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Abstract

The main result of this paper offers a necessary and sufficient condition for the existence of
an additive selection of a weakly compact convex set-valued map defined on an amenable
semigroup. As an application, we obtain characterisations of the solutions of several
functional inequalities, including that of quasi-additive functions.

1. Introduction

The Cauchy functional equation has numerous applications such as to information
theory and information measures, the problem of aggregated allocations, geometric
objects, Hamel bases, harmonic analysis and stochastic processes. For the last-
mentioned see, for example, [17, 18].

The stability properties of the Cauchy functional equation have attracted the at-
tention of many mathematicians. A cornerstone result is the so-called Hyers-Ulam
stability theorem obtained by Hyers [10]. An account of the progress and develop-
ments in this field can be found in a recent survey papers by Forti [4], Ger [7], Hyers
and Rassias [12] and Hyers, Isac and Rassias [11].

The motivation for this paper has its origins in three sources. In 1988, Tabor [20,21]
introduced the notion of quasi-additive functions and showed, that from the point
of view of regularity, they behave very similarly to additive functions. In 1992,
Ger [6]—using invariant mean techniques, or selection theorems—obtained stability
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results which yielded a deeper explanation of the regularity-irregularity properties
of quasi-additive functions. Recently, Pales [16] has obtained a characterisation of
real-valued quasi-additive functions by showing that they can be factorised as the
composition of an odd strictly monotonic globally Lipschitz function and an additive
function. The aim of this paper is to combine the methods of Ger and Pales to obtain
analogous statements in the vector-valued setting.

In the first part, we show that left (right) invariant means (defined on the space of
real-valued bounded functions over a semigroup) can always be extended to Hausdorff
locally convex space-valued functions whose range has weakly compact convex clo-
sure. Thus, we generalise the results of Szekelyhidi [19] and Gajda [5] who obtained
analogous statements for the semi-reflexive locally convex space-valued setting. As
an application, we derive a necessary and sufficient condition for the existence of an
additive selection of a weakly compact convex set-valued map. (In the real-valued
case, such results have recently been obtained by Pales [16].) The proof of this se-
lection theorem is an adaptation of the methods of Ger [6]. This result has direct
consequences in the stability theory of the Cauchy functional equation.

In the second part of this paper, we consider functional inequalities that are related
to the quasi-additivity property of vector-valued functions. Our main results show
that such functions can always be written as the compositions of an additive function
and of a globally Lipschitz function. As an application, we also offer a complete
characterisation of the quasi-additivity property. The results so derived generalise
those of Pales [16].

2. Means for locally convex space-valued functions

Let 5 be a nonempty set and denote by 3B(S, X) the space of bounded X-valued
functions defined on S, where X is an arbitrary topological vector space over the field
of real numbers.

DEFINITION 1. A mapping M : BS{S, R) -+ K is called a mean on 3S(S, R) if it
satisfies the following properties:
(Ml) M is linear.
(M2) M has the mean value property, that is, for all / e 38(S, R),

inf f (s) < M(f)< sup f(s).
*eS seS

We note that, (M2) can be replaced by the following two conditions:

(M3) M is nonnegative, that is, M{f) > 0 if / > 0.
(M4) M is normalised, that is, Af (1) = 1.
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[3] Stability of the Cauchy functional equation 325

If/ = (/,, . . . , / „ ) : S ->• DS." is a bounded vector-valued function then a real-
valued mean can naturally be extended to such functions by

M</) :=(M</,) M (/„)).

It is obvious that M : BS(S, W) -*• K" is still linear and the mean value property (M2)
easily yields that

(M5) for a l l / € &(S, R"), M(f) e co/(5).

This latter property will be called the mean value property in the vector-valued setting.
That is, we have the following definition.

DEFINITION 2. Let X be a topological vector space. An X -valued map M defined
on a subspace of B8{S, X) is called a mean if it is linear and satisfies (M5) for all
functions / from the domain of M.

