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The Poincaré–Deligne Polynomial of
Milnor Fibers of Triple Point Line
Arrangements is Combinatorially
Determined

Alexandru Dimca

Abstract. Using a recent result by S. Papadima andA. Suciu,we show that the equivariant Poincaré–
Deligne polynomial of the Milnor ûber of a projective line arrangement having only double and
triple points is combinatorially determined.

1 Introduction

Let A be an arrangement of d hyperplanes in Pn , with d ≥ 2, given by a reduced
equationQ(x) = 0. Consider the corresponding complement M deûned byQ(x) ≠ 0
inPn , and the global Milnor ûber F deûned byQ(x)−1 = 0 inCn+1 withmonodromy
action h∶ F → F, h(x) = exp(2πi/d) ⋅ x. We refer the reader to [17] for the general
theory of hyperplane arrangements.

_e following are basic open questions in this area, a positive answer for any ques-
tion in this list implying the same for the previous ones.
(a) Are the Betti numbers b j(F) combinatorially determined, i.e., determined by the

intersection lattice L(A) ?
(b) Are themonodromy operators h j ∶H j(F)→ H j(F) combinatorially determined?
(c) Is the equivariant Poincaré–Deligne polynomial PDµd (F) of F coming from the

monodromy action combinatorially determined? Here µd is the multiplicative
group of d-th roots of unity, and the deûnition of PDµd (F) is recalled in the next
section.

On thepositive side, itwas shownbyN.Budur andM. Saito in [2] that the spectrum
Sp(A) of A, whose deûnition is also recalled in the next section, is combinatorially
determined.

We assume in the sequel that n = 2 and that the line arrangement A has only
double and triple points. _en a recent result of S. Papadima and A. Suciu [15] shows
that the answer to question (b) is positive. More precisely, they have introduced a
combinatorial invariant β3(A) ∈ {0, 1, 2} of the line arrangement A such that the
multiplicity of a cubic root of unity λ ≠ 1 as an eigenvalue for h1 is exactly β3(A).

Received by the editors June 16, 2015; revised January 4, 2016.
Published electronically February 4, 2016.
Partially supported by Institut Universitaire de France.
AMS subject classiûcation: 32S22, 32S35,32S25,32S55.
Keywords: line arrangement,Milnor ûber,monodromy,mixed Hodge structures.

279

https://doi.org/10.4153/CMB-2016-003-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-003-1


280 A. Dimca

_emain result of this note, answering a question raised by Suciu, is the following.

_eorem 1.1 Let A be an arrangement of d lines in P2 such that A has only double
and triple points. _en the equivariant Poincaré–Deligne polynomial PDµd (F;u, v , t)
of F coming from the monodromy action is determined by the number d of lines in A,
the number n3(A) of triple points in A and the Papadima–Suciu invariant β3(A).

In particular, question (c) has a positive answer in this case. _is is rather sur-
prising, given the complexity of the mixed Hodge structure on the cohomology of
theMilnor ûber F, as seen from Propositions 3.1 and 3.3. _e very explicit formulas
given in these two propositions apply to certainmonodromy eigenvalues for arbitrary
line arrangements; see Remarks 3.2 and 3.4.
For a possible application to the study of some (singular) projective surfaces, see

Remark 3.7. Relations to the superabundance or the defect of some linear systems
passing through the triple points ofA are described in Remark 3.8.

Note also that there are very few examples of nonisolated (quasi-homogeneous)
hypersurface singularities (X , 0) for which both the monodromy and the MHS on
the corresponding Milnor ûbers arewell understood, even though the isolated quasi-
homogeneous case was settled by J. Steenbrink [18] a long time ago.

_e case of a hyperplane arrangement inP3k−1,which is obtained by taking a prod-
uctA1 ×A2 ×⋅ ⋅ ⋅×Ak of k line arrangementsA j having only double and triple points,
can now be treated using the results in this note and [5,_eorem 1.4].

In the last section we prove the following related result.

Proposition 1.2 Let C ∶ Q = 0 be a degree d reduced curve in the projective plane
P2, and let F ∶ Q − 1 = 0 be the associated Milnor ûber in C3. _en the equivariant
Poincaré–Deligne polynomial PDµd (F;u, v , t) of F coming from themonodromy action
is determined by its specialization, the Hodge–Deligne polynomial

HDµd (F;u, v) = PDµd (F;u, v ,−1).

