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Abstract
For a simply-connected closed manifold X of dim 𝑋 ≠ 4, the mapping class group 𝜋0 (Diff (𝑋)) is known to be finitely
generated. We prove that analogous finite generation fails in dimension 4. Namely, we show that there exist simply-
connected closed smooth 4-manifolds whose mapping class groups are not finitely generated. More generally, for
each 𝑘 > 0, we prove that there are simply-connected closed smooth 4-manifolds X for which 𝐻𝑘 (𝐵Diff(𝑋);Z)
are not finitely generated. The infinitely generated subgroup of 𝐻𝑘 (𝐵Diff(𝑋);Z) which we detect are topologically
trivial, and unstable under the connected sum of 𝑆2 × 𝑆2. These results are proven by constructing and computing
an infinite family of characteristic classes using Seiberg–Witten theory.
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1. Introduction

1.1. Main results

The purpose of this paper is to present a new special phenomenon in dimension 4 in terms diffeomor-
phism groups. To describe our result, let Diff(𝑋) denote the diffeomorphism group equipped with the
𝐶∞-topology for a given a smooth manifold X. It is known that the mapping class group 𝜋0 (Diff (𝑋)) is
finitely generated, if X is simply-connected closed and dim 𝑋 ≠ 4. For dim 𝑋 ≥ 5, this is due to Sullivan
[33, Theorem (13.3)]. For dim 𝑋 ≤ 3, finite generation holds even dropping the simple-connectivity: In
fact, even stronger finiteness is known in all dimensions ≠ 4 (see Subsection 5.1, including a remark for
dim=5).

We prove that analogous finite generation fails in dimension 4. Namely, we show that there exist
simply-connected closed smooth 4-manifolds whose mapping class groups are infinitely generated:

Theorem 1.1. For 𝑛 ≥ 2, set 𝑋 = 𝐸 (𝑛)#𝑆2 × 𝑆2. Then 𝜋0 (Diff (𝑋)) is not finitely generated.

Here, 𝐸 (𝑛) denotes the simply-connected elliptic surface of degree n without multiple fiber. As is
well-known, 𝐸 (𝑛)#𝑆2 × 𝑆2 can be written in terms of further basic 4-manifolds (e.g., [15, Corollary 8]):

𝐸 (𝑛)#𝑆2 × 𝑆2 �

{
2𝑛CP2#10𝑛CP

2
for 𝑛 odd,

𝑚(𝐾3#𝑆2 × 𝑆2) for 𝑛 = 2𝑚 even.

Remark 1.2. After completing a preprint version of this paper, the author was informed that David
Baraglia [4] also proved that the mapping class groups of simply-connected 4-manifolds can be infinitely
generated. Baraglia’s proof is based on essentially the same method as ours; however, we obtained our
proofs completely independently.

Remark 1.3 (Topological mapping class group). Let Homeo(𝑋) denote the homeomorphism group of X.
If X is a simply-connected closed topological 4-manifold, then 𝜋0 (Homeo(𝑋)) is finitely generated. This
follows from a result by Quinn [29] and Perron [28]. Thus, infinite generation exhibited in Theorem 1.1
is special to the 4-dimensional smooth category.

Theorem 1.1 is a consequence of a more general result on the (co)homology of the moduli spaces
𝐵Diff (𝑋) of 4-manifolds X. The (co)homology of 𝐵Diff (𝑋) is a fundamental object, since it corresponds
to the set of characteristic classes of fiber bundles with fiber X. We shall prove that, for each 𝑘 ≥ 0, there
exist simply-connected closed smooth 4-manifolds X where 𝐻𝑘 (𝐵Diff(𝑋);Z) are infinitely generated.
More strongly, we shall see that the ‘topologically trivial parts’ of 𝐻𝑘 (𝐵Diff (𝑋);Z) can be infinitely
generated. To state this, let 𝑖 : Diff (𝑋) ↩→ Homeo(𝑋) denote the inclusion map into the homeomorphism
group. We shall prove the following:

Theorem 1.4. For 𝑛 ≥ 2 and 𝑘 ≥ 1, set 𝑋 = 𝐸 (𝑛)#𝑘𝑆2 × 𝑆2. Then

ker(𝑖∗ : 𝐻𝑘 (𝐵Diff(𝑋);Z) → 𝐻𝑘 (𝐵Homeo(𝑋);Z))

contains a direct summand isomorphic to (Z/2)∞. In particular, 𝐻𝑘 (𝐵Diff (𝑋);Z) is not finitely
generated.

Here, (Z/2)∞ denotes the countably infinite direct sum
⊕
N
Z/2. Rephrasing Theorem 1.4 for 𝑘 = 1,

we have the following result, which immediately implies Theorem 1.1:
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Corollary 1.5. For 𝑛 ≥ 2, set 𝑋 = 𝐸 (𝑛)#𝑆2 × 𝑆2. Then

ker(𝑖∗ : 𝜋0 (Diff(𝑋))ab → 𝜋0 (Homeo(𝑋))ab)

contains a direct summand isomorphic to (Z/2)∞. Here the subscript ab indicates the abelianization.

To our knowledge, Theorem 1.4 gives the first examples of simply-connected closed manifolds X
where 𝐻𝑘 (𝐵Diff(𝑋);Z) are confirmed to be infinitely generated for given 𝑘 ≥ 1 (for 𝑘 = 1, this follows
also from the aforementioned result by Baraglia [4]). It is worth noting that there are several established
and expected finiteness in dim ≠ 4 (Remark 1.8). Thus, infiniteness given in Theorem 1.4 reflects a
specialty of dimension 4, described in terms of characteristic classes of fiber bundles (see Remark 1.6
below).

Remark 1.6. In terms of cohomology, Theorem 1.4 deduces that non-topological characteristic classes
may form a group isomorphic to (Z/2)∞ for some 4-manifolds. Here, we call an element of

coker(𝑖∗ : 𝐻𝑘 (𝐵Homeo(𝑋);Z/2) → 𝐻𝑘 (𝐵Diff(𝑋);Z/2))

a non-topological characteristic class (overZ/2). This (Z/2)∞-subgroup is generated by gauge-theoretic
characteristic classes we shall introduce (Subsection 1.3). In contrast, the Mumford–Morita–Miller
classes, the most basic characteristic class of manifold bundles, are topological over a field of charac-
teristic 2 or 0 [11].

It is worth noting a consequence about stabilization. Recently, Lin and the author [20] proved that the
moduli spaces 𝐵Diff(𝑋) of 4-manifolds X do not satisfy homological stability with respect to connected
sums of 𝑆2 × 𝑆2, unlike what happens in dimension ≠ 4 [16, 14]. The proof of Theorem 1.4 shows
also that the unstable part of 𝐻∗(𝐵Diff(𝑋)) may be infinitely generated. To state this precisely, given a
closed 4-manifold X, take a smoothly embedded 4-disk 𝐷4 in X, and set 𝑋̊ = 𝑋 \ Int(𝐷4). Let Diff𝜕 ( 𝑋̊)
denote the group of diffeomorphisms that are the identity near 𝜕𝑋̊ . Form the (inner) connected sum
𝑋̊#𝑆2 × 𝑆2 by 𝑋̊ ∪𝑆3 ((𝑆3 × [0, 1])#𝑆2 × 𝑆2). Then one can define the stabilization map

𝑠 : Diff𝜕 ( 𝑋̊) → Diff𝜕 ( 𝑋̊#𝑆2 × 𝑆2)

by extending by the identity on (𝑆3 × [0, 1])#𝑆2 × 𝑆2. We shall prove the following:

Theorem 1.7. For 𝑛 ≥ 2 and 𝑘 ≥ 1, set 𝑋 = 𝐸 (𝑛)#𝑘𝑆2 × 𝑆2. Then the kernel of the induced map

𝑠∗ : 𝐻𝑘 (𝐵Diff𝜕 ( 𝑋̊);Z) → 𝐻𝑘 (𝐵Diff𝜕 ( 𝑋̊#𝑆2 × 𝑆2);Z)

contains a direct summand isomorphic to (Z/2)∞.

1.2. Related results

The following remarks list related results in more detail:

Remark 1.8 (Other finiteness in dim ≠ 4). Let us compare infinite generation of 𝐻𝑘 (𝐵Diff(𝑋);Z)
in Theorem 1.4 with other dimensions. For a manifold X of even dim ≥ 6 and with finite 𝜋1 (𝑋),
Bustamante–Krannich–Kupers proved that𝐻𝑘 (𝐵Diff (𝑋);Z) is finitely generated for each k [9, Corollary
B]. Also, in his earlier paper, Kupers [22, Corollary C] has proved an analogous statement for a 2-
connected manifold X of dim ≠ 4, 5, 7. As mentioned in [9], there is an expectation that finiteness may
hold even dropping the 2-connectivity. For finiteness of mapping class groups in dimension ≠ 4, see
Subsection 5.1.

