ON THE CONES ASSOCIATED WITH BIORTHOGONAL
SYSTEMS AND BASES IN BANACH SPACES

C. W. McARTHUR, IVAN SINGER, AND MARK LEVIN

1. Let E be a Banach space (by this we shall mean, for simplicity, a real
Banach space) and (x,, ) ({x.} C E, {f,} C E*) a biorthogonal system, such
that {f,} is total on E (i.e. the relationsx € E,f,(x) = 0,7 = 1,2,...,imply
x = 0). Then it is natural to consider the cone

1) K=Kgm=1{&€cEfilx) 20m=12..)}

which we shall call “‘the cone associated with the biorthogonal system (x,. /,)"".
In particular, if {x,} is a basis of E and {f,} the sequence of coefficient func-
tionals associated with the basis {x,}, this cone is nothing else but

(2) K=K(z";={2aixiEE[an§0(n=1,2,...)},
i=1

and we shall call it ‘““the cone associated with the basis {x,}”’. Recently,
Fullerton (3, Theorems 1, 2, and 3) and Gurevi¢ (6, Theorems 1 and 4,
Lemma 3) have given geometric conditions on the cone K = K, , asso-
ciated with a biorthogonal system (x,, f,), which are necessary and sufficient
in order that {x,} be an unconditional basis of the space E, and Gurarii
(5, p. 1239, Theorem 2) has given a condition on the cone K = K, ., which
is sufficient in order that {x,} be a ‘‘basis of the cone K"’ (i.e. that for every
x € K the series >_ ;=1 f:(x)x; be convergent to x). In § 2 of the present paper
we shall further this study, giving conditions on K which are necessary and
sufficient in order that {x,} be an unconditional basis of the cone K, and a
sufficient condition in order that {x,} be an unconditional basis of K, which
is also ‘‘boundedly complete on K.

Throughout this paper, by ‘“‘cone’’ we shall understand ‘“‘closed convex cone
having the origin as extreme point’’, i.e. a closed set K such that K + K C K,
MK CK(M\=z0), and KN (—K) = {0}. (The assumption above, that {f,}
is total on E, was made in order to ensure that this last condition is satisfied.)
A subset B of a cone K is said to be a ‘“base’ of the cone K if B is closed and
convex and if every x € K ~ {0} has a unique representation of the form
x = Ay, with A > 0, y € B. Fullerton (3, Remark after Theorem 3’) has
observed that the cone K = K|,,, associated with a basis {x,} of a Banach
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space cannot have a base which is compact. (Actually, his argument in (3)
shows that the cone may not have even a weakly compact base.) In § 3 we
shall further this study, characterizing some types of bases {«x,} of a Banach
space E by geometric properties of the bases B of the associated cone
K = K\, or of the bases B!« of the cones K.,.,, associated with the bases
{ex,} of E, wheree, = &1 (n = 1, 2,...). The question of finding geometric
properties of B corresponding to certain properties of {x,} and the converse
question, to find properties of {x,} which correspond to certain geometric
properties of B, may deserve further interest.

2. We recall that a cone K induces a natural partial order relation on E,
namely, x = y if and only if x — ¥y € K. (In particular, x = 0 if and only if
x € K.) Let us also recall that the cone K is said to be (a) generating, if
E = K — K; (b) minihedral, if for every x, y € K there exists 2y = sup(x, y)
(i.e. the element 2y = x, ¥y with the property 2 = %,y = 2z = 2p); (c) normal,

if there exists a constant § > 0 such that

(3) le+ o268  (@yc K|l =yl =1).

Consequently, any cone K which is contained in a normal cone is normal.
It is well known (see, e.g., 8, Chapter 1, § 1.2.2) that K is normal if and only
if the norm on E is ‘‘semi-monotone’’, i.e. there exists a constant L > 0 such
that

(4) 0=x=y= |l = Lyl

The cone K = K|,,, associated with a basis {«,} is normal if and only if it is
regular, i.e. the relations y; = y: =< ... =%, = ... = 2z imply the norm-
convergence of the sequence {y,} (see 8, Chapter 1, § 1.2.2; 6).