Since the Hodge–Deligne polynomial (or rather a compactly supported version
of it, is additive; see, for instance, [7]), this result might be used in some situations
to compute these polynomials. It is an open question whether such a result holds in
higher dimensions, even for the hyperplane arrangements.
For similar non-cancellation properties in the case of braid arrangements A3 and

A4, see [8, Section 6].

2 Equivariant Hodge–Deligne and Poincaré–Deligne Polynomials
and Spectra

Recall that if X is a quasi-projective variety over C, one can consider the Deligne
mixed Hodge structure (MHS) on the rational cohomology groups H∗(X ,Q) of X.
We refer to the reader [16] for general notions and results concerning theMHS.
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Since this MHS is functorial with respect to algebraicmappings, if a ûnite group Γ
acts algebraically on X, each of the graded pieces
(2.1) Hp,q(H j(X ,C)) ∶= Grp

FGrWp+qH
j(X ,C)

becomes a Γ-module in the usual functorial way, and thesemodules are the building
blocks of theHodge-Deligne polynomial HDΓ(X;u, v) ∈ R(Γ)[u, v], deûned by

HDΓ(X;u, v) =∑
p,q
EΓ;p,q(X)upvq ,

where EΓ;p,q(X) = ∑ j(−1) jHp,q(H j(X ,C)) ∈ R(Γ). One can consider an even ûner
(and hence harder to determine) invariant, namely the equivariant Poincaré–Deligne
polynomial

PDΓ(X;u, v , t) = ∑
p,q , j

Hp,q(H j(X ,C))upvq t j ∈ R+(Γ)[u, v , t].

Clearly, one has PDΓ(X;u, v ,−1) = HDΓ(X;u, v).
_e case of interest to us is when Γ = µd and the action on F is determined by

exp(2πi/d) ⋅ x = h−1(x).
_e reason to use h−1 instead of h is either functorial (i.e., to really have a group action
when Γ isnot commutative, see [8]) or geometrical, as explained in [10], in order to get
results compatiblewith those in [2],whichwe survey below. Recall that the spectrum
of a hyperplane arrangement A ⊂ Pn is the polynomial

Sp(A) = ∑
α∈Q

nα tα ,

with coeõcients given by
nα =∑

j
(−1) j−n dim Grp

F H̃
j(F ,C)λ ,

where p = ⌊n + 1 − α⌋, λ = exp(−2iπα), with H̃ j(F ,C)λ = H j(F ,C)λ (eigenspaces
with respect to the action of (h j)−1 as explained above) for j ≠ 0, H̃0(F ,C)λ = 0 and
⌊y⌋ ∶= max{k ∈ Z ∣ k ≤ y}. It is easy to see that nα = 0 for α ∉ (0, n + 1).

_eorem 3 in [2] implies the following result.

_eorem 2.1 Let A be an arrangement of d lines in P2 such that A has only double
and triple points. Let n3(A) denote the number of triple points in A. _en nα = 0 if
αd ∉ Z, and for α = j

d ∈ ]0, 1] with j ∈ [1, d] ∩Z, the following hold:

nα = ( j − 1
2

) − n3(A)(⌈3 j/d⌉ − 1
2

),

nα+1 = ( j − 1)(d − j − 1) − n3(A)(⌈3 j/d⌉ − 1)(3 − ⌈3 j/d⌉),

nα+2 = (d − j − 1
2

) − n3(A)(3 − ⌈3 j/d⌉
2

) − δ j,d ,

where ⌈y⌉ ∶= min{k ∈ Z ∣ k ≥ y}, and δ j,d = 1 if j = d and 0 otherwise.
In particular, the spectrum Sp(A) is determined by the number d of lines in A and

the number n3(A) of triple points.
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3 The Proof of Theorem 1.1

Let us consider the cohomology groups H j(F ,Q) one by one and discuss the corre-
sponding MHS and monodromy action. _e group H0(F ,C) is clearly one dimen-
sional, of type (0, 0), and themonodromy action is trivial, i.e.,H0(F ,C) = H0(F ,C)1.

_e next group H1(F ,Q) is already more interesting. It has a direct sum decom-
position

H1(F ,Q) = H1(F ,Q)1 ⊕H1(F ,Q)≠1
in the category ofMHS. _e ûxed part under the monodromy H1(F ,Q)1 is isomor-
phic to the cohomology group of the projective complement, namely H1(M ,Q), and
hence it has dimension d − 1 and is a pureHodge–Tate structure of type (1, 1).