Remark 1.9 (Infiniteness of the Torelli group). Given a smooth closed oriented 4-manifold X, let
TDiff(𝑋) denote the Torelli diffeomorphism group (i.e., the group of diffeomorphisms acting triv-
ially on 𝐻∗(𝑋;Z)). Ruberman [31, Theorem A] proved that 𝜋0 (TDiff(𝑋)) are infinitely generated for
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𝑋 = 𝐸 (𝑛)#CP2#𝑘CP
2

with 𝑘 ≥ 2. Note that infinite generation of 𝜋0 (Diff (𝑋)) does not necessarily
follow from that of 𝜋0 (TDiff(𝑋)). For example, 𝜋0 (TDiff(𝑋)) is infinitely generated if one takes X to
be the genus 2 surface, whereas 𝜋0 (Diff (𝑋)) is finitely generated [26]. This phenomenon may occur
since the index of 𝜋0 (TDiff(𝑋)) in 𝜋0 (Diff (𝑋)) is infinite (also for X in Theorem 1.4), and an infinite
index subgroup of a finitely generated group is not necessarily finitely generated.

Remark 1.10 (Other infiniteness in dim = 4). Baraglia [3] and Lin [24] proved that 𝜋1 (Diff (𝑋))
have infinite-rank summands for some simply-connected (irreducible) 4-manifolds X. Further,
Auckly–Ruberman [1] announced that, for each 𝑘 > 0, there are simply-connected 4-manifolds
X such that 𝜋𝑘 (Diff (𝑋)) have infinite-rank summands. They prove an analogous result also for
𝐻𝑘 (𝐵TDiff(𝑋);Z).

Remark 1.11 (Non-simply-connected manifolds). For non-simply-connected manifolds of dim ≥ 4, it
has been known that the mapping class group may be infinitely generated. For instance, Hatcher [18,
Theorem 4.1] proved that the mapping class groups of the tori 𝑇𝑛 for 𝑛 ≥ 5 are infinitely generated. In
dimension 4, Budney–Gabai [7] and Watanabe [36] gave examples of non-simply-connected 4-manifolds
whose mapping class groups are infinitely generated. Budney–Gabai [8] also proved that their infinitely
generated subgroups of mapping class groups are nontrivial also in the topological category.

1.3. Scheme of the proof

Now we describe the idea of proofs of our results given in Subsection 1.1. We shall introduce an infinite
family of characteristic classes

SW
𝑘
half-tot (𝑋,S) ∈ 𝐻

𝑘 (𝐵Diff+(𝑋);Z/2) (1)

using Seiberg–Witten theory for families. Here, S are Diff+(𝑋)-invariant subsets of the set of spin𝑐
structures Spin𝑐 (𝑋, 𝑘) on X with Seiberg–Witten formal dimension −𝑘 , divided by the charge conjuga-
tion (see Subsection 3.1 for the precise definition).

A characteristic class for families of 4-manifolds using Seiberg–Witten theory was introduced by the
author [19], under the assumption that the monodromies of families preserve a given spin𝑐 structure.
Later, Lin and the author [20] defined a version without the assumption on monodromy. The classes (1)
are refinements of the characteristic class defined in [20].

Using the characteristic classes (1), we can define a homomorphism⊕
S

〈SW𝑘
half-tot(𝑋,S),−〉 : 𝐻𝑘 (𝐵Diff+(𝑋);Z) →

⊕
S
Z/2.

The above results follow by seeing that this homomorphism has infinitely generated image in
⊕

S Z/2
for some class of 4-manifolds X, including 𝑋 = 𝐸 (𝑛)#𝑘𝑆2 × 𝑆2. More precisely, we shall see that
〈SW𝑘

half-tot (𝑋,S),−〉 are nontrivial for infinitely many orbitsS for the action of Diff+(𝑋) on Spin𝑐 (𝑋, 𝑘),
which are distinguished by divisibilities of the first Chern classes.

1.4. Structure of the paper

The following is an outline of the sections of the paper. In Section 2, we construct infinitely many
homology classes of 𝐵Diff(𝑋) for some class of 4-manifolds X, which will be shown to be linearly
independent over Z/2. The most general statement is given as Theorem 2.7, which implies all results
explained above. In Section 3, we construct characteristic classes (1) and compute them in Section 4 to
prove Theorem 2.7.
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2. Construction of homology classes

In this section, we construct infinitely many homology classes of 𝐵Diff(𝑋) for 4-manifolds X with
certain conditions, which will be shown to be linearly independent over Z/2.

2.1. Mod 2 basic classes in 𝑯2(𝑴;Z)/Aut(𝑯2(𝑴;Z))

A building block of the construction of homology classes of 𝐵Diff+(𝑋) is a 4-manifold M that admits
infinitely many exotic structures. This is inspired by Ruberman’s argument [31] in his work on Torelli
groups. (See also Auckly’s recent work [2] for one version of Ruberman’s argument in a Seiberg–
Witten context.) Compared with [31, 2], what we newly need to require is that those exotic structures
are distinguished by mod 2 basic classes that are distinct in 𝐻2 (𝑀;Z)/Aut(𝐻2 (𝑀;Z)), the quotient of
𝐻2 (𝑀;Z) by the automorphism group of the intersection form. This is a reflection that we shall consider
the whole diffeomorphism group, rather than the Torelli diffeomorphism group.

To formulate this precisely, let us introduce some notation. Let M be a smooth simply-connected
closed oriented 4-manifold with 𝑏+(𝑀) ≥ 2. Since 𝐻2(𝑀;Z) has no torsion, we can identify a
spin𝑐 structure on M with a characteristic element in 𝐻2(𝑀;Z). Recall that a characteristic ele-
ment 𝑐 ∈ 𝐻2(𝑀;Z) is called a basic class if 𝑆𝑊 (𝑀, 𝑐), the Seiberg–Witten invariant, is nonzero. If
𝑆𝑊 (𝑀, 𝑐) ≠ 0 mod 2, we say that c is a mod 2 basic class. For simplicity, whenever we say that c is
a (mod 2) basic class, we further impose that the formal dimension of c is zero (see (5)). We denote
by B2 (𝑀) the set of mod 2 basic classes of M. Note that B2(𝑀) is preserved under the Z/2-action on
𝐻2 (𝑀;Z) via multiplication by −1. For a nonzero cohomology class 𝑥 ∈ 𝐻2 (𝑀;Z), let div(𝑥) denote
the divisibility of x – namely,

div(𝑥) = max
{
𝑛 ∈ Z | ∃𝑦 ∈ 𝐻2(𝑀;Z) such that 𝑛𝑦 = 𝑥

}
.

For the zero element, we formally set div(0) = 0 in this paper. For a characteristic element 𝑐 ∈ 𝐻2 (𝑀;Z),
define

𝑁 (𝑀; 𝑐) = #{[𝑥] ∈ B2(𝑀)/(Z/2) | div(𝑥) = div(𝑐), 𝑥2 = 𝑐2},

where 𝑥2 denotes the self-intersection of x. In this section, we consider a 4-manifold M to satisfy the
following assumption:

Assumption 2.1. Let M be an indefinite smooth simply-connected closed oriented 4-manifold with
𝑏+(𝑀) ≥ 2. Assume that there exist smooth 4-manifolds {𝑀𝑖}

∞
𝑖=1 that satisfy the following three

properties:

(i) Each 𝑀𝑖 is homeomorphic to M.
(ii) For every i, 𝑀𝑖#𝑆2 × 𝑆2 is diffeomorphic to 𝑀#𝑆2 × 𝑆2.

(iii) For every i, there exists a mod 2 basic class 𝑐𝑖 on 𝑀𝑖 with 𝑁 (𝑀𝑖; 𝑐𝑖) odd, and the sequence {𝑐𝑖}
∞
𝑖=1

satisfies that div(𝑐𝑖) → +∞ as 𝑖 → +∞.

It is worth adding notes on the last property (iii) of Assumption 2.1. The principal intention of (iii)
is to ensure that the mod 2 basic classes are distinct even in the quotient 𝐻2 (𝑀;Z)/Aut(𝐻2(𝑀;Z))
(after passing to a subsequence, if necessary). For most 4-manifolds, increasing either divisibili-
ties or self-intersections is the only possible way to get infinitely many characteristics distinct in
𝐻2 (𝑀;Z)/Aut(𝐻2(𝑀;Z)) (cf. Proposition 4.5). The reason why we suppose 𝑁 (𝑀𝑖; 𝑐𝑖) is odd is that
we want to control sums of mod 2 Seiberg–Witten invariants over some class of spin𝑐 structures.

