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We define ‘surface layer’ (SL) as an inertia-dominated turbulence region outside a viscous
or roughness surface-adjacent sub-layer (SAS) that is characterised by linear scaling of
specific coherence length scales on wall-normal distance, z. We generalise the mechanisms
that underlie the formation of the classical inertial SL in the shear-dominated turbulent
boundary layer (TBL) to wall-bounded turbulent flows with zero mean shear. Using
particle image velocimetry data from two wind tunnel facilities, we contrast the classical
TBL SL with a non-classical shear-free SL generated within grid turbulence advected over
an impermeable plate using two grids with different turbulence length scales. Integral-
scale variations with z and other statistics are quantified. In both shear-dominated and
shear-free SLs we observe well-defined linear increases in z of the streamwise integral
scale of vertical velocity fluctuations. In grid turbulence the shear-free SL initiates just
above the SAS that confines friction-generated motions. By contrast, the TBL SL forms
with non-zero mean shear rate that extends streamwise coherence lengths of streamwise
fluctuations. In both flow classes only the integral scales of vertical fluctuating velocity
increase linearly with z, indicating that the SL is generated by the blockage of vertical
fluctuations in the vertical. Whereas the SAS in the TBL is much thinner than in the grid-
turbulence flows, the generation of a shear-free SL by the interaction of turbulence eddies
and a surface depends on the relative thinness of the SAS. We conclude that the common
generalisable SL mechanism is direct blockage of vertical fluctuations by the impermeable
surface.
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1. Background and motivation

1.1. Generalised description of the surface layer: aims
Consider the general case of fully developed high Reynolds number wall-bounded
turbulent flows over solid surfaces. In such flows, there exists a turbulence-filled region
near the surface where turbulence structure is directly modified by the interactions
between the turbulence eddies within the region and the impermeable surface. This
‘surface-modified layer’ (SML) has a characteristic thickness, δSM L , that will depend
on the scale, structure and source of the turbulence. Within the surface-modified
turbulence region there exist sub-layers with definable characteristics. Directly adjacent to
hydrodynamically smooth surfaces, for example, a frictional layer is created characterised
by high viscous stresses and frictional impacts on the turbulence dynamics. Similarly,
over hydrodynamically rough surfaces a roughness layer is created by the amalgamation
of the local separated flows over the roughness elements. The turbulence within this
‘surface-adjacent sub-layer’ (SAS) of thickness δS AS is characterised by a viscous scale
δν over smooth surfaces, or by a roughness scale z0 over rough surfaces. We consider high
Reynolds numbers and small roughness elements where the turbulence scales within the
SAS are confined to a thin layer adjacent to the surface (δS AS << δSM L ). On the other
extreme, the largest surface-modulated turbulence eddies have coherence lengths of order
δSM L .

However, there exists the potential for an inertia-dominated near-surface sub-layer to
exist just outside the SAS with turbulence eddies that are strongly impacted by the surface.
If this inertial sub-layer is sufficiently thin relative to δSM L , and if aspects that impact
coherence of the inertia-dominant turbulence motions are not significantly influenced
by either δSM L -scale motions or the SAS below, we anticipate that specific coherence
lengths related to these inertia-dominated aspects of turbulence motions will scale on
the distance from the surface. This could occur only in the absence of external forcing
sufficiently strong to interfere with linear scaling, such as strong horizontal pressure
gradients induced by flow over non-planar surfaces. We use the term ‘surface layer’ to refer
to an inertia-dominated sub-layer as described above which displays linear increases in
specific integral scales with distance z from the surface. Whereas it is not a priori obvious
that surface layers so defined exist, this concept of surface layer originated with the law-of-
the-wall phenomenology for the canonical shear-driven smooth-wall turbulent boundary
layer (Tennekes & Lumley 1972), and was generalised by Monin & Obukhov (1954) to
the canonical daytime rough-surface atmospheric boundary layer driven by both shear and
buoyancy, further discussed in § 1.1.1. The current study aims to give substance to this
concept on the basis of experimental evidence and considers how generally applicable it
may be.

In context with our experimental study, consider figure 1, which contrasts the concept
of the surface layer in two classes of high Reynolds number wall-bounded turbulent flows.
Figure 1(a) illustrates the classical surface layer in a high Reynolds number turbulent
boundary layer (TBL) that contains a surface layer. In this case, turbulence generated very
near the surface in the buffer layer spreads from the surface to fill the TBL. As a result, the
TBL is, itself, the ‘SML’ since it is the region of turbulence that has been directly modified
by the solid surface. The SAS, in this case, is the viscous sub-layer with thickness δS AS that
scales on δν = ν/uτ when the surface is hydrodynamically smooth, or a roughness layer
with thickness δS AS that scales on z0 << δT BL when the surface is hydrodynamically
rough (ν is kinematic viscosity and uτ is friction velocity). The lower boundary of the
surface layer, δL , is outside the buffer or roughness layers, while the upper margin typically
extends to δU ∼ 0.15δT BL .
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Figure 1. Two examples of wall-bounded turbulent flows: (a) a high Reynolds number turbulent boundary layer
over a solid surface within an irrotational external flow; (b) the transport of externally generated turbulence
over an impermeable surface. In both flows, horizontal dimensions of surface curvature are large relative to the
thickness of the surface-modified layer.

In contrast, figure 1(b) illustrates a SML within a region of turbulence that is in a
fully developed state of interaction with the surface as turbulence eddies are transported
over within a roughly uniform mean flow. A fundamental distinction between the flows
illustrated in figure 1(a) versus figure 1(b) is that, whereas in the TBL of figure 1(a)
the SML is created by turbulence that was generated at the surface and is subsequently
modified by the surface as it advects downstream and away from the surface, the SML
in figure 1(b) is created from turbulence that originates upstream and is subsequently
modified as it passes over and interacts with the impermeable surface outside a SAS. In
this case the SAS is partly generated by friction or roughness with an upper boundary that
confines turbulence fluctuations that are generated adjacent to the surface by strong shear;
the SAS is effectively a non-canonical highly turbulent boundary layer. We consider cases
where δS AS << δSM L and hypothesise that the externally generated turbulence interacts
with the impermeable surface through a SAS that is sufficiently thin to have negligible
impact on the surface-modified turbulence above. Thus, like the classical law-of-the-wall
layers in the TBL (§ 1.1.1), there might exist a near-surface inertia-dominated turbulence
layer that is strongly modified by interactions with the impermeable surface without being
significantly impacted by the much larger δSM L eddies or much smaller δS AS eddies within
the SAS. If that is the case, and if the mechanisms that cause linear scaling between some
integral scales and the distance from the surface within the surface layer of the TBL are the
same, we anticipate the potential development of a surface layer in the flow of figure 1(b).
This surface layer would extend from a lower bound δL outside the SAS to an upper bound
δU that is sufficiently far below the upper boundary of the SML, δSM L , that the eddies
of order δSM L in scale do not significantly impact the turbulence within, as illustrated in
figure 1(b).
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1.1.1. The classical descriptions of the surface layer.
The classical descriptions of the surface layer originate in the engineering community
with law-of-the-wall phenomenology developed for the canonical shear-driven stationary
zero-pressure-gradient smooth-wall flat-plate TBL at high Reynolds numbers (Schlichting
1968; Tennekes & Lumley 1972; Pope 2000; Jiménez 2013). Law-of-the-wall has
been generalised by the geophysical community for application to the canonical shear-
and buoyancy-driven stationary rough-surface atmospheric boundary layer (Monin &
Obukhov 1954; Kaimal & Wyngaard 1990; Wyngaard 2010). Here, we summarise these
phenomenologies as background to the current study.

In the stationary smooth-wall TBL, the length and velocity scales of the fluctuations
that underlie wall-normal turbulent momentum flux are, in principle, functions of both
inner frictional and outer boundary layer flow scales. Law-of-the-wall (LOTW) postulates
the existence of a surface-adjacent region within the TBL in which the outer scales do
not contribute significantly to the statistical structure of the turbulence motions. This
surface-adjacent layer contains inner and outer sub-layers. The inner sub-layer is directly
adjacent to the surface with turbulent motions characterised by a viscous length scale. The
outer sub-layer is inertia dominated and sufficiently distant from the viscous sub-layer
that the inner viscous scales have negligible impact. LOTW phenomenology argues that,
in this outer inertia-dominated sub-layer, the only relevant length scale that characterises
turbulence statistics is the distance from the surface, z (Tennekes & Lumley 1972). This,
then, implies that, in the inertia-dominated sub-layer, the energy-containing turbulence
motions are characterised by coherence lengths that scale linearly on z. Although this
length scale has been described in relation to Prandtl’s ‘mixing length’ (e.g. Schlichting
1968), more precisely, the statistical length scales of the energy-containing eddies are
integral scales (Pope 2000). It is this inertia-dominated sub-layer with specific integral
scales that increase linearly with distance from the surface that we define as the ‘surface
layer’ in the current study.

LOTW phenomenology for the canonical smooth-surface TBL requires that, not only
are there no externally imposed length scales to compete with the variable length scale
z in the surface layer, the inertia-dominated surface-layer fluctuations are statistically
characterised by a single fixed velocity scale given by the friction velocity uτ , where
u2

τ is the surface momentum flux per unit mass (Prandtl 1925; Schlichting 1968).
LOTW argues that the momentum flux at the surface characterises the turbulent flux of
momentum through the inertia-dominated surface layer (Horst 1999; Wyngaard 2010).
Dimensional analysis in the surface layer then leads to ∂U/∂z ∼ uτ /z, where U (z) is
mean velocity magnitude, which integrates to a log profile, U (z) ∼ uτ log z (von Kármán
1930; Schlichting 1968). The universality of the mean velocity log profile (in appropriate
limits) has been extensively studied in the literature, with a proportionality constant (von
Kármán constant) that may depend on the flow (Pope 2000; Nagib & Chauhan 2008).
Consequently, the surface layer in the canonical flat-plate TBL is commonly referred to as
the ‘log layer.’

However, a unifying element of the inertial surface layer is the requirement that
specific coherence lengths of the energy-dominant eddies scale on the distance from
the impermeable surface. This is made clear when classical LOTW for the shear-driven
smooth-wall TBL is generalised to the rough-surface atmospheric boundary layer (ABL),
where LOTW is called ‘Monin–Obukhov similarity theory’ (Monin & Obukhov 1954)
with the acronym MOST. In the ABL the surface-adjacent viscous layer is replaced by
an inertia-dominated roughness layer and MOST applies to a fully inertial surface layer at
some distance above the roughness elements in which both shear and buoyancy production
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of turbulence can exist. The level of shear vs. buoyancy production is represented by an
additional ‘Obukhov’ length scale, L , where |L| characterises the height in the boundary
layer below which shear production dominates and above which buoyancy production
dominates. MOST retains the requirement that specific integral scales of inertia-dominated
turbulence motions scale on distance from the surface. The dimensional analysis includes
the influence of L by requiring that MOST-normalised variables depend on the ratio z/L ,
with a functional form that must be determined empirically. Field campaigns developed to
validate MOST and to develop the empirical forms for (∂U/∂z)/(uτ /z) used in the micro-
meteorology community are summarised in Kaimal & Wyngaard (1990) and Wyngaard
(2010). A combined large eddy simulation (LES) and field study suggests the existence of
a weak secondary dependence of the outer scale in the atmospheric surface layer (Khanna
& Brasseur 1997; Johansson et al. 2001).

MOST retains the LOTW phenomenology that the mechanisms that cause specific
integral scales to increase linearly with z in the surface layer of the flat-plate
TBL also exist in the atmospheric surface layer, even as shear-production dominance
near the surface transitions to buoyancy-production dominance above z ∼ |L|. The
influence of the additional length scale L , however, leads to the generalised scaling
∂U/∂z ∼ (uτ /z) f (z/L) with consequent departures from a logarithmic profile for
mean velocity. Even with non-logarithmic velocity profiles, however, the LOTW-MOST
phenomenologies imply the existence of a sub-layer with linear growth in specific integral
scales. Using the term ‘surface layer’ to define this sub-layer, the current study explores
the generalisation of the surface layer to other wall-bounded turbulent flows where the
mechanisms underlying linear growth are not impacted by other confounding influences.