_e other summand H1(F ,Q)≠1 is always a pure Hodge structure of weight 1; see
[3,9] for two distinct proofs. Moreover, in the casewhen only double and triple points
occur in A, the second summand corresponds to cubic roots of unity and it can be
non zero only when d is divisible by 3; see, for instance, Remark 3.2. By combining
Papadima–Suciu results in [15] with (the proof) of [6, _eorem 1] (see also [3, _e-
orem 2] for a more general result and Remark 3.8 for additional information), one
gets

h1,0(H1(F))γ′ = h0,1(H1(F))γ = β3(A),
h1,0(H1(F))γ = h0,1(H1(F))γ′ = 0,

(3.1)

where β = 1/3, γ = exp(−2πiβ), β′ = 2/3, γ′ = exp(−2πiβ′) = γ. Here and in the se-
quelwe use the notation hp,q(H j(F))λ to denote themultiplicity of the 1-dimensional
µd-representation rλ sending exp(2πi/d) to λ ∈ µd ⊂ C∗ = Aut(C) in the µd-module
Hp,q(H j(F ,C)) deûned in (2.1). Note that one has

dim Grp
FH

j(F ,C)λ = ∑
q≥ j−p

hp,q(H j(F)) λ ,

by the general properties ofMHS, F being smooth.
Determination of the equivariant Poincaré–Deligne polynomial PDµd (F) of F

is clearly equivalent to determination of all the equivariant mixed Hodge numbers
hp,q(H j(F))λ . Until now, we have done this for j = 0 and j = 1.

It remains to treat the case j = 2,which is themost diõcult. Again,we have a direct
sum decomposition

H2(F ,Q) = H2(F ,Q)1 ⊕H2(F ,Q)≠1

in the category ofMHS. _e ûxed part under themonodromy H2(F ,Q)1 is isomor-
phic to the cohomology group of the projective complement, namely H2(M ,Q) and
hence has dimension b2(M) and pure Hodge–Tate type (2, 2). Since the Euler char-
acteristic χ(M) = b0(M)−b1(M)+b2(M) can be computed from the combinatorics,
it follows that

b2(M) = (d − 1
2

) − n3(A).
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We can also write H2(F ,Q)≠1 as a direct sum of two MHS, namely H2(F ,Q)≠1 =
H ⊕ H′, where H corresponds to the eigenvalues of h2 that are cubic roots of unity
diòerent from 1, and H′ corresponds to all the other eigenvalues.

Proposition 4.1 in [5] implies that H′ is a pure Hodge structure of weight 2, i.e.,
hp,q(H2(F))λ = 0 for p + q ≠ 2 and λ not a cubic root of unity. On the other
hand, [7,_eorem 1.3] implies that the only weights possible for H are 2 and 3, hence
hp,q(H2(F))λ = 0 for p + q ∉ {2, 3} and λ a cubic root of unity.

Nowwe explicitlydetermine the equivariantmixedHodgenumbers hp,q(H2(F))λ
for λ ≠ 1, the case λ = 1 already being clear by the above discussion. _e above dis-
cussion implies also the following result.

Proposition 3.1 Let A be an arrangement of d lines in P2 such that A has only dou-
ble and triple points. Let n3(A) denote the number of triple points in A. Assume that
λ = exp(−2πα), with 0 < α = j/d < 1, is not a cubic root of unity. _en one has
h2,0(H2(F))λ = nα , h1,1(H2(F))λ = nα+1 and h0,2(H2(F))λ = nα+2, where the inte-
gers nα , nα+1 , nα+2 are given by the formulas in _eorem 2.1.

Remark 3.2 Let A be any essential arrangement of d lines in P2; i.e., A is not a
pencil of lines through a point. _en the formulas given in Proposition 3.1 hold for
any λ ∈ µd such that there is a line L ∈ A with λk ≠ 1 whenever there is a point of
multiplicity k in A situated on L. Indeed, this last condition is known to imply that
H1(F)λ = 0; see [13]. In such a case, the integers nα are not given by the formulas in
_eorem 2.1, but they are described in [2,_eorem 3].

Now we consider the case of the cubic roots of unity γ = exp(−2πiβ) and γ′ =
exp(−2πiβ′) introduced above. _ey can be eigenvalues of h2 onlywhen d is divisible
by 3.

