n s

without specifying the space £ when there is no possibility of confusion

Further, the normed space E'[pn] will sometimes be denoted by E[n] .

3. o-smoothness
Let ¥ be a T-family. We recall two facts from [7].

First, let E € F ; then a subset U of E is said to be T-open i
it is p-open for every p € I' , that is, for each p €T and =z € U ,

there exists a positive number § such that

x+y €U if puly) <8
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Some properties of TI'-open subsets have been given in [7, Chapter I, §i],
When U is a T-open subset of E , it is obvious that U is an open
subset of the semi-normed space ZE[p] . The set U regarded as an open

subset of E[p] will be denoted by Ulp] .

Secondly, let U be a T-open subset of E . Then we have proved in
[7, Chapter II, §2] the following fact:

Let F € F be sequentially complete. Thenamap f : U +F s of
class 6'1; if and only if f 1is of class ¢ asa map of Ulpl into
Flp] for every p €T .

Now we assume that this calibration T has a grading o = (ok) .

When U is a T-open subset of £ in F , it is a I‘k-—open subset of

E(k) The set U regarded as a I‘k—open subset of E(k) is denoted by

U .
(k)
let F€F; thenamap f : U +F is said to be 0o-smooth if, for

every k=0, it is a C‘kI. -map of U(k) into F . Then the following
g

fact follows immediately from the second remark given above.

(3.1). Let T be a graded calibration for F, E, F € F,and F be
sequentially complete. Let U be a T-open subset of E . Then a map
f:U~+F 4is o-smooth if and only if, for every p €T and k=20, f

is a C‘k-map of U[ck(p)] into Flpl .

When F is a Gelfand family with the natural calibration I , the map
f is o-smooth if and only if, for every k=0 and n = 0 , it is of
class C'k as a map of Uln+k] into F[n] .

Further, let E, F , and G be members of a TI-family with a grading
0. Let U and V be T-open subsets of E and F respectively. Then

a map
fF:UxV=>¢G
is said to be (o0, T)-smooth if E x F is a [I-product and, for every

k=20, f is a C’k—mapof U(k)XV into G .
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The following fact can be proved in the same way as in the case of

(3.1).

(3.2). Let E, F, G, U, V, and f be as above. Then f 1is
(o, T)-smooth if and only if, for every p €T and k=20, f isa

C’k-map of U[crk(p)] x Vlp]l into G[p] .
When F is a Gelfand family with the natural calibration T and its
natural grading © , the map is (o, T')-smooth if and only if it is a

Ck—map of U[n+k] x V[in] into G[n] for every n =0 and k20 .

4. T-Lie groups

A T-Lie group is a topological group G such that there is a

I-family with a grading 0, and the following conditions are satisfied:
(r't.1) G is a T-manifold of class c” 3
(TL.2) the product operation
(g, B)r—gh : G xG~>G
is (o, I')-smooth;

(TL.3) +the inverse operation
g Hg—l:G-*,G
is O-smooth.

In particular, when I is the natural calibration for a Gelfand
family and O is the natural grading of T , the T-Lie group will be
called a Gelfand-Lie group. The Omori-Lie groups are Gelfand-Lie groups;
the conditions (OL.3) and (OL.6) imply (TL.2) and (TL.3),respectively. In
order to have the inverse implications, we need a new notion of

"completional continuity", which will be discussed in the next section.

5. Completional continuity
Let F be a I-family and E, F € F .

Let U be a p-open subset of £ for p €T . Thenamap f : U > F
is said to bve completionally p-continuous if, for arbitrary p-Cauchy

sequences {xi} and {yi} contained in U such that
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lim p_(z.-y.) = 0,
oo 1:,[1, 7

we have

]:im pp(f(zt)'f(yt)) =0.

70
This definition includes the case when all y; are equal to an
element. Hence, the following statement is obvious.
(5.1). Completionally p-continuous maps are p-continuous.

A p-continuous map does not always transform a p-Cauchy sequence

into a p-Cauchy sequence. However:

(5.2). If f is a completionally p-continuous map on U and {:ct}
is a p-Cauchy sequence contained in U , then |f (:ct)} is also a
p-Cauchy sequence.

Proof. 1If the sequence {f(xi)} is not p-Cauchy, there are 6 > 0

and subsequences {xi } and {x3 } such that in > 0 jn +> o | and

n n
pplfle; )-flz; ) = 6 .
n n
However, since {xi} is a p-Cauchy sequence, its subsequences {xi } and
n
{xj } are also p-Cauchy sequences and
n

1lim X, =X, =0
n-oo pE( *n Jn] ’

which is a contradiction.

The following statement is also obvious.