1.1.2. Aims and organisation
The current study explores the concept that the surface layer defined by a linear increase
in one or more specific integral scales with wall-normal distance z from the surface is
generalisable to wall-bounded turbulent flows that meet the criteria for linear scaling. To
explore this hypothesis, we contrast the two classes of experimentally generated wall-
bounded turbulent flows illustrated in figure 1, both with smooth surfaces. We shall refer to
a surface layer within the TBL (figure 1a) as a ‘shear-dominated surface layer’ (SDSL) and
a surface layer within turbulence passing over a surface embedded within a uniform mean
flow (figure 1b) as a ‘shear-free surface layer’ (SFSL). We hypothesise that the existence
of linear scaling in integral scales with distance from the surface in the surface layer is
directly a consequence of blockage of vertical motions at the impermeable surface and
that linear scaling will occur both in the presence of, and in the absence of, mean shear
rate. If the presence of a surface layer is caused by wall blocking and nothing else, then
we may further hypothesise that a surface layer exists in all wall-bounded turbulent flows
at sufficiently high Reynolds numbers in the absence of confounding influences such as
external forcing at surface-layer scales. Of potential importance to modelling, the existence
of linear growth of integral scales from the surface implies the existence of coherence
through the surface layer with consequent correlation in the wall-normal direction that
is established by the interactions between the turbulence eddies and the impermeable
surface. This study is an investigation of a fundamental mechanism underlying surface-
layer behaviour, its measurement in shear-free wall-bounded turbulent flows and, by
extension, its generalisation to other wall-bounded turbulent flows.

In the next section (§ 1.2) we review key literature relevant to the current study, followed
by § 2 in which the design of the experimental campaign with underlying methods is
presented. Quantitative descriptions of the surface layers through variations in integral
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length scale with distance from the surface are given in § 3, followed by extensive
comparisons in § 4 between shear-dominated and shear-free surface-layer characteristics
and the impacts of turbulence production. We summarise the analysis and take-away
conclusions in § 5. Note that we use the terms ‘vertical’ and ‘horizontal’ as synonymous
with ‘wall normal’ (z) and ‘wall parallel’ (x, y).

1.2. Previous studies: the shear-free surface layer
Prior works have examined shear-free turbulence–surface interactions within what is
sometimes described as a ‘shear-free TBL.’ Hunt & Graham (1978) developed a theory
to characterise the interaction between initially homogeneous and isotropic turbulence
within a uniform flow and a flat surface with the surface velocity equal to the mean
flow velocity. The theory applies as the turbulence initiates distortion near the leading
edge of the flat plate where linearisation akin to ‘rapid distortion theory’ (RDT) is
applicable. Three distinct regions in the flow were developed within the linearisation:
(i) a very thin wall-adjacent viscous laminar sub-layer where no slip is applied, (ii) an
inertia-dominated ‘source layer’ (using the terminology of Hunt & Graham (1978)) where
the RDT-like model predicts an irrotational modification to the flow from blockage and
(iii) an outer region where the flow returns to the free-stream state. A lower boundary
condition that enforces blockage of vertical motions at the flat plate defines the source of
fluctuations that drive the ‘source layer.’ This is the vertical velocity within the isotropic
free-stream turbulence at the location of the surface. In effect, the turbulence flowing over
the flat plate is blocked at the lower boundary and turbulence structure within the source
region is adjusted through an irrotational response to blockage. It was shown that the
model predicts linear growth in integral scales in the limit z → 0 (i.e. to the thin viscous
layer), but the relationship to surface layer was not analysed. An important element in the
theoretical model is that the viscous layer is so thin that that blockage directly modulates
the turbulence in their source layer, similar to an extended surface layer.

Perot & Moin (1995) note that the Hunt & Graham (1978) model of turbulence response
to a moving wall is mathematically equivalent to an RDT model of a wall instantaneously
placed within a field of isotropic turbulence. Using this approach, Hunt & Carlotti (2001)
extended the Hunt & Graham analysis to show that lww,x ∼ z in the limit z → 0 (with
a thin viscous layer) when the wavenumber spectrum contains a high Reynolds number
k−5/3 inertial sub-range. However, with more rapid spectral roll-off consistent with lower
Reynolds numbers, the integral scale has a nonlinear dependence on z in the limit,
suggesting that linear scaling requires inertia dominance. In the TBL, where both shear
production and blockage are active, Hunt & Carlotti (2001) represent vertical velocity
variances as the sum of ‘shear’ and ‘blocking’ terms that are treated separately. Hunt
(1984) used the Hunt & Graham (1978) concepts to develop a heuristic model of a fully
convection-driven turbulent ABL that they found agrees well with measurements. They
show that blockage in the near-surface region leads to linear growth in the streamwise
integral length scale of vertical velocity fluctuations, lww,x , in the limit z → 0. These
studies suggest that both blockage and strong inertia dominance underlie the linear growth
in integral scale that identifies the surface layer. However, linear scaling appears only
in the limit. Furthermore, RDT restricts the dynamics to a short-time response with
no turbulence–turbulence interactions. Magnaudet (2003) argued that the RDT theory
represents the leading-order terms for longer-time expansions in the limit of high Reynolds
numbers, potentially extending applicability to longer times.

Early experimental measurements by Uzkan & Reynolds (1967) of grid-generated
turbulence passed over a moving belt in a water channel facility, concluded that surface
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blockage acted to attenuate turbulence intensity near the surface in the absence of mean
velocity gradients. Thomas & Hancock (1977) improved on these experiments with similar
wind tunnel measurements of grid turbulence over a moving belt designed to compare
with the theory of Hunt & Graham (1978). These experiments agreed overall with the
Hunt & Graham (1978) predictions. Specifically, they found that vertical velocity variance
decreases towards the (moving) surface like 〈w′2〉 ∼ z2/3 in the limit z → 0. Consistent
with arguments from continuity (§ 4.3), they find that horizontal variances, 〈u′2〉 and 〈v′2〉,
increase towards the surface.

McCorquodale & Munro (2017, 2018) studied experimentally shear-free turbulence–
surface interactions with oscillating grid turbulence to analyse pressure–strain-rate
correlations and intercomponent energy transfer. They concluded that the ‘splat–antisplat
disequilibrium’ mechanism proposed by Perot & Moin (1995) is a viscous effect in the
thin wall-adjacent sub-layer and that inter-component energy transfer acts as a ‘return-
to-isotropy’ mechanism outside the viscous sub-layer, as originally proposed by Walker
et al. (1996). Measured increases in horizontal integral length scale of vertical velocity
fluctuations were found to agree qualitatively with Thomas & Hancock (1977), but
assessment of linearity is not possible due to significant scatter in the data points.

1.2.1. Related studies
An overall aim of the current study is to compare and generalise the classical surface layer
within the canonical TBL (figure 1a) to that which forms within turbulence generated
by an external source passing over a solid surface and modified outside a SAS. We note
that the SAS in this case is, in effect, a highly non-canonical TBL (figure 1b) and that
many studies have been carried out on the impacts of free-stream turbulence on underlying
boundary layers (Hancock & Bradshaw 1983; Dogan et al. 2016, 2017; Esteban et al. 2017;
Hearst et al. 2018; Dogan et al. 2019; Kozul et al. 2020; Hearst et al. 2021; Jooss et al.
2021). These studies, while impactful, are not directly relevant to the current focus on
the modification of the turbulence structure outside a thin SAS by a solid surface. Another
related issue is the extent to which the statistically developed linear scaling of integral scale
with distance from the surface is reflected in the local structure of the individual eddies that
underlie the statistics. An ‘attached eddy’ framework has been developed in recent years
primarily in context with streamwise turbulent velocity fluctuations in the near-surface
canonical TBL through collections of three-dimensional vortical structures parameterised
to produce a log mean velocity profile (Marusic & Monty 2019). The attached eddy
concept originated with Townsend (1976), who postulated a mathematical form for local
eddy velocity distributions that scale locally on the distance from the surface. There is
a difference between Townsend’s linear growth of eddy structure and the linear growth
of a particular integral length scale, as one does not necessarily imply the other, but the
mechanisms underlying linear growth in eddy structure or integral scale are not addressed
in these works. Additionally, their quantification of the underlying eddy structure is not
within the scope of this paper.

2. Methodology
The present work experimentally explores the presence and structure of the surface layer
within two classes of wall-bounded turbulent flow. The first is of turbulence, generated by
a passive grid, advected over a flat plate whose leading edge is positioned far downstream
of the grid within the region of homogeneous turbulence and uniform mean flow. In
this flow the turbulence eddies, generated far upstream of the flat plate and outside of
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Figure 2. Schematic of UCB wind tunnel experiment of grid turbulence advected over a flat plate and
stereoscopic particle image velocimetry (PIV) measurement system: (a) top-down view of flat plate and
illustrative perpendicular PIV measurement planes, (b) side view of flat plate.

the surface-adjacent sub-layer or TBL, are modified by the presence of the impermeable
surface rather than generated by it. The second flow is the canonical flat-plate TBL where
the surface layer forms within a region where there is both turbulence production and
modification due to the presence of the impermeable, no-slip surface. Note that the use of a
smooth flat plate in both experiments ensures that there are no additional scales influencing
the turbulence structure imposed by topography, pressure gradient or other means. The
experimental database produced by these experiments is used throughout this paper to
contrast the characteristics of the SDSL in the classical flat-plate TBL with the formation
of a SFSL generated by the interaction of grid turbulence with a flat plate external to the
surface-adjacent sub-layer.

2.1. Shear-free surface layer: grid turbulence cases (UCB facility)
The experimental data examining the interaction of free-stream turbulence with an
impermeable surface were collected in the University of Colorado Boulder (UCB) Low-
Speed Unsteady Wind Tunnel facility. A schematic of the UCB experiment is presented
in figure 2. This facility is an open-return wind tunnel with a test section that is 0.76
m wide, by 0.76 m tall and 3.58 m long. A detailed description of this facility and
its capabilities is given in Farnsworth et al. (2020). A flat-plate assembly was mounted
within the wind tunnel test section, and tailored turbulence eddies were advected over
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Large grid Small grid

Mesh size, M (mm) 101.6 51.6
Bar thickness (mm) 25.4 12.7
Blockage ratio 0.44 0.41
〈u′2〉1/2/U∞ 0.059 0.035
luu,x (mm) 50 35
luu,x/ lww,x 2.35 2.21
luu,x/ lvv,x 2.38 2.28
〈u′2〉/〈w′2〉 1.23 1.27
〈u′2〉/〈v′2〉 1.20 1.22
x/M 17.2 34.2
x/x peak 8.75 17.5

Table 1. Turbulence grid geometry and resulting free-stream turbulence characteristics measured 1.75 m from
the grids without the plate installed. Here, x indicates the downstream location of the measurement from the
grid and x peak the location of maximum turbulence intensity behind the grid.

the plate’s surface by passing the initially low-turbulence free-stream flow through a
specifically designed passive, rectangular turbulence grid. Two different grids were used
with different mesh scales which are documented in table 1. The grids were manufactured
from 3.2 mm thick aluminium sheets with the precise pattern cut by water jet. The grids
were positioned in a groove between the wind tunnel contraction and test section such
that all four edges were clamped. The classical rectangular grid geometry was selected as
it creates a well-understood eddy structure that has been extensively used in wind tunnel
turbulence research for decades (Roach 1987). As the size of the turbulence structures is
directly dependent on the mesh geometry the two mesh sizes were intentionally chosen
to create turbulence that had characteristic length scales that differed by approximately a
factor of two. For each grid and PIV measurement configuration, a data set was collected
without the flat plate installed to characterise the turbulence produced by each grid without
alteration by the impermeable flat plate. The resulting turbulence parameters for both
grids, measured using PIV at a consistent distance of x = 1.75 m downstream from the
grids and a free-stream velocity of 15 ms−1, are presented table 1. By decreasing the mesh
size between the two grids, the streamwise turbulence intensity, 〈u′2〉1/2/U∞, and integral
length scales both decrease, where u′ is the fluctuating streamwise velocity component and
U∞ is the mean free-stream velocity. Note that the ratios of velocity variances, 〈u′2〉/〈w′2〉
and 〈u′2〉/〈v′2〉, for the turbulence grids tested are between 1.2 and 1.3, indicating a
deviation from isotropic turbulence in the test section; which is consistent with the prior
characterisation of classical turbulence grids (Roach 1987).