Proposition 3.3 LetA be an arrangement of d lines inP2 such thatA has only double
and triple points. Let n3(A) denote the number of triple points in A and suppose that
d is divisible by 3. _en one has the following:
(i) h2,0(H2(F))γ = h0,2(H2(F))γ′ = nβ′+2;
(ii) h1,1(H2(F))γ = h1,1(H2(F))γ′ = nβ′+2 + nβ′+1 − nβ + β3(A);
(iii) h0,2(H2(F))γ = h2,0(H2(F))γ′ = nβ′+2 + nβ′+1 + nβ′ − nβ − nβ+1 + β3(A);
(iv) h2,1(H2(F))γ = h1,2(H2(F))γ′ = nβ − nβ′+2;
(v) h1,2(H2(F))γ = h2,1(H2(F))γ′ = nβ+1 + nβ − nβ′+1 − nβ′+2 − β3(A).
Here, β = 1/3, β′ = 2/3 and the various integers nη are given by the formulas in _eo-
rem 2.1.

Proof In the case α = β, the deûnition of the spectrum and the above discussion on
themixedHodge properties of the cohomology group of theMilnor ûber F yield the
following relations:
(a) nβ = h2,0(H2(F))γ + h2,1(H2(F))γ ;
(b) nβ+1 = h1,1(H2(F))γ + h1,2(H2(F))γ (use (3.1));
(c) nβ+2 = h0,2(H2(F))γ − h0,1(H1(F))γ = h0,2(H2(F))γ − β3(A) (use (3.1) again).
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Similarly, for α = β′, we get the following.
(a) nβ′ = h2,0(H2(F))γ′ + h2,1(H2(F))γ′ ;
(b) nβ′+1 = h1,1(H2(F))γ′ + h1,2(H2(F))γ′ − β3(A) (use (3.1));
(c) nβ′+2 = h0,2(H2(F))γ′ (use (3.1) again).
_e proof is completed by using the obvious equality

hp,q(H2(F))λ = hq ,p(H2(F))λ ,
obtained by taking the complex conjugation.

Remark 3.4 Let A be any essential arrangement of d lines in P2; i.e., A is not a
pencil of lines through a point. _en the formulas given in Proposition 3.3 where we
take β3(A) = 0 clearly hold for any λ ∈ µd such that H1(F)λ = 0, with the integers nα
given by [2,_eorem 3].

Moreover, it is clear thatPropositions 3.1 and 3.3 imply_eorem1.1. _ey also yield
the following corollary.

Corollary 3.5 Let A be an arrangement of d lines in P2 such that A has only double
and triple points. _en the dimensions dimGrW2 H2(F ,Q) and dimGrW3 H2(F ,Q) of
the graded quotients with respect to the weight ûltrationW depend both on the Papadi-
ma–Suciu invariant β3(A).

Example 3.6 LetA be the Ceva (or Fermat) arrangement of d = 9 lines in P2 given
by the equation

Q(x , y, z) = (x3 − y3)(x3 − z3)(y3 − z3).
_en the Papadima–Suciu invariant β3(A) is equal to 2; there are n3(A) = 12 triple
points, and a direct computation gives the following formula for the spectrum

Sp(A) = t1/3 + 3t4/9 + 6t5/9 + 10t2/3 + 3t7/9 + 9t8/9 + 16t + 6t11/9 + 10t4/3

− 2t5/3 + 6t16/9 − 8t2 + 9t19/9 + 3t20/9 − 2t7/3 + 6t22/9 + 3t23/9 + t8/3 − t3 .
Proposition 3.3 implies

h2,1(H2(F))γ = h1,2(H2(F))γ′ = n1/3 − n8/3 = 1 − 1 = 0
and

h1,2(H2(F))γ = h2,1(H2(F))γ′ = n4/3 + n1/3 − n5/3 − n8/3 − β3(A)
= 10 + 1 + 2 − 1 − 2 = 10.

_ese values correct amisprint in [7, p. 244] and conûrm the computations done by
P. Bailet in [1]. _is example also shows that the integers nη may be strictly negative.

