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Abstract

Using elementary means, we improve an explicit bound on the divisor function due to Friedlander and
Iwaniec [Opera de Cribro, American Mathematical Society, Providence, RI, 2010]. Consequently, we
modestly improve a result regarding a sieving inequality for Gaussian sequences.
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1. Introduction

Let τ(n) be the number of divisors of n. While asymptotic estimates for weighted sums∑
τ(n)an are generally difficult to obtain, explicit bounds often suffice in applications.
We shall consider the relationship between τ(n) and averages of τ(d) for small

divisors d of n. Landreau [4] showed that for any integer k ≥ 2 there exists a constant
Ck > 0 such that

τ(n) ≤ Ck

∑
d|n

d≤n1/k

(2ω(d)τ(d))k for n ≥ 1, (1.1)

where ω(n) counts the number of distinct primes dividing n. We wish to make the
constants Ck effective. Friedlander and Iwaniec [2] considered, inter alia, a weakened
version of (1.1) for k = 4, making use of the trivial bound 2ω(n) ≤ τ(n). They showed
that

τ(n) ≤ C
∑
d|n

d≤n1/4

τ(d)8 for n ≥ 1, (1.2)

holds for C = 256. Numerical evidence suggests that this constant is far from optimal.
In fact, it can be verified easily that (1.2) holds with C = 8 for all 1 ≤ n ≤ 108.
Moreover, equality is attained for 733133 values of n within this interval, these being
the square-free numbers n = p1 p2 p3 satisfying n1/4 < min(p1, p2, p3). So for small n it
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is certainly the case that C = 8 is the best possible constant, with evidence suggesting
that this trend should continue as n→∞. Our aim is to investigate whether C ≤ 8 is
admissible for all n sufficiently large, as well as whether the sum can be made sharper.

We show that (1.2) indeed holds for C = 8. In addition we improve on the exponent
of τ(d) in the sum, which (1.1) suggests should be much smaller than 8, at least for
non-square-free n. Our main result to reach this goal is the following theorem.

Theorem 1.1. Let n ≥ 1. Then there exists d ≤ n1/4 with d|n such that τ(n) ≤ 8τ(d)7.

We shall also show that the constant C in (1.2) must satisfy C ≥ 8.

Theorem 1.2. We have

τ(n) ≤ 8
∑
d|n

d≤n1/4

τ(d)7 for n ≥ 1,

the constant 8 being best possible for all n.

The consideration of (1.2) by Friedlander and Iwaniec in [2] led to their study
of sieving inequalities for Gaussian sequences. We shall see in Section 6 how
Theorem 1.2 may be used to modestly improve one of their results [1].

2. A lower bound

Our first result describes a natural lower bound for the constant C in (1.2). This
bound arises from the consideration of a particular set of square-free numbers. In fact,
the result extends to the general case (1.1).

Proposition 2.1. Fix an integer k ≥ 2. For any multiplicative function f : N→ R,

lim sup
n→∞

τ(n)
( ∑

d|n
d≤n1/k

f (d)
)−1
≥ 2k−1.

Proof. Take a prime p1 > 2(k−1)(k−2)/2 and choose, using Bertrand’s postulate, primes
p2 < p3 < · · · < pk−1 such that p1 < p2 < 2p1 and pi < 2i−1 p1 for 3 ≤ i ≤ k − 1. Then

pk−1
1 > 2(k−1)(k−2)/2 × pk−2

1 =

k−1∏
i=2

2i−1 p1 > p2 p3 · · · pk−1.

Consider now n = p1 p2 · · · pk−1. We see that p1 > n1/k, whence there are no nontrivial
divisors d of n with d ≤ n1/k. So for such an n we have τ(n) = 2k−1 and∑

d|n
d≤n1/k

f (d) = f (1) = 1. �
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3. Some upper bounds

We now turn our attention to proving Theorem 1.1. The aim is to choose for any n
a divisor d ≤ n1/4 for which τ(d) is as large as possible. In this section we demonstrate
this procedure for n with certain prime factorisations.