THEOREM 1. Let E be a Banach space and let (x,, f,) ({x.} C E, {f,} C E*)
be a biorthogonal system such that {f,} is total and that {x,} is a basis of the asso-
ciated cone K = K, . The following statements are equivalent:

(1°) For every x € K the series 3 i1f:i(x)x; 95 unconditionally convergent

(2.e. {x,} s an unconditional basis of the cone K);
(2°) For every x € K the series Y i-1f:(x)x; s weakly unconditionally
Cauchy;

(3°) K is normal;

(4°) For every x € K, the set P, = KN (x—K) ={y € E|0=y = x}

1s bounded;

(5°) For every x € K, the set P, above is linearly homeomorphic to a finite

cube or a cube of Hilbert.
Moreover, if we have (1°), then K is minihedral.

Proof. The implication (1°) = (2°) is trivial. Assume now that we have (2°).
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Let x, vy € K be such that y = x, 0 < fi(y) = fi(x) (¢ =1,2,...), and let
f € E* be arbitrary. Then since {«,} is a basis of K and by (2°),

lf)| =

3 7i0)f@) | S 3 FO)FE)] S 35 FiIf)] = My < o0

(M a positive constant),
which shows that for every x € K, the set

is weakly bounded, whence also strongly bounded. Thus (2°) = (4°). The
equivalence (3°) < (4°) is well known (see, e.g., 1, p. 1165, Lemma 2).
Assume now that we have (3°). Let x € K and ¢ > 0 be arbitrary. Since {x,}
is a basis of K, there exists a positive integer IV such that

gvfi(x)x,-‘

(5) < e¢/L,

where L is the constant occurring in (4). Nowlet Y ;=1 f,: (x)x,; be an arbitrary
subseries of > i=1f:(x)x;. Choose 7, such that n; = N whenever 7 = 7,. We
have then, for any p, ¢ = 7,

053 fu @ 3 3 il

whence by (4) and (5),

ifi(x)xt

=N

<L < L(e/L) = &

q
H Z fui (x)xml

i=p
which proves (since E is complete) that ;-1 f:(x)x; is unconditionally con-
vergent. Thus (3°) = (1°). Furthermore, the implication (5°) = (4°) is
trivial (since the cubes in (5°) are compact), and the implication (1°) = (5°)
follows, observing that in the proof by Fullerton (3, Theorem 2) of the similar
statement for {x,} an unconditional basis of the whole space E, only expansions
of elements of K are used. (Let us also mention that one can show directly,
with the standard e-net method, that for each x € K the set P, is compact,
and then apply a result of Klee (7, p. 31, Corollary 1.3), to conclude that P,
is homeomorphic to the fundamental cube of Hilbert whenever f,(x) > 0
(n=1,2,...).) Thus (1°)& ... & (5°). Assume, finally, that we have (1°)
and let x,y € K be arbitrary. Then the series > ;-1 [f:(x) + f:(¥)]x; is
unconditionally convergent, whence so is the series > ;1 [sup (fi(x), f:(%))]x;,
and the sum of this latter series is obviously sup(x, y). Thus (1°) = K is
minihedral, which completes the proof of the theorem.

Remark 1. A basis {x,} of the whole space E can have property (1°) without
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being an unconditional basis of E, as shown, for example, by the basis

(6) Xy = D e n=1,2, ... (where e; = {8;;}51),
i=1

of the space E = c,.

Remark 2. The converse of the last assertion of Theorem 1 is not valid, as
shown by the following example: Let E be the closed hyperplane

{x ~fe) e 1] 2 b= 0}
in the space /!, and let
) Xy = €, — €y_1 n=12...).