The flat-plate assembly was installed in the test section 1.17 m downstream of the
turbulence grids to provide sufficient downstream distance for the wakes created by the
individual bars of the grids to fully develop and equilibrate before interacting with the
flat plate. From prior hot-wire anemometry characterisation of the large grid in the UCB
facility, the location of the peak turbulence intensity was found to be x peak = 0.2 m, which
aligns with the predicted value from the ‘wake interaction distance’ method developed
by Mazellier & Vassilicos (2010). Additionally, vertical hot-wire profiles of the large grid
showed that the cross-tunnel variability of the mean velocity is less than 1 % at a distance
1 m from the grids. Corresponding measurements of the small grid were not collected,
but as the size of the mesh is smaller, the wake interaction distance is less than that
of the large grid, and x peak is estimated to be 0.1 m from the method of Mazellier &
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Vassilicos (2010). The plate leading edge was positioned downstream of the point where
the large grid turbulence is considered fully homogeneous across the test section of the
wind tunnel. The leading edge of the flat plate had a modified super-elliptical shape with
an aspect ratio of eight and a geometric cross-sectional blockage of 4.75 %. An adjustable
trailing edge flap was used to set the stagnation point at the leading edge, using a leading
edge pressure port and a Scanivalve DSA 3217 pressure scanner. This ensured that the
flow remained attached along the upper surface of the leading edge and minimised the
streamwise pressure gradient along the length of the plate surface. The resulting trailing
edge flap angle was 15◦ for the specific configuration of this experiment. A complete
description of the flat-plate assembly design can be found in Straccia (2022).

A series of preliminary measurements were conducted at multiple streamwise locations
along the plate and for a selection of free-stream velocities. From these measurements,
a location of x = 0.58 m downstream of the plate leading edge was selected in order to
(i) minimise the thickness of the near-wall viscous boundary layer or surface-adjacent
sub-layer and (ii) provide the turbulence eddies sufficient fetch and advection time to be
modified by the surface, creating a relatively thick SML. The cross-stream PIV field of
view was located at this distance, x = 0.58 m downstream of the plate leading edge, and
the streamwise PIV field of view was centred at this distance. A single free-stream velocity
of 15 m s−1 was also selected to reduce, as much as possible, the thickness of the wall-
adjacent viscous boundary layer or surface-adjacent sub-layer.

Stereoscopic PIV measurements were collected for two different measurement
configurations within the UCB facility, namely: (i) a cross-stream y−z plane and (ii) a
streamwise x−z plane, as shown in figure 2. Two 2560 × 2160 pixel 16-bit dynamic
range sCMOS cameras equipped with 50 mm Nikkor lenses, anti-peak locking filters and
Scheimpflug adapters were positioned in a stereoscopic configuration with a separation
angle of 67◦ between them on one side of the wind tunnel. Illumination was provided
by a Quantel Evergreen 200 dual-pulsed 532 nm Nd:YAG laser which was expanded
into a sheet with a cylindrical lens with a focal length of −10 mm before entering
the tunnel through the test-section ceiling. To transition from the streamwise to cross-
stream stereoscopic PIV data collection orientation, the laser sheet was rotated 90◦ and
thickened from 1 to 2 mm. The wind tunnel was seeded with di-ethyl-hexyl-sebacic-acid-
ester aerosol particles with a mean diameter of the order of 1 µm using a LaVision aerosol
generator. The field of view of the stereoscopic PIV measurement planes was large enough
to resolve multiple free-stream turbulence structures while also capturing the top edge of
the viscous boundary layer, adjacent to the plate surface as depicted in the schematic
in figure 2. Note that the camera field of view does not include the inner region of
the TBL, or surface-adjacent sub-layer, since this is not the focus of the current study.
Table 2 presents the detailed stereoscopic PIV measurement parameters for each of the
two configurations.

The stereoscopic PIV images were recorded with the LaVision DaVis 10 software
package with the timing between the hardware managed using an internal LaVision PTU
programmable timing unit. Thirty ensemble sets were collected for each measurement
case at a frequency of 10 Hz over periods of 100 s. At this low sampling frequency the
samples within an ensemble set are not time resolved and are considered independent.
This sample size was determined from the preliminary measurement campaigns to be
a sufficient sample size to provide converged turbulence statistics, most notably for the
integral length scale calculations. Vector fields were calculated in DaVis 10 using a
multipass processing method with four passes and a 50 % interrogation window overlap
starting at an interrogation window size of 96 × 96 pixels, and decreasing to a final
interrogation window size of 24 × 24 pixels with a Gaussian weighting function applied
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UCB Grid Cross-stream (y − z) Streamwise (x − z)
(configuration 1) (configuration 2)

Field of view (mm) 200 × 200 260 × 200
Sensor size (px) 2560 × 2160 2560 × 2160
Focal ratio of lens f/# 2.8 2.8
Sampling frequency (kHz) 0.01 0.01
Laser pulse delay (µs) 30 51
Vector resolution (vec/mm) 0.83 0.83
Period (s) 100 100
# ensemble sets 30 30
PIV velocity uncertainty
(σu/U )rms 3.8 % 0.4 %
(σw/U )rms 0.9 % 0.3 %
(σv/U )rms 2.2 % 0.8 %

LMFL TBL Cross-stream (y − z) Streamwise (x − z) Streamwise expanded (x − z)
(configuration 1) (configuration 2) (configuration 3)

Field of view (mm × mm) 55 × 89 113 × 89 24 × 351
Sensor size (px) 768 × 832 1536 × 832 400 × 2560
Focal ratio of lens f/# 11 11 16
Sampling frequency (kHz) 2.184 1.092 0.1
Laser pulse delay (µs) 285 405 350
Vector resolution (vec/mm) 1.54 1.54 1.33
Period (s) 2.96 2.96 40.3
# ensemble sets 250 120 20
PIV velocity uncertainty
(σu/U )rms 1.5 % 1.0 % 0.5 %
(σw/U )rms 1.1 % 0.9 % 0.6 %
(σv/U )rms 0.8 % 1.0 % 0.6 %

Table 2. PIV parameters for grid-turbulence experiment at UCB and TBL experiment at LMFL.

on the final pass. This provided a final velocity vector resolution of 0.833 vectors/mm in
both directions and for both data collection orientations. The measurement uncertainties
in the three velocity components, σu , σv and σw, were calculated using the correlation
statistics method in DaVis 10 (details are given in Wieneke 2015). The root mean square
of the uncertainty normalised by the mean streamwise velocity magnitude is calculated
across frames and spatial dimensions to summarise the quantity and presented in table 2
as (σu/U )rms . The uncertainty in all three velocity components is below 1 % of the
mean free-stream velocity for the streamwise configuration, while uncertainty in the
cross-stream plane is as high as 1.5 % for the out-of-plane component.

2.2. Shear-dominated surface layer: turbulent boundary layer case (LMFL facility)
The experimental data sets applied to the analysis of the surface layer within the canonical
flat-plate TBL were collected within the High Reynolds Number Turbulent Boundary
Layer Wind Tunnel Facility at the Laboratoire de Mécanique des Fluides de Lille (LMFL).
This facility is a closed return wind tunnel with a test section that is 2 m wide, 1 m tall
and 20.6 m long. A single set of flow conditions was explored for the canonical TBL,
namely: a nominal inlet velocity of 3 m s−1 with free-stream velocity of 3.36 m s−1 at
the measurement location which was 19.35 m downstream from the entrance to the wind
tunnel test section. This location was selected to maximise the boundary layer thickness.

1009 A71-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

29
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.292


S.J. Sheppard, J.G. Brasseur, J.C. Vassilicos and J.A.N. Farnsworth

U∞ Reθ Reτ δ99 θ δ∗ δν

3.36 m s−1 7680 2260 278 mm 34.2 mm 46.2 mm 0.122 mm

Table 3. The canonical TBL parameters from the LMFL experiment; free-stream velocity, U∞, momentum
thickness Reynolds number, Reθ , friction Reynolds number, Reτ , boundary layer thickness, δ99, momentum
thickness, θ , displacement thickness, δ∗, and viscous length scale, δν .

The Reynolds number of the resulting boundary layer was Reθ = 7680 (Reτ = 2260)

with a boundary layer thickness of δ99 = 0.278 m; additional parameters for the TBL
are given in table 3. To calculate the viscous length scale, δν , and the wall units (e.g.
z+), the friction velocity was approximated by comparing these data with a prior detailed
characterisation of the boundary layer facility which resolved the near-wall viscous sub-
layer at similar operating conditions, as documented by Foucaut et al. (2018). In this
prior study, the friction velocity, uτ , was determined by fitting the linear region of the
mean velocity profile within the viscous sub-layer using highly resolved near-wall planar
PIV measurements. By comparing the mean velocity profiles of the current data and the
reference data set the friction velocity can be adjusted to match the mean velocity profiles
where there is overlap. With this method we find that the friction velocity that collapses
the current data set to the reference data set is only 0.7 % greater than that of the reference
case.

The turbulence generated within the TBL is strongly anisotropic, whereas the turbulence
generated by the grids is approximately isotropic prior to interactions with the flat plate.
Furthermore, the turbulence within the TBL is strongly influenced by shear and production
which are both absent in the grid-turbulence experiment external to the surface-adjacent
sub-layer. To compare the relative strength of the turbulence across these experiments,
the turbulent Reynolds numbers based on the streamwise and surface-normal velocity
fluctuations, 〈u′2〉1/2 and 〈w′2〉1/2, and the streamwise turbulence length scales of these
velocity components, luu,x and lww,x , are defined by

Relu =
〈
u′2〉1/2

luu,x

ν
, (2.1)

Relw =
〈
w′2〉1/2

lww,x

ν
, (2.2)

and are presented for reference in table 4. In the grid-turbulence experiment, the Reynolds
number velocity and length scales are defined in the free stream while for the TBL the
Reynolds numbers are defined at the upper bound of the surface-layer region, δU , as
defined in § 3. From table 4 it can be observed that the Reynolds number based upon
the surface-normal velocity component, Relw , for the TBL is much less than that of the
grid-turbulence cases, whereas the Reynolds number based upon the streamwise velocity
component, Relu , is between that of the two grid-turbulence cases.

Three-component velocity fields were measured for two-dimensional planes using high-
speed stereoscopic PIV. Three different measurement configurations were used: (i) a
cross-stream y−z plane, (ii) a streamwise x−z plane and (iii) an expanded field-of-
view streamwise x−z plane. A schematic of this experimental set-up is presented in
figure 3. Two Phantom Miro M340 cameras, equipped with 60 mm Micro Nikkor lenses
and Scheimpflug lens adapters, were positioned beneath the glass floor of the wind tunnel
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Relu Relw

Large grid 2850 1080
Small grid 1190 490
Turbulent boundary layer 2220 142

Table 4. Turbulence Reynolds number calculated from the fluctuating velocity and integral length scale in the
free-stream (grid turbulence) or at δU (TBL). Values calculated at the same measurement locations as tables 1
and 3 for the grid-turbulence cases and TBL, respectively.