(5.3). All p-Lipschitz maps are completionally p-continuous.

In particular, every p-continuous linear map is completionally
p-continuous. Furthermore, since every Cll)-map is locally lipschitzian, we

have the following.

(5.4). Let f :U->F bea C;-map. Then, for each a € U , there
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is an open p-ball Bla, y) around a with radius Y > O such that
Bla, Y) €U and f 1is completionally p-continuous on Bla, y) .

nd

We denote the completion of E with respect to pp by 3’[p] , and the
extension of pg over Elp]l vy EE . Therefore, each element % of

E’[p] is an equivalence class of p-Cauchy sequences {xi} , and
PE(“’) = 11m PL(‘”,L)
7.0

It is easy to see that Z;E defines a norm on £[p] and E[p] is a Banach
space with this norm. This space will be called the p-completion of E .

A subset U of E 1is called a completionally p-open subset if there
is an open subset U in 2{p] such that U =E n U . Obviously,

completionally p-open subsets are p-open.
(5.5). Let U be a completionally p-open subset of E . Then, for

each a €U » there is a p-Cauchy sequence {ai} in U such that

lim pyla ,-a) =0 .
10

Conversely, if {ai} i8 a p-Cauchy sequence in U and a 1is the class

eontaining {ai} , then a belongs to the p-closure of U in @[p]
Proof. Let {ai} be a p-Cauchy sequence contained in a . Then,
since
lim pE,(ai-a) =0,
1>
we have

aiéanE for large 7 .

Conversely, if {ai} is a p-Cauchy sequence contained in U and a

is the class containing {ai} , we have

ai € U and J:lm pE(ai—a] =0,
70

<D

which imply that a belongs to the closure of
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Now we can give a characterization of the completional p-continuity.

(5.6). Let U be a completionally p-open subset of E . Then a ma
f:U>F {8 completionally p-continuous on U <if and only if f has a

g—continuous extension f' : U > f'[p] .

Proof, Assume that f is completionally p-continuous on U . We

define f as follows: for a €U we put

¥a) = 1im fla;) in Flpl,

1>
or ?‘(3) is the class containing {f(ai)} for a p-Cauchy sequence {ai}
in a . This is possible because {f(ai)} is also a p-Cauchy sequence by

(5.2).
Therefore, in' order to show that f can be extended to 17 , we only

need to show that such {ai} can be chosen for every & € i .

1f a €U , such {ai} exists by (5.5).

If a € U\J , there is a sequence a, € U such that
lima =a in E[p] .
no M

Then there are p-Cauchy sequences {an 1:} in U such that
b

: ~ . S
lima_ ., =a in b[p] »
z n,7 n

and also there is a p-Cauchy sequence {ai} in EF vhich is contained in
a . Then

lim lim poa .-a.) =0 .
1300 o300 EVn,i 1,)

Hence there are {nk} and {tk} such that
ppla, . -a. ) <1/k .
b nk,'bk 7’k

Since {aik} is p-Cauchy and {ank'ik-aik} is p-null, {an is

p-Cauchy,and it is contained in U . Furthermore,

k*tk
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limq . =1lima. +1im (@ . -a. ) =a in Elp] .
koo Motk ke Pk kow (nk’zk 7'k) P

Thus, for any 3 € 0 , we can find a p-Cauchy sequence in U which

converges to a in E[p] .

Next, to prove the ﬁ-continuity of ? thus defined, we assume that

lim pyla,-a) =0, a,a€l,
70
and
EFD‘\'(an)-f(a)] <§ for all n ,
for some positive number & . We take p-Cauchy sequences {an i} and

{ai} in U such that

lima .=a and lima. =a in E[pl .
fow Tl n fao T
Then these assumptions are equivalent to the following:

lim lim py{a_ ,-a.) =0
N0 100 Enk e

and

in pglrla, )-Fla)] > 6 -

=300

1
2

From the first equality, we can find {nk} and {iil)} such that

eoa s o(1)
pE[ank’i—ai] <1l/k if i =2 )

Since

lim pp[f(an )‘f(ai)] > 8

10 %t

from the second inequality, we have {i(i)} such that

pF[f(ank,i]—f(ai)] >6 if iz i,‘f’ .

Therefore, for ik > max[iil), i;z)) , we have
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pela. , -a. ) <1/k and py[fla, . )-fla, }] >3
Eomot i P2 et T
This is a contradiction, because {an i } is also a p-Cauchy sequence
k’"k
contained in U .