Then {x,} is a basis of E (see, e.g., 11, p. 364), with the associated sequence of
coefficient functionals

®) A =Xk =5 €B),
whence
9) K={x={£n}EE 12::1&20 (n=1121)}°

The cone K is minihedral and generating. In fact, if > {~1ax; € E, we have

Loed QO @
12:1 X, = 12: a1(6i —_ 6i+1) = o161 + 122 (0[; -_ (1,-_1)81

=1

(where {e,} denotes the unit vector basis of I!), i.e.

ea] + Zz loes — aima] < 0,
P

and conversely. Since | o] — |aim1] | = |ai — aima| G =2,3,...), it follows
that 3 -1 |as|x; converges whenever Y ;-1 ax; converges, and thus for each
x € E there exists the element |x| € E, whence also the elements
x4 = sup(x, 0), x— = sup(—x«, 0), whence K is minihedral and generating.
However, K is not normal, since for the sequences {x,}, {2,} C E defined by

Vo = (1/71)[61 + €3 + . e + 62,,_1] - (1/11)[62 + €4 + . + 627,,]
n=12...),
2y = (1/1‘1«)[61 - e2n]y

we have 0 £ 3, S 2,, ||ll =2, ||z:]| = 2/n (n =1,2,...). (One can also
observe that if K would be normal, then since it is generating, {x,} would be
an unconditional basis of E (6, Theorems 1 and 4, Lemma 3), which is not

the case (11, p. 364).)
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Remark 3. It is essential in Theorem 1 to assume that {x,} is a basis of K,
as shown by the example of the unit vectors x, in the space E = m, for which
we have (3°) and (4°) but not (1°), (2°) or (5°). Let us mention that if {f,}
is total on E and K is ‘‘acute angled” in the sense that

10) e+l =126 >0 (xyc Kl =1z,

then {x,} is a basis of K. (5, Theorem 2); obviously, every acute angled cone
is normal, but the converse is not true, as shown by simple two-dimensional
examples. Furthermore, the natural positive cone of the space E = m, men-
tioned in this remark is also normal but not acute angled. Let us also observe
that for the usual Schauder basis {x,} of the space E = C([0, 1]) the associated
cone K = K|, is contained in the natural positive cone of the space E, which
is obviously normal. Therefore K is normal, whence, by Theorem 1, for every
x € K the series Y ;—1f:(x)x; is unconditionally convergent (although {x,} is
not an unconditional basis of E). However, K is not acute angled. (It is easy
to give two consecutive elements, x; and x;y1, of the Schauder basis {x,} such
that [|wil| = [[opa]| = [lx + xa]] = 1.)

In the case when K is also sequentially weakly complete, we have the
following result.

THEOREM 2. Let E be a Banach space and let (x,, fn) ({x,} C E, {f,} C E*)
be a biorthogonal system such that the associated cone K = K, s normal
and sequentially weakly complete. Then {x,} is an unconditional basis of K,
which is also boundedly complete on K (i.e., the relations a; = 0 (2 = 1,2,...),
sup,|| 2 o1 axi|| < 0 dmply that 3 ;-1 ax, converges).

Proof. Let us first prove that {x,} is boundedly complete on K. Let {a,} be
a sequence of scalars such that a, 2 0 (n =1,2,...), sup, ||Xi=1axi| =
M < oo, and let J be an arbitrary finite set of positive integers. Choose #
such that J C [1, #]. Then

0<> ax; < Z @iy,

ieJ

whence, since K is normal,

D ax;

ieJ

ié }_S_
t Hl

l

Consequently, by a theorem of Gel’ fand (4, p. 242, Proposition 2), the series
> i—1ax; is weakly unconditionally Cauchy, i.e.