PIV cameras

Laser

sheets

Streamwise orientation

Cross-stream orientation

45°

19.35 m

0.09 m

0.11 m
0.28 m

1.0 m

U∞

z

x

δ99

Figure 3. Schematic of LMFL TBL wind tunnel experiment and stereoscopic PIV measurement system
depicting both the streamwise and cross-stream measurement configurations.

looking obliquely upwards at the floor (as depicted in figure 3). Illumination was provided
by a Quantronix Darwin Duo laser which was expanded into a sheet with a cylindrical
lens with a focal length of −60 mm or −80 mm, for configuration 1 or configurations
2 and 3, respectively, before entering the tunnel through the ceiling. To transition from
the cross-stream to the streamwise orientation, the cameras and laser sheet were rotated
horizontally by 90◦. The width of the laser sheet was approximately 1.2 mm at its waist.
For the data taken in the cross-stream y−z plane, the two laser pulses were offset from
one another in the streamwise direction to increase the cross-stream particle displacements
and maximise the number of consistent particles illuminated in the time-separated fields
of view for both pulses. The streamwise offset was 0.48 mm between the first and second
laser pulses, resulting in an estimated 68 % retention of the particles between the two
frames. The flow was seeded with poly-ethylene glycol particles within the return leg
of the wind tunnel resulting in particle sizes of the order of 1 µm in diameter. The two
primary configurations, (i) the cross-stream y−z and (ii) streamwise x−z planes, had
a wall-normal field of view that captured approximately 0.3δ99 to maximise the vector
resolution in the near-wall inertial surface-layer region. The third configuration, (iii) the
streamwise expanded x−z plane, extended to approximately 1.25δ99 to measure the total
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boundary layer thickness and free-stream velocity. Table 2 presents the PIV parameters for
each of the three configurations.

The stereoscopic PIV image sets were recorded with the LaVision DaVis 10 software
package and the timing between the hardware was managed using an external LaVision
PTU-X programmable timing unit. At the high sampling rate of configurations (i) and
(ii) the data are considered time resolved or correlated between snapshots. Because of this,
a larger number of ensemble sets were required to achieve similar statistical convergence
to the grid-turbulence experiments. The time resolution of the LMFL data is used for
calculation of two-point correlations in the streamwise direction, as will be discussed in
the next subsection, but is not used for analysis of structures through time in the present
work. Therefore, the difference in sampling frequency between the UCB and LMFL data
sets does not impact the analysis of the turbulence statistical structure. Vector fields were
calculated within MATLAB using a multipass cross-correlation method adapted from
MATLAB’s matpiv library. The processing consisted of four passes each using a 64 %
average interrogation window overlap where the interrogation window started with a size
of 64 × 64 pixels and was decreased to 22 × 16 pixels for the final pass. This provided
a velocity vector resolution of 1.54 vectors/mm in both directions for configurations
(i) and (ii), and 1.33 vectors/mm in both directions for configuration (iii). The
measurement uncertainty was calculated from the final vector fields by calculating the
root mean square difference between adjacent vectors, which is the method for calculating
random error in Adrian & Westerweel (2011). This method is effectively the same as that
implemented in Herpin et al. (2008), but uses adjacent vectors rather than overlapping
PIV systems. The uncertainty calculated with this approach was found to agree with that
calculated for a single set of 3231 images using the correlation statistics method in the
DaVis software used with the UCB data (Wieneke 2015).

2.3. Estimation of integral length scales
A central aspect of our work is to examine how integral length scales vary with
distance from the surface. The process for calculating the integral length scale has been
refined to minimise the experimental variability in the results while also providing a
consistent method for each component direction. Note that the integral length scale is
a correlation length that characterises the inertial energy-containing motions within the
turbulent velocity field. The quantification of the integral scale for a particular pair of
velocity fluctuations in a specified direction requires integrating the two-point correlation
coefficient from zero to infinity. For a three component flow field uα (α = 1, 2, 3) in three-
dimensional space measured with Cartesian coordinates xβ (β = 1, 2, 3), nine integral
length scales can be defined. To account for non-homogeneity in the wall-normal direction,
we apply the following form of the two-point the correlation coefficient:

Ruαuα,xβ

(
x, rxβ

)=
〈
u′

α (x) u′
α

(
x + rxβ êxβ

)〉
〈
u′2

α (x)
〉1/2 〈

u′2
α

(
x + rxβ êxβ

)〉1/2 . (2.3)

This method for normalisation has been implemented previously by Ganapathisubramani
et al. (2005) and Christensen & Adrian (2001), and is used in this work for the calculation
of all correlation coefficients. Whereas local normalisation of fluctuating velocity in the
inhomogeneous wall-normal direction is particularly important, we also account for small
levels of inhomogeneity in the streamwise direction in both the grid turbulence and TBL
analyses.

Ideally, the normalised correlation coefficient would be integrated with respect to rxβ to
infinity or the first zero crossing if oscillatory. A difficulty with PIV data is that the spatial
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range of the correlation is limited by the limited field of view of the measurement domain.
Additionally, significant variability in the tails of the correlation curve is encountered as
the correlation curve approaches zero due to the measurement noise in the PIV system.
This variability induces considerable variation in the zero-crossing point of the correlation
curves. To minimise these issues, the limit of the integral is defined to be the distance
where the normalised correlation reaches a consistently specified Rcut value close to, but
above, zero as defined by

luαuα,xβ (x) =
∫ rcut

0
Ruαuα,xβ

(
x, rxβ êxβ

)
drxβ , (2.4)

where rcut is the correlation distance at which the correlation function crosses the cutoff
value Rcut = 0.03. The value of Rcut = 0.03 was selected to minimise the amount of the
correlation curve discarded while staying above the point where there is considerable
noise in the correlation curve. Assuming an exponential form of the correlation curve the
threshold value of Rcut = 0.03 will systematically under calculate the integral length scale
by 3 %, but preserves the underlying trends in the integral length scales while avoiding
noise in the calculation due to variability in the tails near zero. Further details on the
integral length scale calculation are provided in Appendix A.

For the SDSL data within the TBL, the streamwise extent of the spatial field of view
was not sufficient to calculate the tails of the correlation curve. For these length scales
the correlation was calculated in time and then converted to space using a classical
application of Taylor’s frozen turbulence hypothesis with the local mean velocity used
as the convective velocity as defined by

Ruαuα,x
(
x, [δt ∗ U ]êx

)= Ruαuα,t (x, δt) . (2.5)

Taylor’s hypothesis has been widely applied in TBLs with hot-wire measurements and
the applicability has been extensively explored. Geng et al. (2015) determined that the
appropriate convective velocity above z+ of 20 is the mean velocity, while Dennis &
Nickels (2008) demonstrated the accuracy of Taylor’s hypothesis in reconstructing large
structures over distances of up to 6δ. The correlation curves calculated using the temporal
resolution were directly compared with the portion of the correlation curve that could be
calculated from the spatial resolution to validate this approach. The two methods were
found to align very well across the extent of the correlation available, therefore it was
determined that this approach could accurately quantify the spatial correlation and was
assumed to be more accurate than fitting an exponential curve to the data for extrapolating
the tail of the correlation curve.

3. The surface layers
As discussed in § 1 and illustrated in figure 1(a), a primary aim of this study is to establish
the existence of a surface layer in the two experimentally generated flows described in § 2,
where the ‘surface layer’ is defined as an inertia-dominated near-surface region outside a
SAS with linear growth in one or more integral scales. In this section the variations with
z of different integral scales are quantified to determine which, if any, scale on z versus
those that do not, above a SAS. Of particular interest are the differences and similarities
between canonical shear-dominated and non-canonical shear-free surface layers.

3.1. The existence of the shear-free surface layer
In figure 4, lww,x is plotted against the distance from the plate, z, for the grid-turbulence
experiments with both grids, where integral scales are quantified according to § 2.3.
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Figure 4. Wall-normal profile of the horizontal integral length scales of vertical velocity fluctuations in the
streamwise direction (lww,x (z)) for (a) the large grid and (b) the small grid. Using similar notation as in figure 1,
the green dashed lines define the upper (δU ) and lower (δL ) margins of the linear region, the magenta dashed
line is the upper margin of the SML (δSM L ) and the red dashed line is the upper margin of the SAS (δS AS)
estimated as δ99.

In this figure the black solid line is lww,x (z) with the plate installed in the test section
and the dotted line is without the plate. The SML is the region within the grid-
generated turbulence where the integral length scale, lww,x , is significantly modified by the
interactions between the grid turbulence and the flat plate. Therefore, δSM L is defined as
the height below which lww,x differs significantly from lww,x at the measurement location
without the plate installed, where ‘significantly’ is defined as within one standard deviation
of the variation of lww,x (z) over the test section without the plate. The value of δSM L is
shown with the magenta dashed line in figure 4. As will be discussed below, two internal
layers within the SML are objectively quantified: (i) the SAS (red dashed line), and (ii) the
inertial SFSL (green dashed lines).

The SAS was discussed in § 1 in context with figure 1(b). It forms as the grid turbulence
embedded within a quasi-uniform mean flow passes over the flat plate, creating a sub-layer
adjacent to the surface with a mix of highly non-steady frictional stresses and turbulence
production very close to the surface from the distortion of turbulence by a high mean
shear rate. The surface-adjacent shear-generated turbulence and strong frictional stresses
fill a region akin to a highly non-canonical TBL. We define the thickness of this SAS as
the height at which the mean velocity profile is 99% of the free-stream value, U (δS AS) =
0.99U∞, where U∞ is the mean velocity in the free stream (outside the surface-modified
region). The SAS region, indicated by a dashed horizontal red line in figure 4, is discussed
in more detail in § 4.

In figure 5 we plot the streamwise integral scales of the two horizontal components
of fluctuating velocity over z for the two grids. From figures 4 and 5 it is apparent that
only the vertical velocity generates a horizontal integral scale that clearly increases with
distance from the surface through the inertia-dominated region above, and separated from,
the SAS (the red-dashed line). The SFSL is therefore defined from the regions of clear
linear increase in lww,x with z in figure 4 for both grids. The upper and lower margins of
the linear regions are objectively defined as described in Appendix B using an iterative
procedure to identify the portion of the curve that is ‘most’ linear. This approach limits
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Figure 5. Wall-normal profiles of integral length scales of (a,c) streamwise velocity fluctuations in the
streamwise direction (luu,x (z)) and (b,d) cross-stream velocity fluctuations in the streamwise direction
(lvv,x (z)). The top row (a,b) is for the large grid and the bottom (c,d) for the small. Using similar notation
as in figure 4, the green dashed lines define the upper (δU ) and lower (δL ) margins of the linear region, the
magenta dashed line is the upper margin of the SML (δSM L ) and the red dashed line is the upper margin of the
SAS (δS AS) estimated using δ99.

bias in quantifying δU and δL , the upper and lower margins of the SFSL shown with green
horizontal dashed lines. The coefficient of determination of the linear fit over the SFSL is
0.997 and 0.992 for the large and small grids, respectively. As will be discussed in § 4, the
mean shear rate is zero within and above this ‘shear-free’ surface-layer region.

Normalised thicknesses of the SAS, SFSL and SML for both grid cases are given in
table 5. The upper boundary of the surface-modified region for the small and large grids
is found to extend to approximately two free-stream streamwise integral length scales,
luu,x∞, from the surface: δSM L ≈ 2luu,x∞. Because the longitudinal integral length scale
quantifies the coherence length of the energy-dominant eddies in the quasi-isotropic free-
stream turbulence, it is not surprising that the thickness of the SML scales on the coherence
length of the energy-containing turbulence motions that interact with the surface. This
result is consistent with TH77, who measured the influence of the surface to extend to
roughly twice the free-stream streamwise integral scale in their moving wall experiment,
as well as with the theoretical predictions of HG78, where we use the acronyms HG78 for
Hunt & Graham (1978) and TH77 for Thomas & Hancock (1977).