Remark 3.7 Let A be an arrangement of d lines in P2 such that A has only double
and triple points. _en, in view of [7, _eorem 1.1], the results in Propositions 3.1
and 3.3 can be used to describe the µd-action on the cohomology of the associated
surface

XQ ∶ Q(x , y, z) − td = 0
in P3, which is a singular compactiûcation of theMilnor ûber F.

https://doi.org/10.4153/CMB-2016-003-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-003-1


Poincaré–Deligne Polynomial of Triple Point Line Arrangements 285

Remark 3.8 Let A be an arrangement of d lines in P2 such that A has only double
and triple points and d = 3m for some integer m. Let T ⊂ P2 be the set of triple points
in A. If S = C[x , y, z] denotes the graded ring of polynomials in x , y, z, consider the
evaluation map ρ∶ S2m−3 → CT obtained by picking up a representative st in C3 for
each point t ∈ T and sending a homogeneous polynomial h ∈ S2m−3 to the family
(h(st))t∈T .

_en [3, _eorem 2] and the discussion following it imply the key formula (3.1).
_is can be reformulated as β3(A) = dim(Coker ρ), and the last integer is by def-
inition the superabundance or the defect S2m−3(T) of the ûnite set of points T with
respect to the polynomials in S2m−3. Since by the work of Papadima and Suciu we
know that β3(A) ∈ {0, 1, 2}, this gives a very strong restriction on the position of the
triple points in such a line arrangement. For other relations to algebraic geometry of
a similar �avor, we refer the reader to [11, 12, 14].

4 The Proof of Proposition 1.2

We follow the notation from the previous section; in particular, M denotes the com-
plement ofC inP2 given byQ ≠ 0. To proveProposition 1.2,we have to checkwhether
for each character rλ of µd , its coeõcient in PDµd (F;u, v , t) (which is a polyno-
mial cλ(u, v , t)) can be recovered from the polynomial cλ(u, v ,−1). In other words,
the monomials in u, v coming from the various cohomology groups H j(F) should
not undergo any simpliûcation, and their degree should tell from which cohomology
group they come.
Consider ûrst the trivial character r1. _en H0(F) contributes to the coeõcient

c1(u, v , t) by 1 and H1(F) contributes by a multiple of the monomial uv t, since
H1(F)1 = H1(M) is still of pure type (1, 1) in this more general setting. To see this,
one can use the Gysin sequence

0 = H1(P2 ∖ Σ)Ð→ H1(M)Ð→ H0(C ∖ Σ)(−1)Ð→ ⋅ ⋅ ⋅
with Σ denoting the set of singular points of the curveC. _e groupH2(F)1 = H2(M)
has weights at least 2, since M is smooth. On the other hand, the elements of weight
2 are those in the image of themorphism

i∗∶H2(P2)Ð→ H2(M)
induced by the inclusion i∶M → P2, since P2 is a compactiûcation of M. But this
morphism is trivial, since H2(P2 ,Q) is spanned by the ûrst Chern class of the line
bundle O(d) and the restriction O(d)∣M is trivial. Indeed, it admits Q as a section
without zeroes. It follows that all the classes in H2(M) have in fact weights 3 and 4,
and hence we can recover c1(u, v , t) from c1(u, v ,−1).

Now consider a nontrivial character rλ , i.e., λ ≠ 1. _en H0(F) contributes to
the coeõcient cλ(u, v , t) by 0 and H1(F) contributes by a linear form in ut, v t, since
H1(F)≠1 is still of pure of weight 1 in this more general setting; see [3, _eorem 1.5]
or [9,_eorem 4.1]. _e contribution of H2(F) to cλ(u, v , t) is by monomials of the
form uavb t2 with a + b ≥ 2, since F is a smooth variety. _is implies again that we
can recover cλ(u, v , t) from cλ(u, v ,−1), which ends the proof of Proposition 1.2.
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Remark 4.1 Note that the information contained in the polynomial Sp(A) is equiv-
alent to the information contained in the specialization HDµd (F;u, 1); see [8]. How-
ever, even if Sp(A) is known to be combinatorially determined by [2], it is an open
question if the same holds for the Hodge–Deligne polynomial HDµd (F;u, v) of the
Milnorûberof ahyperplane arrangement. Moreover, the specializationHDµd (F;u, 1)
does not determine the Hodge-Deligne polynomial HDµd (F;u, v), even in the case
of a line arrangement A having only double and triple points, since Sp(A) does not
determine the Papadima–Suciu invariant β3(A) (which cancels outwhenwe set v = 1
inHDµd (F;u, v)). For an explicit example,we refer the reader to [4, Examples 5.4 and
5.5], where the realizations of the conûgurations (93)1 and (93)2 are shown to have
distinct b1(F)’s. _ey have the same spectra by_eorem 2.1, having the same number
of lines and triple points.
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