As a series of examples of M satisfying Assumption 2.1, we have the following:

Lemma 2.2. For 𝑛 ≥ 1, 𝑀 = 𝐸 (𝑛) satisfies Assumption 2.1.

To see Lemma 2.2, let us consider logarithmic transformations. For 𝑛 ≥ 2 and 𝑖 ≥ 1, let 𝐸 (𝑛; 𝑖)
denote the logarithmic transformation of order 𝑖 > 0 performed on 𝐸 (𝑛) (i.e., 𝐸 (𝑛; 𝑖) is the elliptic
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surface of degree n with a single multiple fiber of order i). (Note that 𝐸 (𝑛; 1) = 𝐸 (𝑛).) The Seiberg–
Witten invariants of 𝐸 (𝑛; 𝑖) were computed by Fintushel–Stern [12]. For readers’ convenience, we recall
the result following their survey [13, Lecture 2].

In general, let Z be an oriented closed smooth 4-manifold with 𝑏+(𝑍) ≥ 2, without torsion in
𝐻2 (𝑍;Z). Consider the Laurent polynomial

SW𝑍 =
∑
𝑐

𝑆𝑊 (𝑍, 𝑐)𝑡𝑐 .

Here, 𝑐 ∈ 𝐻2(𝑍;Z) are characteristic elements and 𝑡𝑐 are formal variables inZ[𝐻2 (𝑍;Z)] corresponding
to c. Note that 𝑡𝑐𝑡𝑐′ = 𝑡𝑐+𝑐′ – in particular, 𝑡𝑚𝑐 = 𝑡𝑚𝑐 for 𝑚 ∈ Z.

Now consider 𝑍 = 𝐸 (𝑛; 𝑖). Let 𝐹 ∈ 𝐻2 (𝐸 (𝑛; 𝑖);Z) be the class that represents a generic fiber of the
elliptic fibration. The multiple fiber of 𝐸 (𝑛; 𝑖) represents a primitive homology class, which is given by
𝐹/𝑖. Let 𝐹𝑖 denote the Poincaré dual of 𝐹/𝑖 and set 𝑡 = 𝑡𝐹𝑖 . Then the Seiberg–Witten polynomial for
𝐸 (𝑛; 𝑖) is given by

SW𝐸 (𝑛;𝑖) = (𝑡𝑖 − 𝑡−𝑖)𝑛−2(𝑡𝑖−1 + 𝑡𝑖−3 + · · · + 𝑡1−𝑖). (2)

Lemma 2.3. The classes ±(𝑛𝑖 − 𝑖 − 1)𝐹𝑖 ∈ 𝐻2(𝐸 (𝑛; 𝑟);Z) are mod 2 basic classes of 𝐸 (𝑛; 𝑖). Further,
we have div((𝑛𝑖 − 𝑖 − 1)𝐹𝑖) = 𝑛𝑖 − 𝑖 − 1, and there is no mod 2 basic class of div = 𝑛𝑖 − 𝑖 − 1 other than
±(𝑛𝑖 − 𝑖 − 1)𝐹𝑖 .

Proof. Since the right-hand side of (2) is a polynomial only in t, all basic classes of 𝐸 (𝑛; 𝑖) lie in the
set {𝑘𝐹𝑖 ∈ 𝐻2 (𝐸 (𝑛; 𝑖);Z) | 𝑘 ∈ Z}. Thus, for each 𝑑 ≥ 1, we have at most two basic classes of div = 𝑑,
related by multiplication by −1 if exist. However, the top degree term of the right-hand side of (2) is
given by 𝑡 (𝑛−2)𝑖𝑡𝑖−1 = 𝑡 (𝑛𝑖−𝑖−1)𝐹𝑖 . Thus, ±(𝑛𝑖 − 𝑖 − 1)𝐹𝑖 are mod 2 basic classes. The assertion of the
lemma follows from this by recalling that 𝐹𝑖 is a primitive class. �

Proof of Lemma 2.2. Set 𝑀𝑖 = 𝐸 (𝑛; 𝑖). Here, i runs over the natural numbers, but we restrict i to be odd
if n is spin, so that the spinness of 𝑀𝑖 is the same as that of M. Then 𝑀𝑖 satisfies the properties (i) and
(ii) of Assumption 2.1 by [15]. To check the property (iii), set 𝑐𝑖 = (𝑛𝑖 − 𝑖 − 1)𝐹𝑖 . Then it follows from
Lemma 2.3 that div(𝑐𝑖) → +∞ as 𝑖 → +∞, and 𝑁 (𝑀𝑖; 𝑐𝑖) = 1 for all 𝑖 ≥ 1. Hence, the property (iii) is
satisfied. This completes the proof. �

2.2. Families over the torus

Fix 𝑘 > 0, and let us take a 4-manifold M satisfying Assumption 2.1. Fix a diffeomorphism𝑀𝑖#𝑆2×𝑆2 →
𝑀#𝑆2 × 𝑆2 and identify 𝑀𝑖#𝑘𝑆2 × 𝑆2 with X for every i. Set 𝑋 = 𝑀#𝑘𝑆2 × 𝑆2.

We recall a construction of a smooth fiber bundle over 𝑇 𝑘 with fiber X considered in [19, 20]. Define
an orientation-preserving diffeomorphism 𝑓0 : 𝑆2 × 𝑆2 → 𝑆2 × 𝑆2 by 𝑓0(𝑥, 𝑦) = (𝑟 (𝑥), 𝑟 (𝑦)), where
𝑟 : 𝑆2 → 𝑆2 is the reflection about the equator. By isotoping 𝑓0, we can obtain a diffeomorphism
𝑓 : 𝑆2 × 𝑆2 → 𝑆2 × 𝑆2 that fixes a disk 𝐷4 ⊂ 𝑆2 × 𝑆2 pointwise. Take copies 𝑓1, . . . , 𝑓𝑘 of f, and implant
them into 𝑀𝑖#𝑘𝑆2 × 𝑆2 for each i, by extending by the identity. Thus, we obtain diffeomorphisms
𝑓1, . . . , 𝑓𝑘 : 𝑀𝑖#𝑘𝑆2 × 𝑆2 → 𝑀𝑖#𝑘𝑆2 × 𝑆2. Since the supports of 𝑓1, . . . , 𝑓𝑘 are mutually disjoint, and
𝑓1, . . . , 𝑓𝑘 commute each other. Using these commuting diffeomorphisms, we can form the multiple
mapping torus 𝐸𝑖 → 𝑇 𝑘 , which is a smooth fiber bundle with fiber 𝑀𝑖#𝑘𝑆2 × 𝑆2. Using the fixed
identification between 𝑀𝑖#𝑘𝑆2 × 𝑆2 and X, we obtain smooth fiber bundles (denoted by the same
notation) 𝑋 → 𝐸𝑖 → 𝑇 𝑘 with fiber X. Since f is orientation-preserving, the resulting fiber bundles 𝐸𝑖

are oriented (i.e., the structure group reduces to Diff+(𝑋), the orientation-preserving diffeomorphism
group).

For each 𝑖 ≥ 1, regard 𝐸𝑖 as a continuous map 𝐸𝑖 : 𝑇 𝑘 → 𝐵Diff+(𝑋). Now we set

𝛼𝑖 := (𝐸1)∗([𝑇
𝑘 ]) − (𝐸𝑖)∗([𝑇

𝑘 ]) ∈ 𝐻𝑘 (𝐵Diff+(𝑋);Z). (3)
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This construction of the homology class 𝛼𝑖 is the same as the one in [20, Proof of Theorem 3.10], except
only for a condition on the Seiberg–Witten invariants of 4-manifolds. The origin of this construction is
the first examples of exotic diffeomorphisms of 4-manifolds due to Ruberman [30].

Let us observe a few properties of 𝛼𝑖:

Lemma 2.4. The homology class 𝛼𝑖 lies in

ker(𝑖∗ : 𝐻𝑘 (𝐵Diff+(𝑋);Z) → 𝐻𝑘 (𝐵Homeo+(𝑋);Z)).