; ailf(xs)| = 12:; Iflaxs)| < 0 (f € E*),

whence, since K is sequentially weakly complete, every subseries > ;-1 @n;%s;
converges weakly to an element of K. Therefore, by the Orlicz-Pettis theorem
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(2, p. 318, Theorem 1), the series >_ ;=1 a;x; converges strongly. Thus {x,} is

boundedly complete on K. Now, since (x,,f,) is a biorthogonal system, for
every x € K we have

Oéi;fi(x)xigx n=12...),

whence, since K is normal,

;fi(x)xi < L|lx|| < o0,

and therefore, by the above, the series X~ f:(x)x; converges strongly to an
element y € K. Since {f,} is total on E, we must have y = x, and thus {x,} is
a basis of K, whence, by the normality of K and by Theorem 1, it is also an
unconditional basis of K. This completes the proof.

sup
n

Remark 4. The converse of Theorem 2 is not valid, as shown by the following
example. Let E and {x,} be as in Remark 1. Then {x,} C K is a weak Cauchy
sequence which is not weakly convergent to any element of E, and thus K is
not sequentially weakly complete. However, as observed in Remark 1, {x,} is
an unconditional basis of K and it is also boundedly complete on K since the
relations ¢, =20 (n =1,2,...),

n
Z aixq
i=1

imply that >.7-;a; < © and that the series Y ;—i1a;x; converges to
Si=1 (XCi=;a:)e; € K (where {¢,} is the unit vector basis of E = ¢,).

| |

n
201‘1 < ©
i=1 i

n
Zl @i

i=j

sup! = sup sup

= sup
n  1=5j=n n

3. Let us now turn to a base B of the cone K = K, associated with a
biorthogonal system (x,, f.). The problem of the existence of such a base has
an afirmative answer, namely, we have the following result.

ProposITION 1. Let E be a Banach space and let (x,, f,) ({x,} C E, {f,} C E¥*)
be a biorthogonal system such that {f,} is total. Then the associated cone
K = K., has an unbounded base.

Proof. Define f € E* by
= 1

(1) f(x) = ; 21Hf1”fz(x) (x € E).
It is true that the set
(12) B={ycK|f(y) =1}

is an unbounded base of K. In fact, B is convex and closed and for every
x € K~ {0} we have x = \y, where A = f(x) > 0 and y = (1/f(x))x € B.
This representation is unique since the relations x = A\;y1 = Aoy, A, A2 > 0,
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Y1, ¥2 € B imply by (12) that f(x) = A1 = X, whence also y; = v,; therefore
B is a base of K. Furthermore, we have

Il = 3 g @A) =1 = 12,0,
ie. 2"|fullx, € B (m = 1,2,...) and this sequence is unbounded, since

121 fallal| = 2% [full [l | 2 270 fa(xa)| = 20 (m=1,2,...).
This completes the proof of Proposition 1.

All the results stated in the remainder of the paper for normalized bases
{x,}, i.e., bases satisfying ||x,|| = 1 (» = 1, 2,...), remain valid, obviously,
for ‘““bounded’” bases (12, p. 546, Theorem 1.6), i.e. bases satisfying

0 < inf, [|x,]] = sup, ||xa]] < 0

we state them here only for normalized bases in order to avoid confusion with
boundedness of a base B of K. We recall that a normalized basis {x,} of a
Banach space E is said to be of type I, (11, p. 353) if there exists a constant
n > 0 such that ’

(13) |

n n

Z aXi|| =1 E Xy

i=1 i=1

for any finite sequence a1, ..., a, = 0. As shown in (11, Proposition 1), this
happens if and only if there exists a functional f € E* such that

(14) f(xn) g 1 (n = ]-y 21 .. ')‘

THEOREM 3. A normalized basis {x,} of a Banach space E is of type I if and
only if the associated cone K = K,,, has a bounded base.