Our aim now is to extend a given real-valued mean M to general vector space-
valued functions. Such an extension was constructed by Szekelyhidi [19] and by
Gajda [5] when the target space is a semi-reflexive locally convex space. The idea in
[19] and [5] is to consider the mapping x* \-+ M{x* o f),x* e X*, and observe that
it is a continuous linear functional on X*\ therefore, by semi-reflexivity, there exists
an element m e X such that x*(m) = Mix* of),x* e X*. This element m is then
called the mean of/ and is denoted by M(f).

Another approach is due to Badora [1] who extends M to normed spaces with the
Hahn-Banach extension property. Ger [6] considered boundedly complete Banach
lattices with a strong unit element and showed that a mean M on 3${S, K) admits a
continuous linear extension on the space of bounded lattice-valued functions. In these
cases however the extension may not have the mean value property and satisfies only
weaker inclusions than (M5).

In what follows, we generalise the approaches of Szekelyhidi and Gajda. Assume
that X is a Hausdorff locally convex space. For a bounded function / : 5 -» X, the
mean M(f) of / is defined by the following formula:

x*(M(f)) = M(x*of) (x*eX*). (2.1)

The uniqueness of M(f) follows from the fact that X* separates the points of X. The
existence of M (f) requires conditions on the range of the function / (see Theorem 2).

THEOREM 1. Assume that X is a Hausdorff locally convex space. Let M be a mean
on 38{S, OS). Denote by BSM{S, X) the set of all bounded functions f : S -*• X
such that M(f) exists. Then SSM(S, X) is a linear subspace ofB8(S, X) and M :
SSM{S, X) —> X is a linear map satisfying

M(f)ecof(S) (f €»„(§, X)).[ (2.2)

https://doi.org/10.1017/S1446181100008051 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008051


326 Roman Badora, Roman Ger and Zsolt Pales [4]

PROOF. Let/, g e 3&iS, X) such that M(f) and M(g) exist. Then, for all x* € X*,

x*(M(f) + M(g)) = x*(M(f)) +x*(M(g)) = M{x* of) + M(x* o g)

= Mix* of + x* o g) = M{x* o if + g)).

Hence by uniqueness, M(f +g) exists and is equal to M(f) + M(g). Thus^M(5, X)
is closed under addition and M is additive on this group. A statement concerning
homogeneity can be proved analogously.

Contrary to (2.2), assume that M(f) does not belong to co/(S). Then the strict
version of the Hahn-Banach separation theorem yields the existence of a linear func-
tional x* e X* such that supxe6bf(S)x*(x) < x*(M(f)). Therefore there exists a
positive e satisfying

x*(x) + e<x*(M(f)) (;teco/(S)).

Hence

or, in other words, x* of + E < x*(M(f)). Applying M to the functions on both
sides of this inequality, we obtain

M(x* of) + e< x*iMif)) = Mix* of),

which is an obvious contradiction.

The next result offers a sufficient condition for the existence of the vector-valued
mean.

THEOREM 2. Let M be a mean on 3§iS, R) and let f : S -> X be a function such
that co/ (5) is weakly compact in X. Then there exists a unique element Mif) e
co/ (5) such that (2.1) holds.

PROOF. We note first, that for convex sets in locally convex spaces, the notions of
strong and weak closedness coincide, hence co/ (5) is always weakly closed.

Let <t> = {x*,.... x*} be a finite subset of X* and let M* be the set of vectors
m e co/(5) such that ** (m) = Mix* of), i € { l , . . . , / i } . Clearly, M* is a
weakly closed subset of co/ (5), and hence it is weakly compact. If all the sets M®
(c& c X*, finite) are nonempty, then this family of sets has the finite intersection
property. Hence the intersection of all such sets is also nonempty and its (unique)
element clearly satisfies (2.1). Thus it suffices to show that M$ is nonempty for all
finite subsets O c T .

Let <t> = {x*, ...,x*]cX* and construct a linear map L : X ->• K" by

= ix*ix),...,x*nix)) ixeX).
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We are going to show that the vector (pu ..., pn) = (M (x* of),..., M(x* of))
belongs to the set K = L(co/ (S)). This will immediately yield that M* is nonvoid.