Proof. Since 𝑀1 and 𝑀𝑖 are homeomorphic, 𝐸1 and 𝐸𝑖 are isomorphic as topological bundles. The
assertion follows from this. �

For each i, fix a smoothly embedded 4-disk 𝐷4
𝑖 ⊂ 𝑀𝑖 and similarly take 𝐷4 ⊂ 𝑀 . Set 𝑀̊𝑖 =

𝑀𝑖 \ Int(𝐷4
𝑖 ) and 𝑀̊ = 𝑀 \ Int(𝐷4). We can find a diffeomorphism 𝜓𝑖 : 𝑀𝑖#𝑆2 × 𝑆2 → 𝑀#𝑆2 × 𝑆2

with 𝜓𝑖 (𝐷
4
𝑖 ) = 𝐷4 that respect parametrizations of 𝐷4

𝑖 and 𝐷4. Thus, we can identify 𝑀̊𝑖#𝑆2 × 𝑆2 with
𝑀̊#𝑆2 × 𝑆2. Using these identifications, the construction of 𝐸𝑖 can be carried out with fixing the 4-disks,
so we also have a homology class 𝛼̊𝑖 ∈ 𝐻𝑘 (𝐵Diff𝜕 ( 𝑋̊);Z) defined similarly to 𝛼𝑖 – namely,

𝛼̊𝑖 := (𝐸1)∗([𝑇
𝑘 ]) − (𝐸𝑖)∗([𝑇

𝑘 ]) ∈ 𝐻𝑘 (𝐵Diff𝜕 ( 𝑋̊);Z),

where 𝐸𝑖 are regarded as maps 𝐸𝑖 : 𝑇 𝑘 → 𝐵Diff𝜕 ( 𝑋̊). Letting 𝜌 : Diff𝜕 ( 𝑋̊) → Diff+(𝑋) be the
extension map by the identity, we have that 𝛼𝑖 is the image of 𝛼̊𝑖 under the induced map

𝜌∗ : 𝐻𝑘 (𝐵Diff𝜕 ( 𝑋̊);Z) → 𝐻𝑘 (𝐵Diff+(𝑋)Z).

Lemma 2.5. The homology class 𝛼̊𝑖 lies in the kernel of

𝑠∗ : 𝐻𝑘 (𝐵Diff𝜕 ( 𝑋̊);Z) → 𝐻𝑘 (𝐵Diff𝜕 ( 𝑋̊#𝑆2 × 𝑆2);Z).

Proof. Let 𝐸𝑆 → 𝑇 𝑘 denote the trivialized bundle with fiber (𝑆2 × 𝑆2) \ Int(𝐷4). Since 𝑀1#𝑆2 × 𝑆2 and
𝑀𝑖#𝑆2 × 𝑆2 are diffeomorphic, the stabilized bundles 𝐸1#fib𝐸𝑆 and 𝐸𝑖#fib𝐸𝑆 are smoothly isomorphic;
here, #fib denotes the fiberwise connected sum along the trivial sphere bundle 𝑇 𝑘 × 𝑆3 → 𝑇 𝑘 . This
implies the assertion of the lemma. �

Lemma 2.6. We have 2𝛼̊𝑖 = 0 and 2𝛼𝑖 = 0.

Proof. It follows from [20, Lemma 3.6] that (𝐸𝑖)∗([𝑇
𝑘 ]) is 2-torsion for every i. Thus, 𝛼𝑖 is also 2-

torsion. Since 𝛼𝑖 = 𝜌∗(𝛼𝑖), we have 𝛼𝑖 is 2-torsion as well. �

The following is the most general statement of this paper:

Theorem 2.7. Let 𝑘 > 0 and let M be a smooth simply-connected closed oriented 4-manifold that
satisfies Assumption 2.1. Set 𝑋 = 𝑀#𝑘𝑆2 × 𝑆2. Then we have the following:

(i) The set {𝛼𝑖 | 𝑖 ≥ 2} generates a direct summand of

ker(𝑖∗ : 𝐻𝑘 (𝐵Diff+(𝑋);Z) → 𝐻𝑘 (𝐵Homeo+(𝑋);Z))

isomorphic to (Z/2)∞.
(ii) The set {𝛼̊𝑖 | 𝑖 ≥ 2} generates a direct summand of

ker(𝑠∗ : 𝐻𝑘 (𝐵Diff𝜕 ( 𝑋̊);Z) → 𝐻𝑘 (𝐵Diff𝜕 ( 𝑋̊#𝑆2 × 𝑆2);Z))

isomorphic to (Z/2)∞.
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To prove Theorem 2.7, due to Lemmas 2.4 to 2.6, it suffices to show that there is a homomorphism

𝐻𝑘 (𝐵Diff𝜕 ( 𝑋̊);Z) → (Z/2)∞

that restricts to a surjection

〈𝛼̊𝑖 | 𝑖 ≥ 2〉 � (Z/2)∞.

We shall prove this remaining part in the subsequent sections.
Assuming Theorem 2.7, we obtain the proofs of results exhibited in Section 1:

Proofs of Theorems 1.4 and 1.7. These follow from Lemma 2.2 and Theorem 2.7. (Note that Diff+(𝑋) =
Diff (𝑋) and Homeo+(𝑋) = Homeo(𝑋), since X in the assertions of Theorems 1.4 and 1.7 have nonzero
signature.) �

3. Characteristic classes from Seiberg–Witten theory

3.1. Output

The proof of Theorem 2.7 uses characteristic classes defined by using Seiberg–Witten theory. Fix 𝑘 ≥ 0,
and let X be a smooth closed oriented 4-manifold with 𝑏+(𝑋) ≥ 𝑘 + 2. Lin and the author [20] defined
a characteristic class

SW
𝑘
half-tot (𝑋) ∈ 𝐻

𝑘 (𝐵Diff+(𝑋);Z/2), (4)

which we called the half-total Seiberg–Witten characteristic class. This was inspired by Ruberman’s
total Seiberg–Witten invariant of diffeomorphisms [32], together with a gauge-theoretic construction of
characteristic classes by the author [19]. We introduce generalizations of the characteristic class (4) to
prove Theorem 2.7 as follows.

Let Spin𝑐 (𝑋, 𝑘) denote the set of isomorphism classes of spin𝑐 structures 𝔰 with 𝑑 (𝔰) = −𝑘 , where
𝑑 (𝔰) is the formal dimension of the Seiberg–Witten moduli space:

𝑑 (𝔰) =
1
4
(𝑐1 (𝔰)

2 − 2𝜒(𝑋) − 3𝜎(𝑋)). (5)

The group Z/2 acts on Spin𝑐 (𝑋, 𝑘) by the charge conjugation, which flips the sign of the first Chern
class of a spin𝑐 structure. Let Spin𝑐 (𝑋, 𝑘)/Conj denote the quotient of Spin𝑐 (𝑋, 𝑘) under this Z/2-
action. However, Diff+(𝑋) acts on Spin𝑐 (𝑋, 𝑘) via pull-back. Since the charge conjugation commutes
with and the action of Diff+(𝑋) on Spin𝑐 (𝑋, 𝑘), we have an action of Diff+(𝑋) on Spin𝑐 (𝑋, 𝑘)/Conj.

Let S be a subset of Spin𝑐 (𝑋, 𝑘)/Conj which is setwise preserved under the action of Diff+(𝑋).
We suppose that S does not contain the coset of a self-conjugate spin𝑐 structure, which is needed to
ensure a families perturbation can be taken to be nonzero and transverse. We shall define a cohomology
class

SW
𝑘
half-tot (𝑋,S) ∈ 𝐻

𝑘 (𝐵Diff+(𝑋);Z/2) (6)

by repeating the construction in [20] only for spin𝑐 structures 𝔰 whose cosets [𝔰] under the Z/2-action
lie in S .

Before explaning the construction of SW𝑘
half-tot (𝑋,S), it is worth looking at the lowest degree case

to see which spin𝑐 structures involve: suppose 𝑘 = 0, and take a section 𝜏 : Spin𝑐 (𝑋, 0)/Conj →
Spin𝑐 (𝑋, 𝑘) of the quotient map Spin𝑐 (𝑋, 0) → Spin𝑐 (𝑋, 0)/Conj. Then SW0

half-tot (𝑋,S) is given by
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SW
0
half-tot(𝑋,S) =

∑
𝔰∈𝜏 (S)

𝑆𝑊 (𝑋, 𝔰) ∈ Z/2.

Note that this number in Z/2 is independent of 𝜏, determined only by S .
The characteristic class (6) is a generalization of the characteristic class (4) given in [20]: by setting

S = Spin𝑐 (𝑋, 𝑘)/Conj, we obtain (4) – namely,

SW
𝑘
half-tot (𝑋, Spin𝑐 (𝑋, 𝑘)/Conj) = SW𝑘

half-tot(𝑋).