Proof. Assume that {x,} is a normalized basis of type /,. Put

(15) B ={ycK|f(y) =1},

where f € E* is any functional satisfying (14). Then B is a base of K and for
every ¥y = Y./ ~1ax; € B we have, taking into account ||x,|| = 1 and «, = 0
n=12...),

Hyll = f;:ai < gaif(xi) =f<;azxi> =1,

i.e. B is bounded. Conversely, assume that the cone K associated with the
normalized basis {x,} has a bounded base B. Then 0 ¢ B (since otherwise
by the convexity of B, for any y € B one would have 3y € B, whence the
elementy € K would have two representationsy = 1y = 2 3y,i.e. B would
not be a base), whence, since B is closed and convex, there exists a functional
f € E* such that

(16) inf /) = > 0.
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Since x, € K ~ {0}, there exists a unique representation x, = \,y,, with
M > 0, ¥, € B, whence x,/\, € B, whence 1/\, = [|x,/\.]| £ supyes|lyl] =
C < w0 and thus\, = 1/C (n = 1, 2,...). Therefore, taking also into account
(16), we obtain

which proves that {x,} is of type I;. This completes the proof of Theorem 3.

We recall that a normalized basis {x,} of a Banach space E is said to be
(a) shrinking, if ||f |[%x, %nt1y Xnt2, - - .]|]] = 0 as w — o0, for all f € E* (where
[%2y %nt1, Xty - . .] denotes the closed linear subspace spanned by {x;};-.);
(b) of type P (11, p. 354) if sup, || X1 x| < .

CoROLLARY 1. If {x,} s a normalized shrinking basis or a normalized basis of
type P of a Banach space E, then every base B of the associated cone K = K,
s unbounded.

In fact, every shrinking basis and every basis of type P is not of type I,
(11, Theorem 1).

In connection with the above results, the following proposition on general
cones (not necessarily associated with biorthogonal systems) will be useful.

ProrosiTioN 2. If a cone K in a Banach space E has a bounded base, then K
s normal.

Proof. Let B be a bounded base of K. Then sup,es ||y|| = M < «©, and
since B is closed and 0 ¢ B, we also have infyez ||y|]] = m > 0. Let0 S x < 2
be arbitrary with 0 5% x = 2. Then «, 2, and 2 — «x have unique representations
X = AY1, 2= AoVs, 2 — & = Agy3, with \; > 0, y; € B (z = 1, 2, 3). Hence

Aoye = 2 = E—x)+x=Ays+Myi= Qs+ )\1)[)\ T+ )\lya‘i‘ s + N yl]
Since B is convex, we have

As

As+ A A3 +

whence by the unique representation property occurring in the definition of a
base of a cone,

¥ys + )\lyIEB,

— kl =
Az + A= A and N +)\1y3+)\3+)\1y1—y2.

We observe that the second equality is also a consequence of the first equality,
since it amounts to

z— X x z

MEXA M+ A
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Since A3 > 0, from the first of these equalities we obtain A\; < \,, whence

ol = allyall S MM < M =m0 < Nalball 2 = 11l 3

which completes the proof of Proposition 2.

Obviously, the converse of Proposition 2 is not valid, since, e.g., the positive
cone K associated with the unit vector basis {x,} of the space E = ¢, is normal,
but has no bounded base (since {x,} is not of type /). From Propositions 1
and 2 also follows the following result.

COROLLARY 1. If {x,} s a normalized basis of type I, of a Banach spuce E,
then the associated cone K = K, 1s normal.

One can also prove this result directly, observing that if {x,} is a normalized
basis of type I, and 0 = o; =8, ¢ = 1,2,...,n), then

| n | n n 1‘ n
Zaixi ézai§261§—
=1 i=1 i=1 n

|
|
%[Z Bixi |
I i=1 I

(where 7 > 0 is the constant occurring in (13)), whence the same also holds
for convergent infinite series 2. ;-10%; 2 i-18:%; with 0 = a; < 8,
i=12...).
Taking also into account Theorem 1, we obtain the following result.
CoROLLARY 2. If {x,} is a normalized basis of type I, of a Banach space E,
and K = K, 1s the associated cone, then for every x € K the series 3 ;—1f:(x)x;
1s unconditionally convergent.