We shall make use of the following elementary inequalities. We write [x] for the
integer part of x.

Lemma 3.1. For all integers t ≥ 4, we have 7[t/4] ≥ t and ([t/4] + 1)4 ≥ 2(t + 1).

Proof. Let i ≥ 1 be the unique integer such that 4i ≤ t ≤ 4i + 3. For the first inequality,
we simply see that 7[t/4] = 7i ≥ 4i + 3 ≥ t. For the second, we have ([t/4] + 1)4 =

(i + 1)4 ≥ 8(i + 1) = 2(4i + 3) + 2 ≥ 2t + 2. �

We consider the various cases pertaining to how prime powers appear in the prime
factorisation of n. Our first lemma deals with the case when all exponents are at least 4.

Lemma 3.2. Suppose n = pa1
1 pa2

2 · · · p
at
t with ai ≥ 4 for all 1 ≤ i ≤ t. Then there exists

d ≤ n1/4 with d|n such that τ(n) ≤ 2−tτ(d)4.

Proof. We let d =
∏t

i=1 p[ai/4]
i . Then d ≤ n1/4 and, by Lemma 3.1,

τ(d)4 =

t∏
i=1

([ai

4

]
+ 1

)4
≥ 2t

t∏
i=1

(ai + 1) = 2tτ(n). �

We now consider the cases when all prime powers appearing in the prime
factorisation of n occur with exponent k for k ∈ {1, 2, 3}.

Lemma 3.3. Suppose n = p1 p2 · · · pt with p1 < p2 < · · · < pt. Then there exists d ≤ n1/4

with d|n such that

τ(n) ≤

 2tτ(d) if t ∈ {1, 2, 3},
τ(d)7 if t ≥ 4.

Proof. Firstly, let t ∈ {1, 2, 3} be fixed. In each of these cases we let d = 1. Then
2tτ(d) = τ(n).

On the other hand, if t ≥ 4, we take d = p1 p2 . . . p[t/4]. Then d ≤ n1/4 and, by
Lemma 3.1, τ(d)7 = 27×[t/4] ≥ 2t = τ(n). �

Lemma 3.4. Suppose n = p2
1 p2

2 . . . p2
t with p1 < p2 < · · · < pt. Then there exists d ≤ n1/4

with d|n such that

τ(n) ≤


3τ(d) if t = 1,
2−2τ(d)7 if t ∈ {2, 3},
τ(d)7 if t ≥ 4.

Proof. If t = 1, we let d = 1. Then 3τ(d) = τ(p2
1) = τ(n). Next suppose t ∈ {2, 3}. In

these cases take d = p1, whence τ(d)7 = 27 > 22 × 33 ≥ 22τ(n). Finally, suppose t ≥ 4.
Take d = p2

1 p2
2 · · · p

2
[t/4]. Then τ(d)7 = 37×[t/4] ≥ 3t = τ(n). �
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Lemma 3.5. Suppose n = p3
1 p3

2 · · · p
3
t with p1 < p2 < · · · < pt. Then there exists d ≤ n1/4

with d|n such that

τ(n) ≤


4τ(d) if t = 1,
2−3τ(d)7 if t = 2,
2−5τ(d)7 if t = 3,
τ(d)7 if t ≥ 4.

Proof. As before, if t = 1, let d = 1, whence 4τ(d) = τ(n). If t = 2, we take d = p1,
giving τ(d)7 = 27 = 23τ(n). If t = 3, let d = p2

1, so that τ(d)7 = 37 > 25 × 43 = 25τ(n).
Finally, for t ≥ 4, take d = p3

1 p3
2 · · · p

3
[t/4], whence τ(d)7 = 47×[t/4] ≥ 4t = τ(n). �

We are now ready to combine these estimates to prove Theorem 1.1.