3.2. Construction of the characteristic classes

We explain the construction of SW𝑘
half-tot (𝑋,S) below. We omit some details which are completely

analogous to arguments in [20]: see [20, Section 2] for the full treatment. First, let us recall the basics of
the Seiberg–Witten equations. To write down the (perturbed) Seiberg–Witten equations, we need to fix a
spin𝑐 structure 𝔰 on X, a Riemannian metric g on X and an imaginary-valed self-dual 2-form 𝜇 ∈ 𝑖Ω+

𝑔 (𝑋)
on X. Here, Ω+

𝑔 (𝑋) denotes the set of self-dual 2-forms for the metric g. The Seiberg–Witten equations
perturbed by 𝜇 are of the form {

𝐹+
𝐴 = 𝜎(Φ,Φ) + 𝜇,

𝐷𝐴Φ = 0. (7)

Here, A is a 𝑈 (1)-connection of the determinant line bundle for 𝔰, Φ is a positive spinor for 𝔰, 𝜎(−,−)
is a certain quadratic form, and 𝐷𝐴 is the spin𝑐 Dirac operator associated with A. The Seiberg–Witten
equations is Map(𝑋,𝑈 (1))-equivariant, and we define the moduli space of solutions to the Seiberg–
Witten equations by

M(𝑋, 𝔰, 𝑔, 𝜇) = {(𝐴,Φ) | (𝐴,Φ) satisfies (7)}/Map(𝑋,𝑈 (1)).

Next, let us recall the charge conjugation symmetry on the Seiberg–Witten equations. Let 𝔰̄ denote
the conjugate spin𝑐 structure to 𝔰, which satisfies 𝑐1 (𝔰̄) = −𝑐1 (𝔰). Then there is a bijection

𝑐 : M(𝑋, 𝔰, 𝑔, 𝜇) → M(𝑋, 𝔰̄, 𝑔,−𝜇) (8)

called the charge conjugation symmetry, which becomes a diffeomorphism between the moduli spaces
if the perturbation 𝜇 is generic so that M(𝑋, 𝔰, 𝑔, 𝜇) is a smooth manifold (then so is M(𝑋, 𝔰̄, 𝑔,−𝜇)
automatically).

Let ℛ(𝑋) denote the space of Riemannian metrics. Set

Π(𝑋) =
⋃

𝑔∈ℛ(𝑋 )

𝑖Ω+
𝑔 (𝑋).

We think of Π(𝑋) as a vector bundle over the Frechet manifold ℛ(𝑋) and then take a fiberwise
completion with respect to a suitable Sobolev norm. Let us use the same notation Π(𝑋) → ℛ(𝑋)
also for the Hilbert bundle obtained by this completion. Let Π̊(𝑋) be the subset of Π(𝑋) consisting of
perturbations 𝜇 such that:

• ‖𝜇‖ ≤ 1 for the Sobolev norm on Ω+
𝑔 (𝑋), and

• there is no reducible solution for 𝜇.

The space Π̊(𝑋) is (𝑏+(𝑋)−2) -connected, and Π̊(𝑋) is invariant under the fiberwise (−1)-multiplication
on the Hilbert bundle Π(𝑋) → ℛ(𝑋).

What makes the construction of the half-total Seiberg–Witten characteristic class complicated is the
fact that the charge conjugation acts on the space of perturbations nontrivially; the action is given as
(fiberwise) multiplication by −1. Because of this, to implement a construction equivariantly under the
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charge conjugation, we need a ‘multi-valued perturbation’ when we form a collection of moduli spaces
over a set of spin𝑐 structures, not just a copy of a common families self-dual 2-form. This is formulated
as follows.

Let𝜛 : Spin𝑐 (𝑋, 𝑘) → Spin𝑐 (𝑋, 𝑘)/Conj be the quotient map. Define S̃ := 𝜛−1(S) ⊂ Spin𝑐 (𝑋, 𝑘).
Since S is invariant under the Diff+(𝑋)-action, S̃ is also Diff+(𝑋)-invariant. Define

Π̊(𝑋,S)′ := (S̃ × Π̊(𝑋))/(Z/2),

where Z/2 acts on S̃ via the charge conjugation and on Π̊(𝑋) via the (fiberwise) (−1)-multiplication.
(To make our notation consistent with that in [20], let us use the notation Π̊(𝑋,S)′ with prime, not like
Π̊(𝑋,S). This remark applies throughout this section.)

Now we consider a family of 4-manifolds. Let 𝑋 → 𝐸 → 𝐵 be a fiber bundle with structure group
Diff+(𝑋) over a CW complex B. For 𝑏 ∈ 𝐵, we denote by 𝐸𝑏 the fiber of E over b. Associated with E,
we have several natural fiber bundles. For instance, since Diff+(𝑋) acts on S via pull-back, we obtain
an associated fiber bundle over B with fiber S . We denote it by

S → S (𝐸) → 𝐵.

Similarly, we get a fiber bundle with fiber Π̊(𝑋,S)′, denoted by

Π̊(𝑋,S)′ → Π̊(𝐸,S)′ → 𝐵.

This has underlying families of spaces of metrics, denoted by

ℛ(𝑋) → ℛ(𝐸) → 𝐵.

A section of ℛ(𝐸) → 𝐵 is a fiberwise metric on E. Note that the forgetful map Π̊(𝑋,S)′ → S induces
a surjection

Π̊(𝐸,S)′ → S (𝐸),

which commutes with the projections onto B.
It could be worth unpackaging the data Π̊(𝐸,S)′. Let �𝜇 be a point in Π̊(𝐸,S)′. Let 𝑏 ∈ 𝐵 and

𝑔 ∈ ℛ(𝐸𝑏) be the images of �𝜇 under the projections Π̊(𝐸,S)′ → 𝐵 and Π̊(𝐸,S)′ → ℛ(𝐸). Let S (𝐸)𝑏
be the fiber of S (𝐸) → 𝐵 over b. Picking a representative 𝔰 of each coset [𝔰] ∈ S (𝐸)𝑏 , we can express
�𝜇 as a collection of a self-dual 2-forms {𝜇𝔰 ∈ Ω+

𝑔 (𝐸𝑏)}[𝔰] ∈S (𝐸)𝑏 . We set

M(𝐸𝑏 ,S , �𝜇) =
⊔

[𝔰] ∈S (𝐸)𝑏

M(𝐸𝑏 , 𝔰, 𝑔, 𝜇𝔰).

If all 𝜇 [𝔰] are generic, M(𝐸𝑏 ,S , �𝜇) is a smooth manifold. Further, as an unoriented manifold,
M(𝐸𝑏 ,S , �𝜇) is independent of choice of representatives 𝔰 of [𝔰]. Indeed, if we choose the other repre-
sentative 𝔰̄ of [𝔰], the chosen perturbation becomes 𝜇𝔰̄ = −𝜇𝔰 , so we can use the diffeomorphism (8).

Now let us take a fiberwise metric 𝑔̃ : 𝐵 → ℛ(𝐸), and pick a section 𝜎′ : S → Π̊(𝐸,S)′ that makes
the following diagram commutative:

S (𝐸) 𝜎′

−−−−−−→ Π̊(𝐸,S)′⏐⏐� ⏐⏐�
𝐵

𝑔̃
−−−−−−→ ℛ(𝐸).
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Define the half-total moduli space for 𝜎′ by

Mhalf (𝐸,S , 𝜎′) =
⋃
𝑏∈𝐵

M(𝐸𝑏 ,S , 𝜎′(𝑏)).

(This was denoted by M𝜎′,half in [20, Definition 2.11], but let us use the notation Mhalf (𝐸,S , 𝜎′) to
keep track of E and S .) If B is a comapct manifold, by choosing generic 𝜎′, Mhalf (𝐸,S , 𝜎′) becomes
a compact manifold too (cf. Lemma 3.1), and the dimension of Mhalf (𝐸,S , 𝜎′) is given by dim 𝐵 − 𝑘 .
In particular, for dim 𝐵 = 𝑘 , we can define a Z/2-valued invariant by counting the zero dimensional
compact manifold Mhalf (𝐸,S , 𝜎′).

For a general case where B is neither compact nor a manifold, we define a cochain

SW 𝑘
half-tot(𝐸,S , 𝜎

′) ∈ 𝐶𝑘 (𝐵)

as follows, where 𝐶𝑘 (𝐵) denotes the Z/2-coefficient cellular cochain group. Loosely speaking, for each
k-cell e of B with a characteristic map 𝜑𝑒 : 𝐷𝑘 → 𝐵, we define

SW 𝑘
half-tot (𝐸,S , 𝜎

′) (𝑒) = #Mhalf (𝜑
∗
𝑒𝐸,S , 𝜑∗𝑒𝜎′) ∈ Z/2.

Here, the right-hand side is a finite sum (cf. Lemma 3.1), and we can justify the necessary transversality
by using a virtual neighborhood technique, just as in [19, 20]. Using the assumption that 𝑏+(𝑋) ≥ 𝑘 +2,
we can prove that SW 𝑘

half-tot(𝐸,S , 𝜎′) is a cocycle, and that the cohomology class

SW
𝑘
half-tot (𝐸,S) := [SW 𝑘

half-tot (𝐸,S , 𝜎
′)] ∈ 𝐻𝑘 (𝐵;Z/2)

is independent of the choice of 𝜎′ ([20, Propositions 2.22, 2.23]). We set

SW
𝑘
half-tot(𝑋,S) := SW𝑘

half-tot (𝐸Diff+(𝑋),S) ∈ 𝐻𝑘 (𝐵Diff+(𝑋);Z/2).