Actually, for bases of type l,, one can prove more, namely the result
which follows.

ProposiTION 3. A normalized basis {x,} of a Banach space E is of type Il
if and only if there exists a constant M > O such that for every x € K the series
Yie1fi(x)x; is absolutely comvergent (i.e. D i—1||f:i(x)x:]] < ) and

(17) Z_:l i@l = Mlx]] (v € K).
Proof. 1f {x,} is a normalized basis of type I, then for every x ¢ K and
n=1,2,..., we have

’

|
n n R 1 n
3 el = 3, i) 73 fuee |
whence, taking # — 0, we obtain (17) with M = 1/5. Conversely, if {x,} is
a normalized basis satisfying (17), then for any a@i,...,a, = 0 we have,
setting x = > 3 ax; in (17),
|
1 n ]. n n
-M;ai = ]‘_ligl Haixill = !!Z aXq

i=1

i.e., {x,} is of type I;, which completes the proof.
In particular, the bases equivalent to the unit vector basis of the space /!
can be characterized as follows.
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THEOREM 4. A normalized basis {x,} of a Banach space E is equivalent to the
unit vector basis of I if and only if the associated cone K = K,,, is generating
and has a bounded base.

Proof. The cone Ky, associated with the unit vector basis {e,} of I* is
generating and by Theorem 3 it has a bounded base. Therefore, the cone
K (.. associated with any basis {«x,} equivalent to {e,} has the same properties.
Conversely, assume that {x,} is a normalized basis such that K = Ky, is
generating and has a bounded base B. Then by Proposition 2, K is normal,
whence, since it is also generating, {x,} is an unconditional basis (by Theorem 1,
or by (6)). On the other hand, by Theorem 3, {x,} is of type /.. Consequently
(11, p. 353, Remark 1), {x,} is equivalent to the unit vector basis of /!, which
completes the proof.

The sufficiency part of Theorem 4 can also be proved using Proposition 3,
as follows. By Theorem 3, {x;} is of type I;. Let x € E be arbitrary. Then,
since K is generating, x = y — 2, with y, 2 € K, whence, by Proposition 3,

210 = 3 ) + 2 160 = 25 1wl + X e < o,

The converse implication (3= ay] < 00 = X /1@, converges) being
obvious (since {x,} is normalized and E is complete), {x,} is equivalent to
the unit vector basis of /', which completes the proof.

We shall call a subset B of a cone K in a Banach space E a hyperbase of K
if there exists a strictly positive functional f € E* (ie. f(x) > 0 for all
x € K ~ {0}) such that B = {y € K| f(y) = 1}. It is immediate that every
hyperbase is a base, but the converse is not true, even for compact bases, as
shown by the following example. Consider in the space E = [? the compact
convex set

Q={x={a}ellltl=17G=12..)}
Then the linear subspace G = U,~1#Q spanned by Q is dense in E = [?
(since it contains all almost zero sequences), but does not coincide with E
(since otherwise by the theorem of Baire (2, p. 20, Theorem 9) some 7,0
would have an interior point, in contradiction with dim E = o). Take an
arbitrary x € E ~ G and put
K={\y—-x)|y€Qnrz0}.

Then one can show that Kisaconeand B=Q —x ={y — x|y € Q} isa
compact base of K, but not a hyperbase of K.

If (x, fn) ({2 CE, {fu} C E*) is a biorthogonal system (respectively, if
{x,} is a normalized basis of E) then for every sequence {e,} with ¢, = 1
(n =1,2,...), the sequence (e,%,, €f,) is also a biorthogonal system (respec-
tively, {e.x,} is also a normalized basis of E). One can therefore consider the
associated cone

K" = Kemenrn = X € Elefu(x) 20 (n = 1,2,...)}
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(respectively, K'e! = K. ,,), and a hyperbase B!« of Kfer), This will
permit us to characterize geometrically some other classes of bases in Banach
spaces. We shall use the notation

Bn{m = B¢} N [Fny Xng1s Kpgay - o -] (n=12...).