The consistencies with the HG78 theory and TH77 experiments are particularly
significant because these were developed with a moving wall to minimise the thickness
of the SAS. Specifically, the theory was developed in the limit δvisc/ luu,x∞ << 1, while
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Grid/SFSL δSM L
luu,x∞

δU
δSM L

δL
δSM L

δS AS
δSM L

δS AS
δL


SL
δSM L

δS AS

SL

Large 1.85 0.54 0.20 0.14 0.70 0.34 0.41
Small 2.01 0.55 0.21 0.16 0.74 0.33 0.47

TBL/SDSL δU
δ99

δL
δ99

δS AS
δ99

δS AS
δL


SL
δ99

δS AS

SL

0.099 0.037 0.018 0.48 0.063 0.28

Table 5. Surface-layer parameters for the grid-turbulence SDSL and TBL SDSL.

TH77 estimated this ratio to be approximately 0.05 in their experiments, with δvisc defined
as a viscous scale in a laminar SAS. As shown in table 5, in our fixed-wall grid-turbulence
experiments δS AS/δSM L ≈ 0.15, where δSM L ≈ 2luu,x∞ and δS AS is defined as δ99, much
thicker than the wall-adjacent viscous layer. Given the well-defined structure of the surface
layers in figure 4, we conclude that the SASs in our fixed-wall experiments are sufficiently
thin to maintain the nature of the turbulence-surface interactions that were modelled in the
HG78 theory and measured in the TH77 experiments.

Interestingly, the upper margin of the surface layer is approximately one free-stream
streamwise integral length scale from the surface (δU ≈ luu,x∞), and the thickness of the
SFSL, 
SL = δU − δL , is approximately two thirds of the longitudinal integral scale in
the free stream. These results are consistent between the two grids which create free-
stream correlation lengths a factor of two different. As shown in figure 4, there exists a
gap between the lower margin of the surface layer defined by linear growth in lww,x , and
the upper margin of the SAS as defined by δ99. If the mechanism that creates linear growth
in the integral length scale with z is associated with blockage at the impermeable plate
and the inertia dominance of the free-stream eddies that are modified, the linear SFSL
region will not initiate until some distance above the SAS where length scales associated
with frictional stresses and turbulence production dominate. Table 5 indicates that the gap
between δS AS and δL is approximately 30 % of δL . This transition will be further discussed
in § 4.

The streamwise integral length scales of the horizontal velocity components luu,x and
lvv,x plotted in figure 5 show consistency between the large and small grids. Importantly,
none of these profiles increase with distance from the surface in the surface layer, much
less linearly as is the case for lww,x (z). This significant result supports the hypothesis
that the ‘special’ integral scales that display linear scaling with distance from the surface
are those associated with vertical fluctuating velocity which feels directly the impacts
of blockage at the impermeable surface. Contrasting figures 5(a), 5(b) (large grid) with
figures 5(b), 5(c) (small grid), the variations in the streamwise integral scales of horizontal
velocity fluctuations are consistent, in that for both grids all these integral scales increase
from the upper margin towards the lower margin of the SFSL. With the exception of lvv,x
for the large grid, all integral scales decrease from the lower margin of the surface layer
into the SAS, although the z-location where the decrease initiates varies in relation to
the lower margin of the surface layer. Overall, one anticipates increasing measurement
inaccuracy approaching the surface in the SAS. It is not clear if the increase in lvv,x at the
lowest measurement location adjacent to the plate is physical, and the PIV field of view
does not extend sufficiently close to the plate to capture the peak, or if the increase in lvv,x
at the lowest measured point reflects measurement error.
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Figure 6. (a) Profile of lww,x in the wall-normal direction z in the TBL, where z and lww,x are normalised with
the boundary layer thickness (δ99). The green dashed lines identify the upper (δU ) and lower (δL ) margins of
the linear region and the red dashed line is 40 viscous units from the surface, an estimate for the upper margin
of the SAS; (b) mean velocity magnitude plotted against distance from the surface, both non-dimensionalised
with wall units, plotted log linear to display the region with logarithmic dependence. The dashed green lines
are the upper and lower margins of the linear region in (a).
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Figure 7. Profiles of (a) luu,x and (b) lvv,x in the wall-normal direction z in the TBL, where z is normalised
with the boundary layer thickness (δ99). The green dashed lines define the upper (δU ) and lower (δL ) margins
of the linear region and the red dashed line is 40 viscous units from the wall, an estimate for the upper margin
of the SAS.

3.2. The shear-dominated surface layer
A similar analysis of surface-layer statistics from the TBL experiment is presented in this
section, where the variations with distance from the surface of the streamwise integral
scales of the fluctuating vertical velocity, lww,x , are plotted in figure 6(a), and of the
horizontal fluctuating velocity components, luu,x and lvv,x , in figure 7. Like the grid-
turbulence experiments, only the vertical velocity integral scale displays clear linear
increase over a region that we identify as the surface layer. As discussed in § 3.1, unlike
grid-turbulence interactions where luu,x and lvv,x decrease or remain roughly constant
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with increasing z over the surface layer, in the TBL these integral scales increase with z
over the surface layer due to the existence of non-zero mean shear rate, with consequent
turbulence production. It is for this reason that we refer to the surface layer in the TBL
as ‘shear dominated’ (SDSL) in contrast with the ‘shear-free’ surface layer created by the
interaction between grid turbulence and the surface where mean shear and production rates
are zero over the SFSL (§ 4.1).

The linear region of lww,x (z) is identified using the same procedure discussed above and
in Appendix B. The coefficient of determination of the linear fit over the SDSL is 0.997. In
figure 6(a) the objectively deduced boundaries of the surface layer are shown with green
dashed lines, extending between δL = 83δν and δU = 0.1δ99. As previously discussed, the
inertial surface layer of the TBL is associated with the log region of the mean velocity
profile

U+ = κ−1log(z+) + B. (3.1)

Equation 3.1 is plotted alongside the measured mean velocity profile in figure 6(b) as a red
dotted line with κ = 0.41. The region where the measured mean velocity profile matches
the log profile coincides with the surface layer determined from the linear region of lww,x ,
shown with the green dashed lines. As discussed in § 1, the SML in this flow is the region
filled by turbulence that was generated below the surface layer and transported to the upper
boundary layer with thickness δSM L = δ99 in the mean.

In the TBL, the SDSL resides above a SAS with thickness that scales on the surface
viscous scale δν , and which is dominated by high viscous stress adjacent to the surface
and turbulence production that peaks at z+ ≈ 11 (Kim et al. 1987; Spalart 1988). The
turbulence production rate plotted with LMFL data from a TBL with the same flow
variables as the current TBL (Foucaut et al. 2018) is consistent with plots from the
literature (Spalart 1988), all indicating a change in slope in the turbulence production
curve variation when z+ is near 40. At z+ = 40 production rate is approximately 21 %
of the peak value at z+ ≈ 11 followed by a slow decrease through the SDSL to the upper
boundary layer. We use this approximate elbow as a sensible estimate of the upper margin
of the SAS (i.e. δ+

S AS = 40) as indicated by the horizontal dashed red lines in figures 6
and 7.

As in the SFSL, these figures show a transition region between the top of the SAS and
the bottom of the SDSL where mixed scaling transitions to purely surface-layer scaling,
lww,x ∼ z. Using z+ = 40 as an estimate of δS AS , table 5 indicates that the transition
occupies approximately 50 % of the distance to the lower margin of the SDSL, δL , in
comparison with 30 % for the transition to the SFSL in the grid-turbulence experiment.
This difference likely reflects the transition of turbulence production from below to within
the SDSL in the TBL, in contrast to the SFSL within the grid turbulence where turbulence
produced adjacent to the surface is confined to the SAS (§ 4).

3.3. Comparisons of integralscale variations in the shear-free and shear-dominated
surface layers

We aim to identify characteristics of the shear-free and shear-dominated surface layers that
are similar and dissimilar. To this end, in figure 8 we define a vertical axis ẑ that centres
on the surface layer and nearby regions to compare integral-scale variations in and near
the surface layer in the two very different wall-bounded turbulent flows created in the grid
turbulence and TBL experiments

ẑ = z − δL

δU − δL
. (3.2)
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ẑ

ẑ
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Figure 8. Variations of x−z integral length scales l̂, defined and normalised by (3.3), for each of the three
measured velocity components and for the two grid turbulence–surface interaction and TBL flows. The
normalised wall-normal direction ẑ is defined by (3.2) so as to centre the variations around the surface-layer
regions. The three cases are plotted with these line types: —–, large grid; · · · · · · , small grid; -·-·-, TBL. As
in figure 4, the green lines indicate the upper (δU ) and lower (δL ) margins of the linear regions, the magenta
lines indicate the upper margins of the SMLs (δSM L ), and the red lines indicate the upper margins of the SASs
(δS AS). Note that the TBL SML is well beyond the upper bounds of the figure at approximately ẑ = 16.

This normalisation places the lower and upper bounds of the surface layer at ẑ = 0 and 1,
respectively, for both flows. All integral scales are plotted as a function of ẑ relative to the
horizontal integral scales of vertical velocity fluctuation as follows:

l̂αα,β = lαα,β − lww,x (δL)

lww,x (δU ) − lww,x (δL)
. (3.3)

Therefore, in figure 8 all horizontal integral scales of vertical velocity fluctuation, l̂ww,x ,
pass through 0 and 1 at the lower and upper margins of the surface layer by construction.
For vertical velocity fluctuations, the horizontal integral scales of the grid and TBL flows
overlap at ẑ = 0 and 1 and throughout the surface layer due to linear scaling.

This is not the case, however, with the other integral scales. Figure 8 shows that the
two grid-turbulence SFSL cases agree well for normalised streamwise length scales,
while the correlations in the vertical direction show larger differences while still trending
together. In the vertical what is plotted is the correlation length as a function of starting
z location. The vertical correlation of the vertical fluctuating velocity, lww,z , in particular,
appears to suggest overall larger vertical correlation lengths relative to the thickness of the
surface layers with the smaller grid. Whether this difference reflects a different turbulence
structure, a Reynolds number effect or is related to the measure used to quantify coherence
in inhomogeneous directions (2.3), is unclear.

In context with the previous observation, note from figure 4 and table 5 that, while the
thicknesses of the SML and SFSL are smaller with the smaller grid, the ratio of SFSL to
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SML thickness is the same. Interestingly, figure 8 shows that, while the ẑ normalisation
on the SFSL thickness collapses both the height of the surface-modulated layers for the
large and small grids (SML, magenta lines), it also collapses the thickness of the surface-
adjacent layer (SAS, red lines), suggesting a relative gap between δS AS and δL set by the
largest surface-layer eddies in the vertical. Based on the definition δ+

S AS = 40, designed
to capture most (but not all) of the turbulence production rate, the relative gap between
the SAS and the SDSL in the TBL is wider than between the SAS and SFSL in the grid-
turbulence flows, as previously discussed (§ 3.2). The separation between δSM L and δU
is much greater for the TBL than for the grid-turbulence cases, so that the surface-layer
scaling does not collapse the SML as in the grid-turbulence cases.

As previously observed, figures 8(a)–8(f ) as a group show clearly that only coherence
lengths of vertical fluctuating velocity in the streamwise direction increase linearly with
wall-normal distance from the surface in all flows. The only other coherence length that
increases with distance from the surface in all three datasets is the correlation of vertical
velocity fluctuations in the vertical. This observation is consistent with the hypothesis that
the essential coherence character of the surface layer is associated with blockage over
wall-normal fluctuations by the impermeable surface. As mentioned above, the lack of
linearity in lww,z(z) may reflect, in part, the impact of inhomogeniety in the vertical on the
coherence measure (2.3).

The other global observation that is apparent from the group of figures is that, whereas
for the SFSL flows some integral scales may increase, decrease, or remain constant
with distance from the surface, in the TBL SDSL flow all integral scales increase with
distance from the surface, with linearity in lww,x (z) as a special case. As will be discussed
in coming sections, this universal behaviour likely reflects the existence of turbulence
production above the SAS and throughout the surface layer as a consequence of shear in
the SDSL in comparison with the SFSL. Although the integral length scale of vertical
velocity in the cross-stream direction, lww,y , is not available in the present datasets, the
RDT analysis of Hunt & Carlotti (2001) suggests that lww,y displays linear scaling with
distance from the surface similar to that observed in lww,x (z).