3.3. Finiteness

Here, we record some finiteness result, which was used in Subsection 3.2 and is necessary in a subsequent
argument too.

First, let us recall the following well-known finiteness of Seiberg–Witten moduli spaces (see, for
example, [27]). Fix a metric g and 𝑘 ∈ Z. Then there are only finitely many spin𝑐 structures 𝔰 with
𝑑 (𝔰) = 𝑘 for which the moduli space M(𝑋, 𝔰, 𝑔, 𝜇) for the perturbed equations (7) are nonempty for
some 𝜇 ∈ Ω+

𝑔 (𝑋) with ‖𝜇‖ ≤ 1. Here, ‖ − ‖ denotes a suitable Sobolev norm. Moreover, for a fixed pair
(𝑔, 𝜇), the moduli space M(𝑋, 𝔰, 𝑔, 𝜇) is compact. A families generalization of this fact in our context
is as follows.

As in Subsection 3.2, fix 𝑘 ≥ 0, let X be a smooth closed oriented 4-manifold with 𝑏+(𝑋) ≥ 𝑘 + 2,
and let 𝑋 → 𝐸 → 𝐵 be a fiber bundle with structure group Diff+(𝑋) over a CW complex B.

Lemma 3.1. Suppose that B is compact. If we pick a section 𝜎′ as in Subsection 3.2, then the half-total
moduli space

Mhalf (𝐸, Spin𝑐 (𝑋, 𝑘)/Conj, 𝜎′)

is compact.

Proof. This follows from that we used perturbations with ‖𝜇‖ ≤ 1 in the definition of Π̊(𝑋). �

For our purpose, an important case is thatS is an orbit of the action of Diff+(𝑋) on Spin𝑐 (𝑋, 𝑘)/Conj.
Set

Spin𝑐 (𝑋, 𝑘)∨ := {𝔰 ∈ Spin𝑐 (𝑋, 𝑘) | 𝔰 � 𝔰̄}
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and let S(𝑋, 𝑘) denote the orbit space for the Diff+(𝑋)-action on Spin𝑐 (𝑋, 𝑘)∨/Conj,

S(𝑋, 𝑘) = (Spin𝑐 (𝑋, 𝑘)∨/Conj)/Diff+(𝑋).

As an analog of the notion of a basic class, we call S ∈ S(𝑋, 𝑘) a basic orbit of E if SW𝑘
half-tot(𝐸,S) ≠ 0.

Let Bhalf (𝐸, 𝑘) denote the set of basic orbits:

Bhalf (𝐸, 𝑘) = {S ∈ S(𝑋, 𝑘) | SW𝑘
half-tot (𝐸,S) ≠ 0}.

Then we have the following:

Lemma 3.2. Suppose that B is compact. Then Bhalf (𝐸, 𝑘) is a finite set.

Proof. Fix a section 𝜎′. Lemma 3.1 implies that there are only finitely many 𝔰 ∈ Spin𝑐 (𝑋, 𝑘) such that
there is 𝑏 ∈ 𝐵 with M(𝐸𝑏 , 𝔰, 𝑔𝑏 , 𝜎′(𝑏)) ≠ ∅, where 𝑔𝑏 is the underlying metric of 𝜎′(𝑏) on 𝐸𝑏 . Since
#Bhalf (𝐸, 𝑘) is bounded above by the number of such 𝔰, the assertion follows. �

4. Computing the invariant

In this section, we prove Theorem 2.7 by evaluating the Seiberg–Witten characteristic classes
SW

𝑘
half-tot(𝑋,S) introduced in Section 3 at homology classes 𝛼𝑖 defined in (3).

Precisely, we shall consider the homomorphism⊕
S∈S(𝑋,𝑘)

〈SW𝑘
half-tot(𝑋,S),−〉 : 𝐻𝑘 (𝐵Diff+(𝑋);Z) →

⊕
S∈S(𝑋,𝑘)

Z/2.

We shall show that this homomorphism has infinitely generated image in
⊕

S∈S(𝑋,𝑘) Z/2 for 4-manifolds
X considered in Theorem 2.7.

4.1. Reducing to the monodromy invariant part

The characteristic class SW𝑘
half-tot(𝑋,S) involves spin𝑐 structures that are not invariant under the mon-

odromies of the families that we consider. Adapting an argument in [20, Section 3.1] to our setup, we
shall see that such spin𝑐 structures do not contribute to the final computation.

To describe it, let us recall the numerical families Seiberg–Witten invariant. Let B be a closed
smooth manifold of dimension 𝑘 ≥ 0, X be a smooth oriented closed 4-manifold of 𝑏+(𝑋) ≥ 𝑘 + 2, and
𝑋 → 𝐸 → 𝐵 be a fiber bundle with structure group Diff+(𝑋) over B. Given a spin𝑐 structure 𝔰 on X
of formal dimension −𝑘 , suppose that the monodromy of E fixes the isomorphism class of 𝔰. Then the
numerical families Seiberg–Witten invariant

𝑆𝑊 (𝐸, 𝔰) ∈ Z/2

can be defined. If the structure of E lifts to the automorphism group of the spin𝑐 4-manifold (𝑋, 𝔰), this
is the invariant defined by Li–Liu [23]. However, even if E does not admit such a lift, one can still define
𝑆𝑊 (𝐸, 𝔰) [19, 5].

Pick an orbit S ∈ S(𝑋, 𝑘). We regard S also as a subset of Spin𝑐 (𝑋, 𝑘)/Conj. Let 𝜏 :
Spin𝑐 (𝑋, 𝑘)/Conj → Spin𝑐 (𝑋, 𝑘) be a section of the quotient map Spin𝑐 (𝑋, 𝑘) → Spin𝑐 (𝑋, 𝑘)/Conj.
For mutually commuting diffeomorphisms 𝑓1, . . . , 𝑓𝑘 of X, we denote by 𝑋 𝑓1 ,..., 𝑓𝑘 → 𝑇 𝑘 the multiple
mapping torus of 𝑓1, . . . , 𝑓𝑘 .

Proposition 4.1 (cf. [20, Corollary 3.4]). Let 𝑓1, . . . , 𝑓𝑘 : 𝑋 → 𝑋 be mutually commuting orientation-
preserving diffeomorphisms. Suppose that they satisfy the following conditions:
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(i) For each 𝑖 = 1, . . . , 𝑘 , 𝑓𝑖 preserves 𝜏(S) setwise.
(ii) For each i, there exists a smooth isotopy (𝐹𝑡

𝑖 )𝑡 ∈[0,1] from 𝑓 2
𝑖 to id𝑋 . For 𝑖 ≠ 𝑗 , 𝐹𝑡

𝑖 commutes with 𝑓 𝑗
for any 𝑡 ∈ [0, 1].

Then we have

〈SW𝑘
half-tot(𝑋 𝑓1 ,..., 𝑓𝑘 ,S), [𝑇 𝑘 ]〉 =

∑
𝔰∈𝜏 (S) ,

𝑓 ∗
𝑖 𝔰=𝔰 (1≤𝑖≤𝑘)

𝑆𝑊 (𝑋 𝑓1 ,..., 𝑓𝑘 , 𝔰)

in Z/2.
Proof. The proof is obtained by repeating the proof of [20, Corollary 3.4] with replacing
Spin𝑐 (𝑋, 𝑘)/Conj with S . We just give a slight comment on how to do the modification.

If the actions of all 𝑓𝑖 on 𝜏(S) are trivial, there is nothing to prove. To treat the other case, first note
that we have a modification of [20, Lemma 3.3] obtained by replacing Spin𝑐 (𝑋, 𝑘)/Conj with S . Let us
consider a (Z/2)𝑘 -action on 𝜏(S) generated by 𝑓1, . . . , 𝑓𝑘 . For 𝔰 ∈ 𝜏(S), if there is i with 𝑓 ∗𝑖 𝔰 ≠ 𝔰, we
may use the modified [20, Lemma 3.3] to conclude that the sum of the counts of the moduli spaces for
the (Z/2)𝑘 -orbit of 𝔰 is zero over Z/2. Thus, in any case, 〈SW𝑘

half-tot (𝑋 𝑓1 ,..., 𝑓𝑘 ,S), [𝑇 𝑘 ]〉 is computed
from the counts of the moduli spaces only for the monodromy invariant spin𝑐 structures, and it ends up
with the assertion of Proposition 4.1. �

4.2. Gluing result

Another thing we need is a gluing result proven by Baraglia and the author [5]. We recall the statement
for readers’ convenience. In general, let Z be an oriented smooth closed 4-manifold, and 𝑍 → 𝐸 → 𝐵
be an oriented smooth fiber bundle with fiber Z. Then we get an associated vector bundle

R
𝑏+ (𝑍 ) → 𝐻+(𝐸) → 𝐵

by considering maximal-dimensional positive-definite subspaces of the second cohomology fiberwise.
The isomorphism class of 𝐻+(𝐸) is determined only by E.