We recall (11, p. 354) that a normalized basis {x,} of a Banach space E is
said to be (a) of type P*, if sup, || X =1 fi|| < 00, where {f,} is the associated
sequence of coefficient functionals; (b) of type al,, if there exists a sequence
{e.), where e, = =1 (n = 1, 2,...), such that {ex,} is of type I;; (c) of type
wcey, if

w
x, — 0

(i.e. f(x,) — O for all f € E¥).

ProprosITION 4. A normalized basis {x,} of ¢ Banach space E is

(a) of type P*, if and only if there exists a hyperbase B of K containing all
x, (n=12,...);

(b) not of type aly, if and only if for every {e,}, e, = &1 and for every hyperbase
Blenl of the cone K'n) the (unique) numbers N, > 0 for which Blend D {\e.%,}
satisfy supy A, = 05

(c) of type wco, if and only if for every {e,}, e, = =1, and every hyperbase
Blenl of the cone Kl the (unique) numbers N, > 0 for which Blen) D {\ye,%n)
satisfy limy, s Ny = 00;

(d) shrinking, only if for every {e.}, e, = 1, and every hyperbase Bler' of
the cone Kl we have dist(0, B,'¢') — 0 as n — 0.

Proof. (a) If {x,} is of type P*, then by (11, Proposition 3), there exists an
f € E¥such thatf(x,) =1(n=1,2,...). Put B = {y € K|f(y) = 1}. Then
B is a hyperbase of K containing all x, (z = 1, 2,...). Conversely, if B is a
hyperbase of K such thatx, € B (r = 1, 2,...), then there exists an f € E*
such that B = {y € K|f(y) = 1}. Then f(x,) =1 (n = 1,2,...) and there-
fore, by (11, Proposition 3), {x,} is of type P*.

(b) If {x,} is not of type al,, then by (11, Proposition 1, we have
inf, | f(x,)] =0 (f € E*). Let ¢, = =1 (n = 1,2,...) and let Ble! be an
arbitrary hyperbase of the cone K'!¢!. Then there exists f € E* such that
Ble = {y € Kleal| f(y) = 1}, whence (1/f(e%s))en, € Bl and thus

Ay = 1/f(5nxn) (n =12,.. -)r

whence sup, A\, = ©. Conversely, if {x,} is of type al;, then by (11, Propo-
sition 1), there exists an f € E* such that [f(x,)| =1 (n =1,2,...). Put
€, = sign f(x,). Then f(ex,) =1 (m =1,2,...), whence the set Blel =
{y € K'el| f(y) = 1} is a hyperbase of the cone K!«! and

(l/f(enxn))enxn € Blenl (n =12.. .),
whence N, = 1/f(ex,) =1 (n=1,2,...).
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(c) The proof is similar to that of (b), with slightly more computation in
the converse part.

(d) If {x,} is shrinking, let ¢, = &1 (r = 1,2,...) and let B!} be an
arbitrary hyperbase of the cone K!«!, Then there exists an f € E* such that
Bled = {y ¢ Kled| f(y) = 1}, whence for any y € B,!¢!,

Y= ey, a;20@=nn+1,...)
we have

T =A77T) <e form> N
o~ \IpTl/ < ©
(since {x,} is shrinking). Therefore ||y|| > 1/¢ for all y € B,!«! whenever

n > N(e), which completes the proof.

Remark 5. For a biorthogonal system (x;, f;} with {f;} total, if E is the
closed linear span of {x;} and W is the closure of the set

n
{Zaixi:a,go,i=1,2,...;n=1,2,...j,

i=1

Schaeffer (10, p. 139; 9, p. 251) has shown that {x;, i} is an unconditional
basis for E if and only if W is a normal b-cone.
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