In the grid-turbulence SFSL, the integral length scale of the streamwise velocity
component in the streamwise direction, luu,x , is relatively constant with z in the SFSL,
while the integral scale of the cross-stream velocity in the streamwise direction, lvv,x ,
shows a clear increase towards the surface. In figure 8 from TH77, predictions from
the HG78 RDT theory are compared with their grid-turbulence experimental results for
luu,x (z). Whereas our grid-turbulence experiments in figure 8 show roughly uniform luu,x
through the SFSL, there is an indication, with both grids, that luu,x (z) decreases towards
the surface beginning in the lower SFSL and into the SAS. The RDT theory also predicts
a reduction, but it is a somewhat greater and more gradual reduction that initiates near the
upper margin of a linear variation in lww,x observed in the overlaid TH77 experimental
data. However, the reduction in luu,x towards the surface shown in TH77 data initiates in
the lower margin of the linear region more consistent with our figure 8.

One might suspect that in the SFSL the reduction towards the surface in lww,x together
with increasing lvv,x may indirectly reflect continuity (§ 4.3). On the other hand, it is
curious that, whereas we later show in figure 11 that the normalised variances of the
streamwise and transverse velocity fluctuations increase equivalently towards the surface
in the lower SFSL consistent with the HG78 theory for isotropic turbulence, the streamwise
integral scale of transverse velocity in figure 8 clearly increases towards the surface in the
lower SFSL while the integral scale of streamwise velocity clearly does not. The same is
true in the TH77 data.

1009 A71-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

29
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.292


Journal of Fluid Mechanics

In stark contrast with the SFSL grid-turbulence variations just discussed, in the TBL
luu,x (z) increases strongly and consistently from the surface and through the SDSL,
reaching a peak near the upper margin of the SDSL. This, we argue, is a consequence
of the existence of mean shear rate and turbulence production, which peaks at z+ ≈ 11,
within the SAS and well below the SDSL. Turbulence eddies created below the SDSL
are distorted both by interactions with the impermeable surface and by mean shear as they
move through the surface layer and into the upper regions of the TBL. It is well understood
that mean shear rate causes coherent structure in the fluctuating streamwise velocity to
elongate in the streamwise direction (Lee et al. 1990) so that the u′ eddies elongate and
the streamwise coherence length increases from the lower to upper SDSL where mean
shear rate decreases like 1/z. Whereas luu,x (z) increases strongly through the SDSL, lvv,x
increases only gradually, through the SDSL and into the upper TBL.

What is particularly interesting in the observations above is that, independent
of the existence of mean shear with corresponding turbulence production and the
distortion/elongation of turbulence eddies, and independent of the increase or not of
other integral scales, only the integral scales of vertical fluctuating velocity increase
with distance from the surface in all three experiments. Furthermore, only the horizontal
integral scales of vertical fluctuating velocity increase linearly with z in a region we define
as a surface layer. Whereas in the current experiments it was not possible to measure
transverse correlations, linear growth of the integral length scales of vertical fluctuating
velocity in both horizontal directions was identified by Apostolidis et al. (2022) in direct
numeric simulation channel flow data. The observation that only the vertical fluctuating
velocity has correlation lengths that scale on wall-normal distance strongly supports the
hypothesis that the general mechanisms that create a surface layer are associated with
blockage of vertical velocity at an impermeable surface.

4. Differences between the shear-free and shear-dominated surface layers
In this section we continue the comparison of surface layers in a shear-free vs. shear-
dominated environment to elucidate common, potentially generalisable, characteristics in
contrast with fundamental differences. Because a fundamental difference between these
flows is the existence, or not, of finite mean shear rate through the surface layer, we
compare turbulence production rates in the next section, followed by comparisons of
velocity variances in context with blockage and theory. We close with an analysis of the
central role of continuity in the relationship between linear variation of integral scale z
and the vertical velocity variance.

4.1. Turbulence production rate
The two classes of wall-bounded turbulent flow considered here have fundamentally
different mean shear rate and shear-generated turbulence production-rate characteristics
as shown in figures 9 and 10, where normalised mean velocity, mean shear rate, Reynolds
shear stress and turbulent production rate are plotted against the normalised wall-normal
distance, ẑ (3.2). In the grid-turbulence flows, mean shear, Reynolds shear stress and
turbulence production are confined to the SAS, which in this case is a highly non-canonical
boundary layer in which the turbulence fluctuations generated very near the surface are
confined. The HG78 model predicts that if the SAS is sufficiently thin, it does not impact
the suppression of vertical velocity by surface impermeability, which we argued in § 3.1 is
also the case in both the TH77 and the current experiments.

Interestingly, figure 9 shows that mean shear rate, Reynolds shear stress and turbulence
production rate all decrease in the vertical direction from the upper margin of the SAS to
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Figure 9. For the two SFSL grid cases, the wall-normal profiles of (a) normalised mean velocity, (b) mean
shear rate, (c) Reynolds shear stress and (d) turbulence production rate against ẑ. —–, large grid; · · · · · · , small
grid. The horizontal lines indicate δU , δL , δSM L and δS AS as labelled in the figure.
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Figure 10. For the SDSL TBL case, the wall-normal profiles of (a) normalised mean velocity, (b) mean shear
rate, (c) Reynolds shear stress and (d) turbulence production rate. The horizontal lines indicate δU , δL and
δS AS , as labelled in the figure.

reach zero precisely at the lower margin of the SFSL, where lww,x initiates a linear increase
with z. The SFSL, as indicated by dashed green lines, exists in the region of zero shear-
induced turbulence production rate. The observation that the two grid flow profiles and the
locations of δS AS and δSM L collapse when scaled on the depth of the SFSL suggests that
the initiation of a SFSL outside a SAS that confines near-wall turbulence production and
Reynolds shear stress is a generalisable result for the influence of a surface on turbulence
eddies that originated away from the surface. However, the fact that the canonical TBL
contains a surface layer within a region in which mean shear rate, turbulence production
rate and Reynolds shear stress are non-zero, as shown in figure 10, implies that the lack of
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Figure 11. Wall-normal variations in normalised component velocity variances in the grid-turbulence–surface
experiments for (a) the large grid and (b) the small grid, plotted against ẑ to centre on the SFSL. Also plotted
are the normalised sum of the horizontal variances, 〈u′2

h 〉, and the normalised sum of the three variances,
〈q2〉. All variances are normalised by their values in the free stream (see table 1 for relative variances). The
horizontal lines indicate δU , δL , δSM L and δS AS , as labelled in the figure. The location of the surface is: (a)
ẑ = −0.59 and (b) ẑ = −0.64.

mean shear and turbulence production is not a general requirement for the existence of a
surface layer. This leads to the question of what is the fundamental mechanism that allows
the surface layer to exist both in the presence of turbulence production in the TBL SDSL
and in the absence of turbulence production in the grid-turbulence SFSL.

The fundamental difference between the two classes of flow is in the origin of the
turbulence that is subsequently distorted in a similar manner in both flows so as to produce
linear growth in lww,x (z) in an inertia-dominated surface layer. In the grid-turbulence
experiments the SFSL is created within turbulence eddies that were generated away from
the surface and interact with the impermeable surface through a SAS. This SAS must
be sufficiently thin, relative to the free-stream integral scale, that the eddies outside the
SAS in the SFSL can respond directly to blockage at the surface (note that δL ≈ 1.4δS AS ,
table 5). This blockage impacts turbulence eddy structure over a sufficiently extended
distance from the surface to create measurable linear growth in the horizontal integral
scale of vertical fluctuations over a distance that scales on free-stream turbulence eddy
size. In the TBL, however, the turbulence eddies that are modulated by the surface to
create the SDSL originate very close to the surface below the lower margin of the SDSL
in the vicinity of peak production rate at z+ ≈ 11. In the ẑ coordinates of figure 10, peak
production rate occurs at ẑ ≈ −0.51, well below δS AS and, especially, δL . Furthermore, we
estimate the shear production-rate value at δS AS to be approximately one fifth of the peak
value and note that δL ≈ 2δS AS (table 5). As the turbulence eddies that were generated very
near the surface fill the boundary layer downstream, they pass through the surface layer
where mean shear rate in the surface layer (figure 10b) elongates the eddies to produce
the continual increase in luu,x with z through the SDSL, as observed in figure 8(b) (and
previously discussed in § 3.3).

4.2. Impacts of the surface on the variations in velocity variances
The relative variations in the variances of the fluctuating velocity components through
the SFSL and SDSL are presented in figures 11 and 12. Specifically, we compare the
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Figure 12. Wall-normal variations in velocity variances in the TBL normalised by the corresponding
component variances at the upper margin of the SDSL, δU , plotted against ẑ to centre on the SDSL. Like
figure 11, also plotted are the sum of the horizontal fluctuations, 〈u′2

h 〉 and the sum of all three variances, 〈q2〉.
The horizontal lines indicate δU , δL and δS AS . At δU , 〈u′2〉/〈w′2〉 = 3.39 and 〈u′2〉/〈v′2〉 = 2.28. The location
of the surface is ẑ = −0.58.

wall-normal variations of normalised velocity variances, 〈u′2〉, 〈w′2〉 and 〈v′2〉, centred
on the surface layer using the normalised vertical height, ẑ in (3.2). Also plotted are the
normalised variances of the ‘horizontal’ velocity vector in the plane parallel to the surface,
〈u′2

h 〉 = 〈u′2〉 + 〈v′2〉, and twice the turbulent kinetic energy, 〈q2〉 = 〈u′2〉 + 〈v′2〉 + 〈w′2〉.
Each variance is plotted normalised. For the grid-turbulence cases we normalise with
values in the free stream, while in the TBL experiments we normalise with the values
at the upper margin of the SDSL, δU .

In and surrounding the SFSL created by grid-turbulence–surface interactions, there is
consistency in the z variations of the normalised component variances between the large
and small grids shown in figure 11. There is also consistency between the current results
above δS AS , the experimental results obtained by TH77 and the theory of HG78, where
the latter two are compared in figure 5 of HG78. As analysed in detail in § 4.3, data and
theory all demonstrate a trade-off between the vertical and horizontal velocity variances
in the SFSL. Whereas 〈w′2〉 decreases through the entire surface-modified region towards
zero at the surface, it decreases more rapidly from the upper to lower margins of the SFSL.
The more rapid decrease towards the lower margin of the SFSL coincides with an increase
in horizontal velocity variance that continues into the SAS, a trade-off also clear in the
HG78 theory and TH77 data.

Qualitatively consistent with the HG78 theory, figure 11 shows a decrease in turbulent
kinetic energy (〈q2〉/2) followed by an increase from the lower margins of the SFSL
towards δS AS . However, because the HG78 theory applies in the limit of an infinitesimally
thin SAS, the vertical velocity variance approaches zero due to surface impermeability at
the upper margin of their viscous SAS. By contrast, in the current SFSL grid-turbulence
experiments the SAS is relatively thick, 26 %–32 % of luu,x∞ (table 5). Consequently,
the vertical velocity variance at the lower boundary of the SFSL is relatively large,
approximately 50% of the free-stream value. Figure 11 shows that, when normalised by
the free-stream values, the streamwise, cross-stream and horizontal velocity variances
coincide throughout the SML. These horizontal variances decrease from the upper margin
of the SML to a minor minimum slightly below the free-stream values near the upper
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margin of the surface layer, consistent with the HG78 theory, before transitioning to
increasing 〈u′2

h 〉 towards and below the lower margin of the SFSL.
In comparison with figure 11 for the SFSL, figure 12 shows both similarities and

differences in the variations of the normalised variances surrounding the SDSL of the
TBL, differences that can be understood in context with the discussions surrounding
turbulence production in § 4.1 above. The vertical velocity variance, in blue, decreases
relatively slowly in the surface-layer region compared with the transitional layer
approaching the SAS below, where the variance decreases sharply towards zero at the
impermeable surface. In contrast with the SFSL, vertical velocity variance decreases
from the upper to lower margins of the SDSL (figure 12) much more slowly than
through the SFSL (figure 11), while the streamwise and cross-stream velocity variances
(in black) increase towards the surface within the SDSL more rapidly than within the
SFSL. In the grid-turbulence flows, the two normalised horizontal variances vary similarly
through the SFSL. In the TBL, whereas the horizontal velocity variance is dominated
by the streamwise velocity fluctuations, the transverse variance has a somewhat different
variation than the streamwise component, especially in the SAS region.