The gluing result we need is formulated as follows. Let 𝑘 > 0, and let M, N be closed oriented
smooth 4-manifolds with 𝑏+(𝑀) ≥ 2 and 𝑏+(𝑁) = 𝑘 , and with 𝑏1 (𝑀) = 𝑏1 (𝑁) = 0. Set 𝑋 = 𝑀#𝑁 .
Let 𝔱 ∈ Spin𝑐 (𝑀, 0) and 𝔱′ ∈ Spin𝑐 (𝑁, 𝑘 + 1). Then we have 𝑑 (𝔱#𝔱′) = −𝑘 . Let B be a closed smooth
manifold of dimension k, and 𝑀 → 𝐸𝑀 → 𝐵 and 𝑁 → 𝐸𝑁 → 𝐵 be oriented smooth fiber bundles.
Fix sections 𝜄𝑀 : 𝐵 → 𝐸𝑀 , 𝜄𝑁 : 𝐵 → 𝐸𝑁 whose normal bundles are isomorphic via a fiberwise
orientation-reversing isomorphism, so that we can form the fiberwise connected sum 𝑋 → 𝐸𝑋 → 𝐵 of
𝐸𝑀 and 𝐸𝑁 along 𝜄𝑀 , 𝜄𝑁 . Then we have the following:
Theorem 4.2 [5, Theorem 1.1]. If 𝑤𝑏+ (𝑁 ) (𝐻

+(𝐸𝑁 )) ≠ 0, then we have

𝑆𝑊 (𝐸𝑋 , 𝔱#𝔱′) = 𝑆𝑊 (𝑀, 𝔱)

in Z/2.
Now we apply Theorem 4.2 to the multiple mapping torus 𝐸𝑖 → 𝑇 𝑘 constructed in Subsection 2.2

for 𝑖 ≥ 1. For each 𝑗 = 1, . . . , 𝑘 , recall that 𝑓 𝑗 acts on the j-th copy of 𝐻+(𝑆2 × 𝑆2) ⊂ 𝐻2(𝑆2 × 𝑆2) via
multiplication by −1. We can see that the vector bundle

𝐻+((𝑘𝑆2 × 𝑆2) 𝑓1 ,..., 𝑓𝑘 ) → 𝑇 𝑘

associated to the multiple mapping torus (𝑘𝑆2 × 𝑆2) 𝑓1 ,..., 𝑓𝑘 → 𝑇 𝑘 satisfies

𝑤𝑘 (𝐻
+((𝑘𝑆2 × 𝑆2) 𝑓1 ,..., 𝑓𝑘 )) ≠ 0. (9)

Let 𝔰𝑆 denote the unique spin structure on 𝑘𝑆2 × 𝑆2. Then we have 𝔰𝑆 ∈ Spin𝑐 (𝑘𝑆2 × 𝑆2, 𝑘 + 1).
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Lemma 4.3. Let 𝔱 ∈ Spin𝑐 (𝑀𝑖 , 0). Then we have

𝑆𝑊 (𝐸𝑖 , 𝔱#𝔰𝑆) = 𝑆𝑊 (𝑀𝑖 , 𝔱)

in Z/2.

Proof. This follows from (9) and Theorem 4.2. �

4.3. Completion of the proof

As in Section 2, fix 𝑘 > 0, take a 4-manifold M satisfying Assumption 2.1. We shall use 𝑀𝑖 and 𝑐𝑖 that
appear in Assumption 2.1, and we shall use the notation 𝐸𝑖 and 𝛼𝑖 for 𝑖 ≥ 1 introduced in Subsection 2.2.
Set 𝑋 = 𝑀#𝑘𝑆2 × 𝑆2 and 𝑋𝑖 = 𝑀𝑖#𝑘𝑆2 × 𝑆2.

For each 𝑖 ≥ 1, we fix a section

𝜏0
𝑖 : Spin𝑐 (𝑀𝑖)/Conj → Spin𝑐 (𝑀𝑖)

of the quotient map Spin𝑐 (𝑀𝑖) → Spin𝑐 (𝑀𝑖)/Conj. Using 𝜏0
𝑖 , we define a section

𝜏𝑖 : Spin𝑐 (𝑋𝑖)/Conj → Spin𝑐 (𝑋𝑖)

as follows: for 𝔰 ∈ Spin𝑐 (𝑋𝑖), we define 𝜏([𝔰]) to be the spin𝑐 structure 𝔰′ with [𝔰] = [𝔰′] in
Spin𝑐 (𝑋𝑖)/Conj such that 𝔰′|𝑀𝑖 = 𝜏0([𝔰 |𝑀𝑖 ]). Restricting this, we obtain a section (denoted by the
same notation)

𝜏𝑖 : Spin𝑐 (𝑋𝑖 , 𝑘)/Conj → Spin𝑐 (𝑋𝑖 , 𝑘).

As in Subsection 4.2, let 𝔰𝑆 denote the unique spin structure on 𝑘𝑆2 × 𝑆2. For each 𝑖 ≥ 1, we define
S𝑖 ∈ S(𝑋𝑖 , 𝑘) to be the Diff+(𝑋𝑖)-orbit that contains [𝑐𝑖#𝔰𝑆] ∈ Spin𝑐 (𝑋𝑖 , 𝑘)/Conj.

Proposition 4.4. For 𝐸𝑖 → 𝑇 𝑘 constructed in Subsection 2.2, we have

〈SW𝑘
half-tot (𝑋,S𝑖), (𝐸𝑖)∗([𝑇

𝑘 ])〉 ≠ 0

in Z/2.

Proof. First, the naturality of the characteristic class implies that

〈SW𝑘
half-tot (𝑋,S𝑖), (𝐸𝑖)∗([𝑇

𝑘 ])〉 = 〈SW𝑘
half-tot(𝐸𝑖 ,S𝑖), [𝑇

𝑘 ]〉. (10)

To compute the right-hand side of (10), we shall apply Proposition 4.1 to the families 𝐸𝑖 . Recall that 𝐸𝑖

was constructed by using a diffeomorphism 𝑓 ∈ Diff𝜕 (𝑆
2 ×𝑆2 \ Int(𝐷4)). This diffemorphism f is order

2 in 𝜋0 (Diff𝜕 (𝑆
2×𝑆2\Int(𝐷4))). Thus, for the diffeomorphisms 𝑓1, . . . , 𝑓𝑘 on 𝑋𝑖 , of which the multiples

mapping torus is 𝐸𝑖 , we can find isotopies (𝐹𝑡
𝑖 )𝑡 ∈[0,1] that satisfy the assumption (ii) of Proposition 4.1.

Since 𝑓 𝑗 act trivially on 𝑀𝑖 , by the construction of 𝜏𝑖 , it follows that 𝜏𝑖 (S𝑖) is setwise preserved under
the actions of 𝑓 𝑗 . Thus, we may apply Proposition 4.1 to the families 𝐸𝑖 and obtain the equality

〈SW𝑘
half-tot(𝐸𝑖 ,S𝑖), [𝑇

𝑘 ]〉 =
∑

𝔰∈𝜏𝑖 (S𝑖 ) ,
𝑓 ∗
𝑗 𝔰=𝔰 (1≤ 𝑗≤𝑘)

𝑆𝑊 (𝐸𝑖 , 𝔰) (11)

in Z/2.
We shall compute the right-hand side of (11). Since 𝑓 𝑗 acts on the j-th copy of 𝐻2(𝑆2 × 𝑆2) via

multiplication by −1, a spin𝑐 structure 𝔰 ∈ Spin𝑐 (𝑋𝑖) is 𝑓 𝑗 -invariant for all j if and only if 𝔰 is of the
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form 𝔱#𝔰𝑆 , where 𝔱 ∈ Spin𝑐 (𝑀𝑖). It is easy to see that, if 𝑑 (𝔱#𝔰𝑆) = −𝑘 , then 𝑑 (𝔱) = 0. Thus, we get
from Lemma 4.3 that ∑

𝔰∈𝜏𝑖 (S𝑖) ,
𝑓 ∗
𝑗 𝔰=𝔰 (1≤ 𝑗≤𝑘)