4. Proof of Theorem 1.1

Let n ≥ 1 and consider the unique prime factorisation of n. We group the prime
powers according to their exponents: for each i ∈ {1, 2, 3}, let mi be the product of
those occurring with exponent i and let l be the product of those with exponent at least
4. The relations mi = 1 and l = 1 will be understood to mean that no primes of the
corresponding form divide n.

Write n = m1m2m3l. First observe by Lemma 3.2 that there exists a divisor dl of l
with dl ≤ l1/4 for which

τ(n) = τ(m1m2m3)τ(l) ≤ τ(m1m2m3)τ(dl)7. (4.1)

Thus to prove our theorem it suffices to consider those n whose prime factorisations
consist solely of prime powers with exponents strictly less than 4. That is, if for each
such n = m1m2m3 we can find a divisor d ≤ n1/4 with τ(n) ≤ 8τ(d)7, then the assertion
in the theorem follows from (4.1).

In each of the following cases the numbers d1, d2, d3 are chosen according to
Lemmas 3.3, 3.4 and 3.5. Note that these satisfy di|mi and di ≤ m1/4

i . Moreover, if
mi = 1, we may choose di = 1.

(I) Let m1 ≥ 1.

(i) If ω(m2) ∈ {2, 3}, then τ(n) ≤ 8τ(d1)7 × 2−2τ(d2)7 × 4τ(d3)7 ≤ 8τ(d1d2d3)7.
(ii) If ω(m3) ∈ {2, 3}, then τ(n) ≤ 8τ(d1)7 × 3τ(d2)7 × 2−3τ(d3)7 ≤ 3τ(d1d2d3)7.

Henceforth we only consider the cases m2,m3 = 1 and ω(m2), ω(m3) ∈ N \ {2, 3}.
(II) Suppose m1 = 1 or ω(m1) ≥ 4.

(i) If at least one of ω(m2) ≥ 4 or ω(m3) ≥ 4 holds, then τ(n) ≤ τ(d1)7 ×

4τ(d2)7 × τ(d3)7 = 4τ(d1d2d3)7.
(ii) On the other hand, suppose ω(m2) = ω(m3) = 1. Write n = m1 p2

1 p3
2. Let

d′ = min(p1, p2) ≤ (p2
1 p3

2)1/4. Then τ(d′)7 = 27 > τ(p2
1 p3

2) and so τ(n) <
τ(d1)7 × τ(d′)7 ≤ τ(d1d′)7.
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(III) Suppose ω(m1) = 1.

(i) If at least one of ω(m2) ≥ 4 or ω(m3) ≥ 4 holds, then τ(n) ≤ 2τ(d1)7 ×

4τ(d2)7 × τ(d3)7 ≤ 8τ(d1d2d3)7.
(ii) On the other hand, suppose ω(m2) = ω(m3) = 1. Write n = m1 p2

1 p3
2. Let

d′ = min(p1, p2) ≤ (p2
1 p3

2)1/4. Then τ(d′)7 > τ(p2
1 p3

2) and so τ(n) < 2τ(d1) ×
τ(d′)7 ≤ 2τ(d1d′)7.

(IV) Suppose ω(m1) = 2.

(i) If ω(m2) ≥ 4 and ω(m3) ≥ 4, then τ(n) ≤ 4τ(d1) × τ(d2)7 × τ(d3)7 ≤

4τ(d1d2d3)7.
(ii) If ω(m2) = 1 and ω(m3) ≥ 4, write n = p1 p2 p2

3m3. Let d′ =

min(p1, p2, p3) ≤ (p1 p2 p2
3)1/4. Then τ(d′)7 > τ(p1 p2 p2

3) and so τ(n) <
τ(d′)7 × τ(d3)7 = τ(d′d3)7.

(iii) If ω(m2) ≥ 4 and ω(m3) = 1, write n = p1 p2 p3
3m2. Let d′ =

min(p1, p2, p3) ≤ (p1 p2 p3
3)1/4. Then τ(d′)7 > τ(p1 p2 p3

3) and so τ(n) <
τ(d′)7 × τ(d2)7 = τ(d′d2)7.