In comparison with the SFSL we attribute the more rapid increase in streamwise velocity
variance from the upper to lower margins of the SDSL to turbulence production in
this region (§ 4.1). Shear-driven turbulence production enters the streamwise fluctuating
velocity directly before being transferred into the cross-stream and vertical components
through pressure–strain-rate inter-component energy transfer. However, because both peak
production rate of streamwise variance and streamwise velocity variance occur well
below δL (z+ ≈ 11 and 15, respectively), the variations in transverse and vertical velocity
variances through the SDSL are likely driven both by inter-component energy transfer
and the vertical transport of turbulence eddies into the SDSL region from below. In the
SFSL where turbulence production does not exist, however, the increase in the horizontal
velocity variance from the upper to lower boundary of the surface layer is likely associated
with incompressibility, as discussed in the following section (§ 4.3). Also similar to the
SFSL results in figure 11, whereas the HG78 theory predicts a decrease in 〈w′2〉 towards
zero together with an increase in 〈u′2〉 without turbulence production, normalised 〈w′2〉 in
the TBL approaches a value at the upper margin of the SAS that is even larger than that for
the fixed-wall SFSL of figure 11. This suggests that wall blockage of vertical velocity at
the SAS of the TBL is partially masked by production and inter-component energy transfer
from streamwise to vertical turbulence fluctuations in the region below the SDSL, where
〈u′2〉 is most strongly produced by mean shear rate.

Related to these observations, we note that whereas vertical velocity variance decreases
from the upper to lower margins of the surface layer in both the SFSL and SDSL, turbulent
kinetic energy decreases in the SFSL but increases in the SDSL due to the existence of
turbulence production. What is particularly interesting is that even with the generation
of streamwise velocity fluctuations by shear production and the transfer of variance
into vertical and transverse velocity fluctuations through correlations between pressure
and strain-rate fluctuations, surface layers with linear increases with z in the horizontal
coherence length of vertical fluctuations are created in both flows.

An attempt to account for these observations may follow from a simple spectral model
in a horizontally homogeneous channel flow. Perry et al. (1986) argued that, because
of blocking at the surface, primarily only eddies of size O(z) contribute to w′ motions
whereas eddies of size larger than O(z) contribute primarily to u′ and v′ motions but not
significantly to w′ motions for z � δ. The one-dimensional streamwise energy spectrum
Ew(kx , z) of fluctuating vertical velocities w′ at distance z from the wall is therefore
modelled as approximately constant up to kx ∼ 1/z, hence equal to Ew(kx = 0, z) for kx <
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Figure 13. Wall-normal variations of the terms in (4.3) for (a) the large grid and (b) the small grid, plotted
against ẑ to centre on the SFSL. The dotted black line is the sum of the calculated terms on the right-hand side
of (4.3). The horizontal lines indicate δU , δL , δSM L and δS AS as labelled in the figure.

O(1/z). Assuming, following Perry et al. (1986), that eddies of size smaller than distance
z from the wall are in approximate Kolmogorov 1941 (K41) equilibrium, we may write
Ew(kx , z) ∼ ε2/3k−5/3

x for some range of wavenumbers kx larger than O(1/z). Matching
at kx = O(1/z) gives Ew(kx = 0, z) ∼ ε2/3z5/3. Integrating Ew(kx , z) over all kx yields a
contribution ∼ (εz)2/3 to 〈w′2〉 from kx = 0 to kx ∼ 1/z and a contribution to 〈w′2〉 from
larger kx which is bounded from above by a term ∼ (εz)2/3 and is in fact proportional
to (εz)2/3 rather than just bounded by it if the Reynolds number is high enough to
support a significant K41 inertial range. We can therefore consider 〈w′2〉 ∼ (εz)2/3 to be
a good approximation even at Reynolds numbers that are not so high. In the SDSL of the
TBL, which coincides with the log layer (figure 6), we may expect ε to approximately
balance production and therefore scale approximately as u3

τ /z. Hence, 〈w′2〉 is roughly
constant with z in the high Reynolds number TBL (more so at the upper part of the SDSL
where Kolmogorov spectra will be better defined than at the lower part). In the SFSL,
ε may be assumed approximately homogeneous, hence independent of z, and therefore
〈w′2〉 ∼ z2/3. The overall shape of Ew(kx , z) assumed by Perry et al. (1986) can therefore
imply, in agreement with our observations, that 〈w′2〉 decreases from the upper to the
lower margins of the surface layer much more slowly for the SDSL than for the SFSL. We
note (Tennekes & Lumley 1972) that the kx = 0 limit of π Ew(kx , z) is the integral of the
non-normalised two-point correlation of w′, that is, Cww,x (z) ≡ lww,x (z)〈w′2〉. The model
above for Ew(kx = 0, z) and 〈w′2〉 therefore also implies that lww,x (z) scales linearly with
z for both the SFSL and the SDSL identically, as observed. Additionally, for the SFSL this
model leads to d〈w′2〉/dz ∼ ε2/3z−1/3 where ε2/3 estimated as 〈u′2〉/ l2/3

uu,x from table 1 is
approximately 2.3 times larger for the large mesh grid than for the small mesh grid. This
difference is consistent with the observation in figure 13 that d〈w′2〉/dz takes 2–2.5 times
higher values, on average, in the SFSL with the large mesh grid than with the small mesh
grid.

4.3. The interplay between vertical and horizontal velocity variances in the surface layer
The theory at the end of the previous section makes clear that linear growth in lww,x =
Cww,x/〈w′2〉 implies coordinated variation between the vertical gradient dCww,x/dz of
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the integral of the non-normalised two-point correlation function, Cww,x , and the vertical
gradient d〈w′2〉/dz of vertical velocity variance, 〈w′2〉 . As discussed earlier in § 4.2,
our results in figure 11, the results of TH77 and the theory of HG78 all demonstrate
the existence of a trade-off between a reduction in vertical velocity variance towards the
surface that results from blockage of vertical velocity at the surface, and an increase in
horizontal velocity variance towards the lower margin of the SFSL and into the SAS.
Figures 11 vs. 12 show that the variation of vertical velocity variance with z and the
trade-off between vertical and horizontal velocity variances are different in the TBL and
grid-turbulence flows. We speculate that this trade-off may be associated with continuity.
Therefore, to interpret the blockage-induced vertical derivative of vertical velocity
variance in relationship to horizontal velocity variance, and to compare the contributions
with the gradient in vertical variance between the shear-free and shear-dominated surface
layers, consider the incompressibility constraint

∂w′

∂z
= −

(
∂u′

∂x
+ ∂v′

∂y

)
= −∇h · u′

h, (4.1)

where u′
h is wall-parallel fluctuating velocity vector and ∇h is the wall-parallel gradient

operator. This leads to

d
〈
w′2〉
dz

=
〈
∂w′2

∂z

〉
=
〈
2w′ ∂w′

∂z

〉
= −2

(〈
w′ ∂u′

∂x

〉
+
〈
w′ ∂v′

∂y

〉)
, (4.2)

which can be written equivalently as

d〈w′2〉
dz

= 2
(〈

u′ ∂w′

∂x

〉
+
〈
v′ ∂w′

∂y

〉)
− 2

(
∂
〈
u′w′〉
∂x

+ ∂
〈
v′w′〉
∂y

)
. (4.3)

If the turbulence is quasi-homogeneous in the horizontal, (4.3) is well approximated by

d〈w′2〉
dz

≈ 2
(〈

u′ ∂w′

∂x

〉
+
〈
v′ ∂w′

∂y

〉)
= 2〈u′

h · ∇hw′〉, (4.4)

which implies that the vertical gradient of vertical velocity variance is largely driven by
the horizontal advection of vertical velocity fluctuations. Therefore, the rate of decrease in
vertical velocity variance that results from the blockage of vertical velocity fluctuations at
an impermeable surface is expected to be accompanied by an overall increase in horizontal
velocity fluctuations due to incompressibility. It is largely for this reason, we argue, that
the more rapid decrease in vertical velocity variance toward the surface in the SFSL is
associated with increasing horizontal velocity variance as observed in figure 11 and as
predicted by the HG78 theory.

Here, we compare experimentally the individual contributions to ∂〈w′2〉/∂z in (4.3)
between the SFSL and SDSL. To calculate the local derivatives in (4.3), we apply central
finite differences to the PIV velocity vectors. Due to the vector resolution of the PIV being
larger than the smallest scales of turbulence motion, the derivative calculations are likely
underestimates of the true values (Adrian & Westerweel 2011).

In figure 13 the terms on the right-hand side of (4.3) are plotted against distance from
the surface (z) with data from the grid experiments. The sums of the calculated terms on
the right-hand side of (4.3) are plotted with the dotted black lines in figure 13. These agree
well with the derivatives of the vertical velocity variances plotted with solid black lines.
Outside the SML, all terms fluctuate near zero. As discussed in the previous section, the
vertical derivative of vertical velocity variance is shown in figure 13 to be significantly
larger in the SFSL region than within the surface-modified region above and it grows from
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Figure 14. Wall-normal variations of the terms in (4.3) for the TBL plotted against ẑ to centre on the SDSL.
The dotted black line is the sum of the calculated terms on the right-hand side of (4.3). The horizontal lines
indicate δU , δL and δS AS as labelled in the figure.

the upper to the lower margin of the SFSL, below which it decreases rapidly. We also note
that the dominant terms in (4.3) are, as anticipated, those given by (4.4) since the Reynolds
stress divergence terms (the green and cyan curves in figure 13) oscillate around zero. The
deviation from zero is most dramatic in the SFSL regions. In the SFSL, the advection
terms in the streamwise direction (the red curves) and cross-stream direction (the blue
curves) are roughly the same with the small grid as anticipated, but appear to differ in the
lower SFSL with the large grid. We anticipate that the differences are likely due to higher
error in the local derivatives in the cross-stream direction.

Our analysis indicates that the correlation between a more rapid reduction of 〈w′2〉 and
a rapid increase in 〈u′2〉 towards the surface in the SFSL, observed experimentally and
within the HG78 theory, is consistent with (4.4) – in the sense that (4.4) suggests that an
increased level of horizontal advection of w′ is required to reduce vertical velocity variance
at the necessary rate in the SFSL. Within this relationship is embedded the solenoidal
requirement for incompressibility that relates vertical derivatives of w′ to horizontal
derivatives of uh

′. Dynamical considerations suggest a potential role for pressure–strain-
rate correlations in the exchange of component energy between horizontal and vertical
variances near the surface (e.g. McCorquodale & Munro 2017).

To compare with figure 13 for the SFSL, we present in figure 14 the variations in the
terms in (4.3) in the SDSL of the TBL. As previously observed, the sum of the right-hand
side terms in the dotted black line agrees well with the derivative of the vertical velocity
variance in the solid black line. Like the SFSL, |∂〈w′2〉/∂z| increases from the upper to
lower margins of the SDSL, albeit more slowly in the upper half of the SL and more
rapidly in the lower half (in agreement with figure 12). Furthermore, because the stress
divergence terms are close to zero, in both the shear-free and shear-dominated surface
layers, the vertical gradient in 〈w′2〉 corresponds to the horizontal advection of vertical
velocity fluctuations (4.4).