On the contrary, assume that ( p i , . . . , pn) does not belong to K. Since the set
co/ (5) is weakly compact and convex, K yields a compact convex subset of OS".
Thus, by the Hahn-Banach separation theorem, there exists a vector c = ( c j , . . . , cn)
which, considered as a linear functional on W, strictly separates (p i , . . . , pn) from K,
that is, there exists a positive e such that

for all x € co/ (5). Hence, for s e S,

1=1

Applying M to both sides of this inequality, and using the properties (Ml), (M3) and
(M4), we get

£ = ^ CiM(x* of)

which is a contradiction. Thus we have proved that (pu ..., pn) e L(co/ (5)).
Therefore there exists a point m € co/(S) such that M(x* of) = p, = x*(m),

i e {I,... ,n). Hence m € M*, proving that M* is nonempty.

In what follows, the class of X -valued functions on 5 such that the closed convex
hull of the range is weakly compact will play a significant role. We shall denote this
class of functions by ^V(5, X). It is not difficult to see that this class of functions
forms a vector space, moreover it is a subspace of all bounded X -valued functions
on 5. In many cases (for example, when X with the weak topology is a quasi-complete
locally convex space), the weak relative compactness of/ (5) yields the weak relative
compactness of c o / (5) (see Holmes [9, Theorem 1 IB, p. 61]).

If X is a semi-reflexive locally convex space, then bounded sets are always weakly
relatively compact (see Yosida [22, Chapter V, Theorem 3.1, p. 140]). Hence if/ (5) is
bounded then co/ (5) is weakly compact. Therefore in this case If*, (5, X) is identical
to the space of bounded functions, that is, to 8&{S, X).

COROLLARY 1. Let X be a semi-reflexive locally convex space, M be a mean on
3&{S, K) and let f : 5 —• X be a bounded function. Then there exists a unique
element M(f) € co/ (5) such that (2.1) holds.

(See also Szekelyhidi [19] and Gajda [5].)
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Now we turn our attention to the case where S admits a semigroup structure, that is,
we assume that (S, +) is a (not necessarily commutative) semigroup. The elements
of S induce the notion of left and right translations for functions / : 5 —> X in the
following way. If / e 5, then denote

,f(s):=f(t + s), f,(s):=f(s + t) (s € 5).

The functions,/ and / , so defined are called left and right translates off.

DEFINITION 3. A semigroup 5 is called left (respectively right) amenable if there
exists a mean M on £8(S, R) which is left (respectively right) invariant with respect
to the left (respectively right) translations, that is, if it satisfies M(,f) — M(f)
(respectively M(ft) = M(f)) for a l l / € BS(S, R) and t e 5.

If both left and right invariant means exist, then 5 is called amenable.

It is well-known that any commutative semigroup is amenable (see for example
Hewitt-Ross [8, Chapter 4, Theorem 17.5] and Day [3]).

Exactly as Theorem 1 was proved, one can obtain the following result.

THEOREM 3. Let (S, +) be a semigroup and assume that M is a left {respectively
right) invariant mean on 38(S, R). In addition, let X be a Hausdorff locally convex
space. Then SSM(S, X) is closed under left (respectively right) translations and, for
allf € &M(S, X) and t € 5, M(,f) = M(f) (respectively M(f,) = M(f)).

In other words, if M is a left (right) invariant mean on 3S(S, R), then its extension
is also a left (right) invariant mean on 38M(S, X).

The main result of this section is contained in the following theorem.

THEOREM 4. Let (S, +) be a left (respectively right) amenable semigroup and
let X be a Hausdorff locally convex linear space. Then the space ^V(5, X) of all
X-valued functions whose range has a weakly compact closed convex hull admits a
left (respectively right) invariant mean.

PROOF. Let S be left amenable and M be a left invariant mean on B(S, R). Then,
by Theorem 2, it can be extended to be a mean on 1f̂  (S, X). Due to Theorem 3, this
extension will also be left invariant.

The above theorem is a direct generalisation of the following result of Szeke-
lyhidi[19]andGajda[5].

COROLLARY 2. Let (S, +) be a left (respectively right) amenable semigroup and
let X be a semi-reflexive locally convex linear space. Then the space 38(S, X) of all
bounded X-valued functions admits a left (respectively right) invariant mean.

https://doi.org/10.1017/S1446181100008051 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008051


[7] Stability of the Cauchy functional equation 329

3. Additive selections and the stability of the Cauchy functional equation

The main result of this section offers necessary and sufficient conditions for the
existence of additive selections from a set-valued mapping with nonempty weakly
compact convex values. The proof uses the vector-valued invariant mean from the
previous section and the ideas of the proof of Theorem 2 in Ger [6]. The result
obtained answers the problem of Pales [16] affirmatively.