Conversely, suppose that f has a s-continuous extension, and suppose

that {xi} and {yi} are p-Cauchy sequences in U such that

im x.=y.}] =0 .
lin pg(=;-y,)

Then there exists 3 € ﬁ such that

-
limzx, = limy, =a .
190 T i-)oo~1’

Hence

J:im f(xz)

L-)m ’L—m

1]
5
=
e
o
~—
i
pg
Q
M
o]
3
i)

which implies
lim PFLf(xi)'f(yi)] =0.
1.0
A subset U of E 1is said to be completionally T-open if it is
completionally p-open for every p € I' . Obviously, completionally

I-open subsets are [I'-open.

Let U be a completionally TI'-open subset of £ . Then a map
f : U~+F is said to be completionally T-continuous on U if it is
completionally p-continuous for every p € I' . Hence f is

completionally TI-continuous if and only if, for each p € I' , it has a

ﬁ—continuous extension from U into ?[p] .

Again, let U be a completionally TI-open subset of E . A map

f :U~F is said to be k-times completionally continuously
T-differentiable or of class CC? on U if it is of class C? and the

derivatives

()

f :U-*L;’-,(E’,F) (0= =<k)

are completionally TI'-continuous.
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346
Let U be a

(5.7). Let E, F € F and F be sequentially complete.
completionally T-open subset of Let f : U +F be k-times Gateaux
differentiable on U . Then f <8 of class CCJI(. on U 1if and only if,

i

&5 .

for each p €T, f has a Ck -extension
f:U=>F[pl.
Proof, Since f is k-times GAteaux differentiable on U , we have
AD Ly s e P) (0=i=k)
() .
s completionally

Assume that f is of class C% ; then each f7’
Hence, for each p € I' , we have a continuous extension

F-continuous.
3B T i
£ v LMEpl, FlpD) .

In particular, we have a continuous extension
r:U=>Fipl ,
@)
and we shall show that f Y/ is the ith derivative map of f ; that is,
S
() ()
FASEET AR
a Then

[ ~
Now assume that f'(@) 1is not the derivative of F at
there is a null sequence {271} in E[p] Such that a + '%n €

p5(&,) " BplFa+43,)-F@)-F (@ (E)] > 6 for ax1 n,
for some positive number & . If {:z:n 7’} are p-Cauchy sequences
b

contained in ."i‘n , this assumption is equivalent to

s el ) <
and
)_lpF[f(aiH:n ’7;) —f(ai] -f' [ai) (xn ’,L)] > 6,

lim p [x .
. EY'n i
where {ai} is a p-Cauchy sequence contained in a

In exactly the same way as in (5.6), we choose {nk} and {zk} such
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that

}=0

lim p (:z: .
o BT Moty

-1
Pg (xnk ’ik) Pg [.f(aik”:n

i )-f(ai )-fv[ai ](xn ; )] > 6 .
Kk 7k k kK Tkt

From the second inequality, together with the mean value theorem, we have
) )
P(E (r'(a. +8,= .)—f(a.)]>6,
(&,F) T Koty 1
which contradicts the completional continuity of f' .

We can prove the cases of higher derivatives in exactly the same way.
Conversely, assume that there is a Ck-extension
~ XA
f:U~>F[pl
for every p € T . GSince f is assumed to be k-times G&teaux

differentiable on U , we have a map
f' :U~L(E, F) ,

and, for a €U and =x € E ,

1im € [ f(a+ex)-fla)]

£

f'(a)(x)

lim € Y [flatex)-Fla)] = F'(a)(z)

g0

In other words,
72U~ L(Epl, Flp))

is a continuous extension of f' . Therefore, f' is completionally

p-continuous on U, and this holds for every p €T .

We can prove the cases of higher derivatives similarly.

We shall call a T-manifold of class C'k a completional T-manifold
of class Ck or T-manifold of class CC’k if there is an atlas whose

transition maps are all of class CCkI, .
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6. Completional T-Lie groups

A T-Lie group is said to be completional if all the smoothnesses

involved in its definition are of class CC? . In other words, a

completional T-Lie group is a topological group G which satisfies the

following conditions:
(cl'L.1) G is a completional T-manifold of class C°° 5
(cr'L.2) the product operation is completionally (o, T)-smooth;
(CI'L.3) the inverse operation is completionally o-smooth.

Obviously, Omori-Lie groups are completional Gelfand-Lie groups.
Conversely, a completional Gelfand-Lie group is a Omori-Lie group if it
satisfies additional smoothness conditions corresponding to (0.4), {0.5),
and (0.7).

Thus, when M 1is a compact ¢”-manifold without boundary, the group
D(1) of all Cw-diffeomorphisms on M and various subgroups of D(M) are
completional Gelfand-Lie groups. We leave it as a conjecture that D(M)
for noncompact # will also be a completional TI'-Lie group for a suitably

chosen T .
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