(iv) Suppose ω(m2) = ω(m3) = 1. Write n = m1 p2
1 p3

2. Let d′ = min(p1, p2) ≤
(p2

1 p3
2)1/4. Then τ(d′)7 > τ(p2

1 p3
2) and so τ(n) < 4τ(d1) × τ(d′)7 ≤

4τ(d1d′)7.

(V) Suppose ω(m1) = 3.

(i) If ω(m2) ≥ 4 and ω(m3) ≥ 4, then τ(n) ≤ 8τ(d1) × τ(d2)7 × τ(d3)7 ≤

8τ(d1d2d3)7.
(ii) If ω(m2) = 1 and ω(m3) ≥ 4, write n = p1 p2 p3 p2

4m3. Let d′ = min({pi}) ≤
(p1 p2 p3 p2

4)1/4. Then τ(d′)7 > τ(p1 p2 p3 p2
4) and so τ(n) < τ(d′)7 × τ(d3)7 =

τ(d′d3)7.
(iii) If ω(m2) ≥ 4 and ω(m3) = 1, write n = p1 p2 p3 p3

4m2. Let d′ = min({pi}) ≤
(p1 p2 p3 p3

4)1/4. Then τ(d′)7 > τ(p1 p2 p3 p3
4) and so τ(n) < τ(d′)7 × τ(d2)7 =

τ(d′d2)7.
(iv) If ω(m2) = ω(m3) = 1, write n = m1 p2

1 p3
2. Let d′ = min(p1, p2) ≤ (p2

1 p3
2)1/4.

Then τ(d′)7 > τ(p2
1 p3

2) and so τ(n) < 8τ(d1) × τ(d′)7 ≤ 8τ(d1d′)7.

5. Further speculation

Returning to (1.1), one may consider for any k ≥ 2 and η ≥ 1 the generalised
inequality

τ(n) ≤ Ck,η

∑
d|n

d≤n1/k

τ(d)η. (5.1)

Clearly if (5.1) holds then it must also be true for any η′ > η, in which case we may
choose Ck,η′ = Ck,η. Thus for fixed k and Ck = Ck,η we would like to know the smallest
η for which (5.1) holds.
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A natural question to consider is whether Theorem 1.1 can be improved to show
that for all n ≥ 1 there exists a divisor d ≤ n1/4 such that τ(n) ≤ 8τ(d)6. It appears,
however, that the purely elementary methods presented in this paper cannot achieve
this in any practical sense. To see why, consider a number n = p2

1 p2
2 · · · p

2
t1 q3

1q3
2 · · · q

3
t2

with t1 ≥ 4 and t2 ≥ 4. Suppose p1 < p2 < · · · < pt1 and q1 < q2 < · · · < qt2 . Without
additional assumptions on n the best choice of divisor d ≤ n1/4 for which τ(d) is as
large as possible is d = p2

1 p2
2 · · · p

2
[t1/4]q

3
1q3

2 · · · q
3
[t2/4]. But then (cf. Lemma 3.1)

τ(d)6 = 36×[t1/4] × 46×[t2/4] ≥ 3t1−1 × 4t2−1 = 12−1τ(n).

Thus the best estimate we can produce unconditionally is τ(n) ≤ 12τ(d)6. One may
enumerate each of the various cases in regard to the relative sizes of the pi, q j to
produce a divisor d with τ(d) large enough; this seems a formidable task in general.

In any case it remains an open problem to determine the smallest η > 0 such that

τ(n)�η

∑
d|n

d≤n1/4

τ(d)η. (5.2)

At least in the square-free case this problem has been solved. Iwaniec and Munshi [3]
showed that (5.2) holds for square-free n with any η > 3 log 3/ log 2 − 4 = 0.75488 . . . ,
this lower bound being best possible.

6. An application to Gaussian sequences
Of significant interest in sieve theory is the detection of primes in Gaussian

sequences, namely sequences supported on integers which can be expressed as the
sum of two squares.