THEOREM 5. Let (5, +) be a left amenable semigroup and let X be a Hausdorff
locally convex linear space. Let F : S —• 2X be a set-valued map such that, for all
s e S, F(s) is nonempty, convex and weakly compact. Then F admits an additive
selection A : S -+ X if and only if there exists a function f : 5 —>• X such that

f(s + t)-f(t)eF(s) (s,teS). (3.1)

PROOF. If A is an additive selection of F, then the function / = A clearly satis-
fies (3.1).

Assume that (3.1) is valid with a certain function / : 5 ->• X. Due to Theorem 4,
we have the existence of a left invariant mean M on ^V(S, R). For a fixed element
s e 5 define gs(t) = f (s+t)-f (t),t e S. Then, by (3.1), the range of gs is contained
in F(s), which is convex and weakly compact. Hence gs belongs to ^V(5, X) and
we may apply M to the function gs. Define the mapping A : S -*• X by

(seS).

Due to (3.1) and the properties of F,

A(s) € cogs(S) C coFCs) = F(s) (s 6 5).

That is, A is a selection of F. To obtain the additivity of A, let st, s2 € S be arbitrary.
Then, for t e S,

t) -f(s2 + t)) + (f(s2 + t) -

Hence using the left invariance of M, we get

A(Sl + s2) = M(g°<+*) = ML>gSi + gS2)

= M(S2g") + M(g*) = M{g") + M(g*) = A(st) + A(s2).

The proof is completed.
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REMARK 1. In the case where the image space is K and F is a compact interval-
valued set-valued map from a commutative semigroup 5, then Theorem 5 reduces to
a recent result of Pales [16] which was proved by a completely different technique
based on the sandwich theorems obtained by Nikodem, Pales and Wasowicz [15].

COROLLARY 3. Let (S, + ) be a left amenable semigroup and let X be a reflexive
Banach space. In addition, let p : 5 —• [0, oo[ andg : S —> X be arbitrary functions.
Then there exists an additive function A.S^-X such that

\\A(s) - g(s)\\ < p(s) (seS) (3.2)

if and only if there exists a function f : S -*• X such that

| |/ (5 + t) - f (t) - g(s)\\ < p(s) (s,teS). (3.3)

PROOF. Define a set-valued map F : S —y 2X by

F(s) = B(g(s), p(s)) = {xeX:\\x- g(s)\\ < p(s)} (s e S).

Then, due to the reflexivity of X, F has weakly compact nonempty convex values.
Observe that (3.2) means that A is a selection of F, and (3.3) is equivalent to (3.1).
Thus the statement immediately follows from Theorem 5.

The next result can be interpreted as a stability result for the Cauchy functional
equation. It is due to Ger [6, Theorem 2].

COROLLARY 4. Let (S, + ) be a left amenable semigroup, X be a reflexive Banach
space and let p : S —• [0, oo) be an arbitrary function. Assume that a function
f : S -*• X satisfies

t)-f(t)-f(s)\\<p(s) (s,t€S). (3.4)

Then there exists an additive function A : S —> X such that

p ( j ) (seS). (3.5)

PROOF. Taking g = f, we can see that condition (3.3) of the previous corollary is
fulfilled. Hence an additive function A such that (3.2) holds exists.

REMARK 2. In fact, the result of Ger [6, Theorem 2] contains analogous statements
also for the case when X has the Hahn-Banach extension property, or when X is
a boundedly complete Banach lattice with a strong unit element. Starting from
Corollary 4 above, other types of stability results can also be obtained, for example
when the right-hand side of (3.4) is replaced by expressions of the form p(s) + p(t) —
p(s + 0 and p(s +1), respectively. The details and the corresponding statements can
be found in [6, Theorems 3 and 4].
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4. Quasi-additive functions

We recall the notion of quasi-additive functions introduced by Tabor [20, 21].
These functions turned out to behave very similarly to additive functions (see also
Baran [2]). A better understanding of the either very regular or very irregular behaviour
was obtained by Ger [6]. Recently, Pales [16] proved for real-valued quasi-additive
functions that they can be factorised as the composition of a very regular function and
an additive function. The main goal of this section is to obtain analogous results for
the vector-valued case as well.