𝑆𝑊 (𝐸𝑖 , 𝔰) =
∑

𝔱#𝔰𝑆 ∈𝜏𝑖 (S𝑖) ,
𝔱∈Spin𝑐 (𝑀𝑖 ,0)

𝑆𝑊 (𝑀𝑖 , 𝔱) (12)

in Z/2.
To compute the right-hand side of (12), let 𝔱 ∈ Spin𝑐 (𝑀𝑖 , 0) be a spin𝑐 structure on 𝑀𝑖 . We claim

that 𝔱#𝔰𝑆 lies in 𝜏𝑖 (S𝑖) if and only if all of the following three conditions (i)–(iii) are satisfied: (i)
div(𝑐1 (𝔱)) = div(𝑐𝑖), (ii) 𝑐1 (𝔱)2 = 𝑐2

𝑖 , and (iii) 𝔱 ∈ 𝜏0
𝑖 (Spin𝑐 (𝑀𝑖 , 0)/Conj). Noting 𝑐1 (𝔱) = 𝑐1 (𝔱#𝔰𝑆) in

𝐻2 (𝑋𝑖;Z), this claim is a direct consequence of Proposition 4.5, which we shall see later.
By the claim of the last paragraph, we have∑

𝔱#𝔰𝑆 ∈𝜏𝑖 (S𝑖) ,
𝔱∈Spin𝑐 (𝑀𝑖 ,0)

𝑆𝑊 (𝑀𝑖 , 𝔱) = 𝑁 (𝑀𝑖; 𝑐𝑖) (13)

in Z/2. Here the right-hand side of (13) was assumed to be nonzero in Z/2 in Assumption 2.1. Thus,
the assertion of the proposition follows from (10), (11), (12), (13). �

Here we record a proposition that we have used above:

Proposition 4.5 (Wall [34, 35]). Let Z be a smooth closed oriented simply-connected 4-manifold.
Suppose that 𝑏2(𝑍) − 𝜎(𝑍) ≥ 2 and that Z is either indefinite or 𝑏2 (𝑍) ≤ 8. Set 𝑍 ′ = 𝑍#𝑆2 × 𝑆2.
Then, given 𝑥, 𝑦 ∈ 𝐻2(𝑍 ′;Z), there exists 𝑓 ∈ Diff+(𝑍 ′) with 𝑓 ∗𝑥 = 𝑦 if and only if 𝑥, 𝑦 have the same
divisibility, self-intersection and type (i.e., characteristic or not).

Proof. For a unimodular lattice Q with rank(𝑄)−𝜎(𝑄) ≥ 4, Wall [34, page 337] proved that Aut(𝑄) acts
transitively on elements of given divisibility, self-intersection and type. However, each of divisibility,
self-intersection and type is invariant under the action of Aut(𝑄). Thus, orbits in 𝑄/Aut(𝑄) one-to-one
correspond to triples consisting of divisibility, self-intersection and type. The assertion of the proposition
follows from this applied to the intersection form of 𝑍 ′, together with another theorem by Wall [35,
Theorem 2] on the realizability of an automorphism of the intersection form by a diffeomorphism. �

Now we can complete the proof of the most general result in this paper:

Proof of Theorem 2.7. As in the construction of 𝐸𝑖 , we fix diffeomorphisms 𝜓𝑖 : 𝑀̊𝑖#𝑘𝑆2 × 𝑆2 → 𝑋̊
and its extensions 𝜓𝑖 : 𝑀𝑖#𝑘𝑆2 × 𝑆2 → 𝑋 . Considering the pull-back of the orbits S𝑖 ∈ S(𝑋𝑖 , 𝑘) under
𝜓𝑖 , we obtain orbits (denoted by the same notation) S𝑖 ∈ S(𝑋, 𝑘).

Passing to a subsequence if necessary, we may suppose that all div(𝑐𝑖) are distinct by (iii) of
Assumption 2.1. Thus, we may suppose that all S𝑖 are distinct elements in S(𝑋, 𝑘). From this together
with Lemma 3.2, by passing to a subsequence again, we may suppose that

S𝑖 ∉ Bhalf (𝐸1, 𝑘) ∪ · · · ∪ Bhalf (𝐸𝑖−1, 𝑘) (14)

for all 𝑖 ≥ 2.
Now it follows from Proposition 4.4 together with (3), (14) that the homomorphism⊕

𝑖≥2
〈SW𝑘

half-tot (𝑋,S𝑖),−〉 : 𝐻𝑘 (𝐵Diff+(𝑋);Z) →
⊕
𝑖≥2
Z/2

restricts to a surjection

〈𝛼̊𝑖 | 𝑖 ≥ 2〉 �
⊕
𝑖≥2
Z/2.
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This combined with Lemma 2.6 implies that the subgroup 〈𝛼̊𝑖 | 𝑖 ≥ 2〉 is a (Z/2)∞-summand of
𝐻𝑘 (𝐵Diff+(𝑋);Z), which together with Lemma 2.4 completes the proof of (i) of Theorem 2.7.

Since 𝜌∗(𝛼̊𝑖) = 𝛼𝑖 , we obtain (ii) of Theorem 2.7 from (i) of Theorem 2.7 together with
Lemma 2.5. �

5. Addenda

5.1. Finiteness of mapping class groups in dimension ≠ 4

In dimension ≠ 4, not only finite generation, but stronger finiteness on mapping class groups is known.

5.1.1. dimension ≥ 6
Given a simply-connected closed smooth manifold X of dim 𝑋 ≥ 6, Sullivan [33, Theorem (13.3)]
proved that 𝜋0 (Diff(𝑋)) is ‘commensurable’ with an arithmetic group. Krannich and Randal-Williams
[21] clarified that the term ‘commensurable’ is used in [33] in a different way from the current common
usage. In summary, given a group, we have implications:

(commensurable with an arithmetic group in the current common sense)
⇒(commensurable with an arithmetic group in the sense of [33])
⇒(finitely presented) ⇒ (finitely generated).

In particular, Theorem 1.1 implies that mapping class groups of simply-connected 4-manifolds need not
be commensurable with arithmetic groups, even in Sullivan’s sense.

5.1.2. dimension 5
While the above result by Sullivan [33, Theorem (13.3)] was stated in dim ≥ 6, actually his result holds
also in dimension 5. We record a way to deduce this from a recent paper [9]. (The author thanks Sander
Kupers for informing the author of this argument.) In the proof of [9, Theorem 2.6], the assumption
that dim ≥ 6 was used only in the point (i) in the proof, but it follows from Cerf’s theorem [10] that
𝜋0 (𝐶

Diff (𝑀)) = 0 for a simply-connected 5-manifold M, and the assumption that dim ≥ 6 was not used
in [9, Proposition 2.7], except for the part where [9, Proposition 2.6] was used.

5.1.3. dimension ≤ 3
The mapping class groups of closed orientable manifolds of dim ≤ 3 are finitely presented. See Dehn
[17] for dimension 2. In dimension 3, a more general finiteness holds for the moduli space of 3-manifolds.
See Boyd–Bregman–Steinebrunner [6, Theorem 6.12].

5.2. Questions: finiteness in other categories

We close this paper by posting questions on categories other than the smooth category.
As noted in Remark 1.3, for a simply-connected closed topological 4-manifold X, the topological

mapping class group 𝜋0 (Homeo(𝑋)) is known to be finitely generated, and so is 𝐻1 (𝐵Homeo(𝑋);Z).
However, to the best of the author’s knowledge, there is no known finiteness result on

𝐻𝑘 (𝐵Homeo(𝑋)) for 𝑘 > 1 for general simply-connected 4-manifolds X. However, it may be natu-
ral to hope such finiteness results in the 4-dimensional topological category, as opposed to the smooth
category:

Question 5.1. Let X be a simply-connected closed oriented topological 4-manifold. Is
𝐻𝑘 (𝐵Homeo(𝑋);Z) finitely generated for each k?

Recently, Lin and Xie [25] extensively studied the moduli space M 𝑓 𝑠 (𝑋) of formally smooth 4-
manifolds, which is a middle moduli space between the smooth moduli space M𝑠 (𝑋) = 𝐵Diff(𝑋)
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and the topological moduli space M𝑡 (𝑋) = 𝐵Homeo(𝑋). Lin and Xie pointed out that most exotic
phenomena detected by gauge theory are relevant to the discrepancy between M𝑠 (𝑋) and M 𝑓 𝑠 (𝑋).
Since infiniteness of M𝑠 (𝑋) detected in this paper comes from gauge theory, it may be natural to expect
finiteness of M 𝑓 𝑠 (𝑋):

Question 5.2. Let X be a simply-connected closed oriented topological 4-manifold that admits a formally
smooth structure. Is 𝐻𝑘 (M 𝑓 𝑠 (𝑋);Z) finitely generated for each k?
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