Here we consider a generalised Gaussian sequenceA = (an) defined by

an =
∑

l2+m2=n
(l,m)=1

γl, (6.1)

where l,m run over positive integers and γl are any complex numbers with |γl| ≤ 1. We
further suppose that the γl are supported on rth powers, that is, γl = 0 if l , kr.

In the process of sievingA one requires good estimates for

Ad(x) =
∑
n≤x
d|n

an. (6.2)

It can be shown (see [1, equations (6) and (7)]) that∑
n≤x

an =
∑
l<
√

x

γl
ϕ(l)

l

√
x − l2 + O(x1/2r log x),

so for d not too large we expect Ad(x) to be uniformly well approximated by

Md(x) =
ρ(d)

d

∑
l<
√

x
(l,d)=1

γl
ϕ(l)

l

√
x − l2,
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where ρ(d) is the number of solutions to the congruence ν2 + 1 ≡ 0 mod d.
To estimate (6.2), we may consider instead the smoothed sum

Ad( f ) =
∑

n≡0 mod d

an f (n),

where f ∈ C∞([0,∞)) is such that f (t) = 1 if 0 ≤ t ≤ (1 − κ)x and f (t) = 0 if t ≥ x. Here
x−1/4r ≤ κ ≤ 1 is some parameter to be optimised later.

Proposition 6.1. Suppose
√

x ≤ D ≤ x(r+1)/2r. Then∑
d≤D

|Ad(x) − Ad( f )| � κx(r+1)2r(log x)128.

Proof. A rearrangement of the sum gives∑
d≤D

|Ad(x) − Ad( f )| =
∑
d≤D

∣∣∣∣∣ ∑
(1−κ)x<n≤x

d|n

(1 − f (n))
∑

l2+m2=n
(l,m)=1

γl

∣∣∣∣∣
�

∑
(1−κ)x<l2+m2≤x

(l,m)=1

|γl|
∑

d|(l2+m2)

1

�
∑′

(1−κ)x<l2+m2≤x
(l,m)=1

|γl|τ(l2 + m2) +
√

x log x,

where
∑′ means that the terms with a value of l which is nearest to

√
x are omitted.

We deduce from Theorem 1.2 that∑′

(1−κ)x<l2+m2≤x
(l,m)=1

|γl|τ(l2 + m2)�
∑′

l<
√

x

|γl|
∑

d≤x1/4

(d,l)=1

τ(d)7
∑

(1−κ)x<l2+m2≤x
l2+m2≡0 mod d

1.

Now split the range of m into residue classes m ≡ νl mod d, where ν2 + 1 ≡ 0
mod d. This, combined with the observation that m runs over an interval of length
O(κx/

√
x − l2), allows us to estimate the above by

� κx
( ∑

d≤x1/4

τ(d)7 ρ(d)
d

)(∑′

l<
√

x

|γl|
√

x − l2

)
+ x1/4+1/2r(log x)128

� κx × (log x)128 × x1−r/2r + x1/4+1/2r(log x)128

� κx(r+1)/2r(log x)128. �

We can now use Proposition 6.1 to improve the error term in the main theorem
of [1] by a factor of O((log x)64.75).

Theorem 6.2. Let an and Ad(x) be as in (6.1) and (6.2), respectively. Suppose
√

x ≤ D ≤ x(r+1)/2r. Then∑
d≤D

|Ad(x) − Md(x)| � D1/4x3(r+1)/8r(log x)65.25.
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Proof. We combine equations (19) and (35) from [1] with Proposition 6.1 above to
obtain the estimate∑

d≤D

|Ad(x) − Md(x)| �
∑
d≤D

|Ad(x) − Ad( f )| + κ−1D1/2xr+1/4r(log x)5/2 + κxr+1/2r log x

� κxr+1/2r(log x)128 + κ−1D1/2xr+1/4r(log x)5/2.

Choosing
κ = D1/4x−r+1/8r(log x)5/4−64

yields the desired result. �
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