DEFINITION 4. Let (5, +) be a semigroup and X be a linear normed space. A
function / : S -> X is said to be quasi-additive if, for some e € [0, 1),

Wfis + r ) - / ( 5 ) - / ( O i l <£min(| |/(5 + 0ll. l l / (* )+ / (0 l l ) (s,teS).

If e is given, then the functions satisfying this inequality will be called e-quasiadditive.

Clearly, the above inequality can be split into the following two inequalities:

+ 0ll (MeS), (4.1)
and

(s,teS). (4.2)

In what follows, we first consider the functional inequality (4.3) below that is
strictly related to (4.1). We shall obtain a complete characterisation for the solution
of this inequality.

THEOREM 6. Let (G, +) be an amenable group, X be a reflexive Banach space and
let f, g : G -*• X be arbitrary functions. If, for some e € [0, 1), / and g satisfy the
functional inequality

l l / (* + 0 - / ( 0 - S ( * ) l l < e | l s ( * ) l l (s,teG), (4.3)

then there exist an additive function A : G -> X and a function <p : A(G) —»• X such
that

f (s) = <p(A(s)) (seG), (4.4)

\\A(s) - g(s)\\ < y\\g(s)\\ (seG) (4.5)

and

\\<p(u) - <p(v) - (u - v)\\ < 8\\u - v\\ (u,veA(G)) (4.6)

hold with y = e and 8 = 2e/(l - e).
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Conversely, if A : G —> X is an additive function, <p : A(G) —> X satisfies (4.6)
with S > 0, g satisfies (4.5) with y > Oand f is given by (4.4), then the functions f
and g satisfy (4.3) with e = yS + y + S.

PROOF. Assume that / and g satisfy (4.3). Then, by Corollary 3, we have the
existence of an additive function A : G ->• X such that (4.5) holds with y = e. Using
the inequality | ||u|| - ||u|| | < \\u - v\\, it follows from (4.3) and (4.5) that

(1 - £)\\g(s)\\ < \\A(s)\\ (seG) (4.7)

and, respectively,

ll (s, t € G). (4.8)

From (4.7) and (4.8), we obtain

\\f(s + t) -/(OH < j-^||A(*)|| (s, t e G).

Since G is a group, after some obvious substitutions, this inequality implies

11/(s) - / ( O i l < j^\\A(s) - A(t)\\ (s,teG).

Hence if A (s) = A (0 for some s, t € G, then f (s) = f (t). Therefore the equation

<p(A(s)) = / (s) ( s e S )

correctly defines a function <p : A{G) -> X. Thus we have (4.4). To see that (4.6) is
also valid, we need the following estimate which follows from (4.3) and (4.5):

s + t) -f (0 - A {s) || < | | / (s + 0 -fit) - g(s)\\ + \\g(s) - A(s)\\

< £\\g(s)\\ + e\\g(s)\\ <-^-\\A(s)\\.

Making obvious substitutions again and using (4.4), we get

\\(p(A(s)) - <p(A(t)) - (A(s) - A (0)|| < -^-\\A(s) - A (Oil (s, t e G).
1 — £

Thus, we have proved (4.6).
To show the reversed statement, assume that (4.4), (4.5) and (4.6) are valid with

y, 8 > 0. Then, using (4.4) and substituting u = A(s + t), v = A(t) into (4.6), we
obtain | | / (s + 0 - / ( 0 - A (5) || < &\\A(s)\\,s,t e G. On the other hand, (4.5) yields

(seG).
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Applying the above inequalities, we get

s + 0 - / ( » ) - g(s)\\ < ||/(s + 0 - / ( 0 - A(s)\\ + \\A(s) - g(s)\\
< S\\A(s)\\ + y\\g(s)\\ < (y8 + y + 8)\\g(s)\\.

Thus (4.3) is valid with e = yS + y + 8.

REMARK 3. Equation (4.4) states that if / is a solution of (4.3), then it is the
composition of an additive function and a function <p which is, by (4.6), globally
Lipschitz (with Lipschitz constant L = l+8 = (l + s)/(l — £)).

Inequality (4.5) yields, for g, the following more explicit condition (provided that

y < 1):

IIA(s) - g(s)\\ < - L - | | A ( 5 ) | | (s € G),
1 -y

that is, if g is a solution of (4.3), then it must be a selection of the set-valued function
F(s) = B(A(s), (y/{\ - y))\\A(s)\\). Conversely, the inequality

1 +y

implies (4.5). In the case where X is a Hilbert space (and y < 1) (4.5) can equivalently
be written as

g(s)-
A(s)

1 - K 2 (seG).

The inequality (4.6) states that the map <p — I, where / stands for the identity map-
ping, is Lipschitzian. Therefore, if <p : X -»• X is Frechet differentiable everywhere,
then (4.6) holds for all u, v e X if and only if \\q>'(u) - I\\ < 8, u e X, that is, the
above inequality is sufficient for (4.6) to hold.

If G is the additive group of a real linear space, then the closure of A(G) is
a closed linear space of X. The function <p, being globally Lipschitz, admits a
unique continuous extension to this closed subspace of X. Clearly this extension also
satisfies (4.6).

Now we specialise Theorem 6 to the case when / = g.

COROLLARY 5. Let (G, +) be an amenable group, X be a reflexive Banach space
and let f : G -> X be an arbitrary Junction. If, for some e € [0, 1), the function f
satisfies the inequality

\\f (s + t) - f (t) - f (s)\\ < e\\f (s)\\ (s,t€G), (4.9)
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then there exist an additive function A : G ->• X and a function q> : A(G) ->• X with
<p(0) = 0 such thatf = <p o A and (4.6) holds with 8 = 2e/(l - s).

Conversely, if A : G -*• X is an additive function, cp : A(G) -> X satisfies (4.6)
with 8 e [0, 1), <p(0) = 0, then f = <p o A satisfies (4.9) with s = 25/(1 - 5).

PROOF. Assume that/ is a solution of (4.9). Then/ and# = / satisfy (4.3). Due
to Theorem 6, we have an additive function A and a function <p such that/ = <p o A,
and (4.5), (4.6) are valid with j / = £ and 5 = 2e/(l - e). Substituting 5 = 0 into
(4.5), we get that g(s) = f (s) = 0. Hence <p(0) = 0.

Conversely, assume that <p(0) = 0, / = <p o A and (4.6) is satisfied. Then, putting
w = 0 and u = A(s) into (4.6), we get \\f(s) - A(s)\\ < 8\\A(s)\\, s e G. It follows
from this inequality that (1 - 5)||A(*)|| < | | /(s)| | , hence

\\f(s)-A(s)\\<-^—\\f(s)\\ (seG).
l—o

Thus we can see that (4.5) is satisfied with g = f and y = 8/(1 — 8). Applying the
reversed statement of Theorem 6, we get (4.9) with s = y8 + y +8 = 25/(1 -8).
Thus the proof is complete.

The above corollary immediately yields the following result concerning the func-
tional inequality (4.1).

THEOREM 7. Let (G, +) be an amenable group, X be a reflexive Banach space and
let f : G —»• X satisfy, for some e € [0, 1), the functional inequality (4.1). Then there
exist an additive function A : G —*• X and an odd function cp : A(G) —> X such that
f =<poA and (4.6) holds with 8 = 2e/(\ - e).

Conversely, if A : G —*• X is an additive function, <p : A(G) -» X is an odd
function satisfying (4.6) with 8 € [0, 1), and f is of the form <p o A, then f satisfies
(4.1) with s = 25/(1 - 5 ) .

PROOF. Assume that / satisfies (4.1). Letting s = t = 0, we get that/(O) = 0.
Substituting t = — s, we get that / is an odd function. Now put s = x + y, t = —y
into (4.1). Then, using the oddness of/, we obtain that/ satisfies (4.9). Thus the
existence of cp, A such that / = ip o A and (4.6) is valid is a consequence of the
previous corollary. The oddness of <p follows from that of the function / .

To prove the reversed statement, we apply the previous corollary again. Clearly we
can obtain that/ satisfies (4.9). Putting s = x + y, t = — y into (4.9) and using the
oddness of/, we derive (4.1) easily.

In our next result, we consider the functional inequality (4.2). Using Corollary 5,
we obtain a characterisation for the solutions of (4.2).
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THEOREM 8. Let (G, +) be an amenable group, X be a reflexive Banach space and
let f : G —> X satisfy, for some e € [0, 1/2), the functional inequality (4.2), then
there exist an additive function A : G —*• X and an odd function <p : A(G) —>• X such
thatf =<poAand (4.6) holds with 8 = 2e/(l - 2s).

Conversely, if A : G —*• X is an additive function, <p : A(G) -> X is an odd
function satisfying (4.6) with 8 € [0, 1), and f is of the form <p o A, then f satisfies
(4.2) withe = 28/(1 -8).

PROOF. Assume that/ satisfies (4.2). Then we get that

(1 - e)\\f(s) +f(t)\\ < ||/(5 + Oil (s, t € G).

Hence it follows from (4.2) that/ fulfills the following type of inequality (4.1):

\\f (s + t) - f (s) - f (t)\\ <B\\f(s + t)\\ (s.teG),

where I = e/(l — e). Since e e [0, 1/2), we have that I e [0, 1). Therefore
Corollary 5 yields the existence of an additive function A and an odd function (p such
that / has the decomposition / = <p o A and (4.6) holds with

2e 2e
o = 1 - e l - 2 e

In the proof of the sufficiency, we shall give a direct computation without the use
of Corollary 5. Assume that A is an additive and (p is an odd function satisfying (4.6).
Let / be of the form <p o A. Then, substituting u = A(s), v = A(—t) into (4.6) and
using the oddness of <p, we obtain

\\f (s) + f (t) - A(s + t)\\ < 8\\A(s + t)\\ ( s , t e G ) . (4.10)

The following estimate follows directly from this inequality:

(l-8)\\A(s + t)\\<\\f(s)+f(t)l

Setting s + t and 0 in place of s and t, respectively, in (4.10), we also have

||/(5 + 0 - A(s + Oil < S\\A(s + Oil (s, t € G).

Hence we can obtain (4.2) in the following way:

\\f (s + t) - f (s) - f (t)\\ < \\f (s + t) - A(s + t)\\ + \\A(s + t) - f (s) - f (t)\\

<28\\A(s + t)\\<-^-\\f(s)+f(t)\\.
l—o

Thus the proof has been completed.
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REMARK 4. We note that e < 1/2 is not only a technical condition in the above
result. Us > 1/2, then the function/ = c(= constant) satisfies (4.2), but/ is not odd
(except in the trivial case c = 0). On the other hand, it is not clear if 8 = 2e/(l — 2s)
is the best constant in (4.6).

In our final result, we offer a characterisation of quasi-additivity.

COROLLARY 6. Let (G, + ) be an amenable group, X be a reflexive Banach space
and let f : G —*• X be an s-quasi-additive function. Then there exist an additive
function A : G -*• X and an odd function <p : A(G) —*• X such that f = <p o A
and (4.6) holds with 8 = 2e/(l- s).

Conversely, if A : G —> X is an additive function, <p : A(G) —> X is an odd
function satisfying (4.6) with 8 e [0, 1), and f is of the form <p o A, then f is
e-quasi-additive with s = 28/(1 — 8).

PROOF. If/ is e-quasiadditive, then / satisfies (4.1). Hence by Theorem 7, we
have an additive function A and an odd function cp such that / = <p o A, and (4.6) is
valid.

Conversely, if/ is of the form <p o A, and (4.6) holds, then Theorems 7 and 8 yield
that (4.1) and (4.2) are satisfied with e = 28/(1 — 8). Hence/ is e-quasiadditive.

REMARK 5. Due to the decomposition/ = cp o A, the regularity and irregularity
properties of quasi-additive functions, very similar to those observed and proved by
Tabor [20], [21] and Baran [2] for additive functions, can easily be obtained.
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