However, an interesting difference is observed when comparing figure 14 for the SDSL
with figure 13 for the SFSL. Whereas in the SFSL (figure 13) the streamwise and transverse
advective derivative terms, the red and blue curves, respectively, are of the same sign, in
the SDSL (figure 14) the streamwise component is positive while the transverse component
is negative. The sum of the two components increases in magnitude from the upper to
lower surface layer consistent with (4.4) and the z variation in d〈w′2〉/dz. The implication
is that, whereas in the SFSL vertical velocity fluctuations are advected in the same
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direction in x and y, in the SDSL advection in x and y are in opposite directions and
the dominance of advection in x over that in y is responsible for the magnitude of the
vertical gradient of 〈w′2〉 on the right-hand side of (4.4). Whereas the shear-free grid-
turbulence flow and the shear-dominated TBL flow are fundamentally different in structure
with corresponding differences in the balance between the streamwise and transverse
directions of horizontal advection of vertical velocity fluctuations in (4.4), a surface layer
is nevertheless generated in each.

5. Discussion
In the current study two fundamentally different classes of wall-bounded turbulence were
purposefully generated experimentally with the aims to identify, contrast and generalise
the ‘surface layer’ – defined here as a region of high Reynolds number turbulence
outside a surface-adjacent layer in which horizontal integral scales of wall-normal velocity
fluctuations scale on the distance from the surface. Here, we summarise key elements that
underlie the formation of a surface layer within the SML and outside the SAS. In § 5.2
we extend the discussion to consider the characteristics of surface-adjacent sub-layers
that likely interfere with surface-layer formation (i.e. ‘thinness’). We end in § 5.3 with
suggestions for continued analysis.

5.1. Mechanisms underlying surface-layer formation
The fundamental difference between the two classes of flow analysed here is in the source
of the turbulence that is subsequently modified by its interaction with a flat plate in the
creation of a surface layer. In the grid-turbulence experiments the turbulence eddies in the
surface layer were created independently of the surface, while in the TBL experiment the
surface-layer eddies originate upstream in the shear layer adjacent to surface. Thus there
is a fundamental difference in the structure of the SAS through which surface-layer eddies
interact with the impermeable surface, as well as in the existence (or not) of mean shear
and shear deformation in the surface layer. It is in comparing the differences that we aim to
arrive at some understanding of mechanisms that generalise the formation of the surface
layer.

In the grid-turbulence experiments the SAS originates in the viscous stresses that force
the velocity to zero at the surface under the energy-containing eddies that interact with the
plate through the SAS. Thus, the SAS region is coupled to the externally generated eddies
in the SML above. In this class of flow, the SAS region confines the additional turbulence
motions that are generated by high mean shear rate very near the surface to within a highly
non-canonical turbulent-boundary-layer-like region. We find that the surface layer initiates
at the point above the SAS where mean shear and production rates become zero and
extends into an inertia-dominated region of zero mean shear rate. Consequently, the SFSL
is formed by the modification of grid-turbulence eddy structure from direct interaction
with the flat plate in the absence of any deformation from mean velocity gradients. This
interaction takes place through a SAS that grows spatially along the plate in the direction
of the flow. As discussed in the next section, the data were collected close enough to the
leading edge of the flat plate for the SAS to be sufficiently thin to allow for the creation
of a SFSL, but far enough downstream for the grid turbulence to have been sufficiently
modified to generate a well-defined SFSL. Consistent with other studies, we find that the
thickness of the SFSL is determined by the size of the energy-dominant grid-turbulence
eddies in the SML above the SFSL (§ 3.1).

The SAS that exists below the surface layer of the TBL is fundamentally different from
that in the grid-turbulence flow. In the TBL the SML is the boundary layer itself, a region
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filled with turbulence eddies that were generated upstream within a SAS below the surface
layer where turbulence production rate and turbulent kinetic energy peak. Although mean
shear rate and turbulence production rate are statistically non-zero in the surface-layer
region, the turbulence eddies that fill the SDSL are largely generated below the surface
layer and are subsequently modulated by blockage as they interact with the impermeable
surface while being transported downstream and away from the surface. Directly above the
SAS the inertia-driven modulation of the energy-containing eddies is sufficiently strong to
create a region in which lww,x scales linearly on z, the surface layer. However, this takes
place where mean shear rate is finite and decreasing rapidly with distance from the surface,
creating distortion of the surface-layer eddies that does not occur in the grid-turbulence
flow.

A key mean-shear-induced distortion of turbulence eddies in the TBL is the elongation
of coherent eddies in which horizontal velocity fluctuations are concentrated and
form ‘low-speed streaks.’ Specifically, while turbulence production-rate and streamwise
velocity variance peak in the buffer region near z+ ≈ 11 − 15, the horizontal integral scale
of streamwise velocity fluctuations, luu,x , grows with distance from the surface through the
surface layer in response to elongation of the turbulence eddies in the SDSL by mean shear
rate. The results in figure 7 from our TBL experiments in the LMFL wind tunnel show a
continual increase in luu,x with z from below through the SDSL, reaching a broad peak
in the range z/δ99 ∼ 0.1 − 0.2. Using a separate dataset from the LMFL boundary layer
wind tunnel facility used in the study by Srinath et al. (2018) at a slightly higher Reynolds
number than the current study, we applied the method described in § 2.3 to determine
luu,x vs. z. The result is very similar to figure 7, but extended vertically, with a peak in the
integral scale near z/δ99 ∼ 0.18 − 0.2 and a reduction to approximately 70 % of its peak
value in the upper boundary layer. Our TBL data display well-defined linear growth in
lww,x up to z/δ99 ≈ 0.1, suggesting that maximum elongation occurs above the SDSL.

In comparison with the grid-turbulence experiments, although the turbulence in the
TBL was generated below the surface layer, it remains the case that the linear growth
of streamwise integral scales of vertical velocity fluctuations in the SDSL is well defined.
This occurs even in the presence of elongation by mean shear, in comparison with the
SFSL which forms in the absence of mean shear distortion as the grid turbulence interacts
with the impermeable surface (figure 8). Our observation that lww,x grows linearly with
z from a well-defined δL to a well-defined δU indicates that the SAS is sufficiently thin
to not interfere with the inertia-driven surface modulation of the structure of the energy-
containing turbulence eddies above the SAS so as to directly modify horizontal coherence
of the turbulence velocity component directly blocked by the surface. We conclude,
therefore, that in both flow classes the key mechanism that creates the particular distortion
of turbulence eddy structure in which the horizontal coherence length of vertical velocity
fluctuations scales on the distance from a solid surface is the blockage of turbulence eddy
motions normal to the surface. An implication of this conclusion is that direct inertia-
dominated interactions of turbulence eddies with a solid surface creates different ‘eddy
structure’ associated with different velocity components relative to the surface, and that
only ‘eddy structure’ associated with wall-normal velocity fluctuations, blocked by surface
impermeability, underlies the ‘surface layer’ as defined by linear increase in correlation
length with wall-normal distance.

5.2. Conditions for surface layer formation
A central element in the classical description of surface-layer formation in the TBL (§ 1.1)
is a separation of scales in the vertical between the turbulence eddies in the surface layer,
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the viscous layer adjacent to the surface and the largest eddies at the outer boundary layer
scale. The implication is that if the three scales of motion in the three layers are sufficiently
well separated, in both scale and vertical location, key coherence lengths of key eddy
motions in the intermediate layer should scale on distance from the surface – in the absence
of any sufficiently strong confounding influences at turbulence scales commensurate with
those in the surface layer. We find that these arguments also apply to the formation of
the SFSL if the outer scale determined by the scale of the energy-dominant motions in
the free-stream turbulence, and the inner scale resulting from the creation of the SAS, are
sufficiently disparate in size.

However, we have also concluded that the turbulence motions underlying surface-layer
creation are those directly blocked by surface impermeability – that is, the wall-normal
turbulence fluctuations within the turbulence eddies that are directly blocked by the
impermeable surface. This observation is consistent with the separation in scales being
limited to wall-normal velocity fluctuations in the wall-normal direction, as well as
with the observation that wall-parallel fluctuations are susceptible to distortion by mean
shear without interfering with surface-layer formation. It is also consistent with the
observation from other studies that the correlation lengths of vertical velocity fluctuations
in the transverse direction also scale on the wall-normal direction in the surface layer
(Apostolidis et al. 2022, § 3.3). What remains unclear is if vertical coherence lengths of
vertical velocity fluctuations also respond to blockage with linear growth in the vertical
direction, in part because the interpretation of correlation length is less clear in directions
with strong statistical inhomogeneity.

The central role of blockage in the creation of a surface layer implies that mechanisms
that interfere with blockage will also interfere with surface-layer formation. An example
is the impact of an insufficiently thin SAS on the response of the turbulence eddies above
the SAS to surface impermeability. The notion is that eddies above the SAS that are not
sufficiently large relative to the thickness of the SAS will not sufficiently penetrate the
SAS and respond to blockage at the impermeable surface below. A consequence of this
weakened response to surface blockage is a lack of dominance of turbulence motions
with coherence lengths that scale on z in the layer above the SAS. In table 5 we quantify
SAS thickness relative to the thicknesses of the SML and surface layers. We find that the
thickness of the SAS relative to the thickness of the surface-modulated layer (δS AS/δSM L )
is an order of magnitude smaller in the TBL (≈ 0.018) than in the grid-turbulence flow
(≈ 0.15). By contrast, the SAS thickness relative to the upper margin of the surface layer
(δS AS/δU ) is not that different, ≈ 0.18 in the TBL and ≈ 0.27 in the grid-turbulence flow.
It is perhaps surprising that scale separation between the SAS and SML and surface-layer
eddies in the formation of a well-defined SFSL is not an order of magnitude or more.

The grid-turbulence results suggest that the separation in scales required to create a
surface layer need not be as large as suggested by the canonical TBL (Tennekes & Lumley
1972). However, as grid turbulence passes along the plate, both the integral scale in the
free stream (luu,x ∞) and the thickness of the surface adjacent layer (δS AS = δ99) grow with
distance from the leading edge of the flat plate, but not at the same rate. As previously
discussed in § 2.1, to determine the location along the flat plate to collect the data analysed
here (x = 0.58 m), we collected preliminary data at four locations with the larger grid, the
most distant being at x = 1.99 m. With these preliminary data we determined that δS AS
grows more rapidly than δSM L , so that the relative thickness of the SAS increases along
the plate. We therefore chose an x location as close to the leading edge as possible to
minimise SAS thickness while providing sufficient fetch to create a SFSL. A particularly
interesting observation from these preliminary data, however, resulted from our fitting of
the linear regions in lww,x (by eye) at each of the four locations along the plate using
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an earlier version of the integral-scale algorithm described in § 2.3. Estimating the upper
and lower margins of the SFSL, we observed a clear continuous decrease in the apparent
thickness of the SFSL with distance along the plate. At the furthest measurement location,
x = 1.99 m, the SAS completely eclipses the SFSL leaving only a surface-modulated layer
with no region of linear growth in lww,x .

The previous observation suggests that as the thickness of the SAS increases along the
plate, the turbulence eddies above the SAS are less and less able to penetrate the SAS due
to increasingly larger SAS eddies relative to the surface-modulated eddies, suppressing the
impact of surface blockage and reducing the range in z over which a surface layer could
form. Consequently, the vertical fluctuations that underlie a linear increase in horizontal
coherence will become progressively more strongly influenced by turbulence motions that
are not influenced by surface blockage, causing the linearity and extent of the surface
layer to degrade. We further hypothesise that when the SAS becomes sufficiently thick
relative to the SML that eddy motions cannot penetrate to the surface below the SAS, any
vestiges of a SFSL will disappear. There remains the potential for a SDSL to exist within
the underlying SAS, a non-canonical TBL externally subjected to grid turbulence with
integral scales of order or larger than the boundary layer thickness. These conditions are
similar to the experiments by Dogan et al. (2016), who subjected a flat-plate TBL to active-
grid-generated turbulence and measured a logarithmic mean velocity region, implying the
existence of a surface layer within. We therefore hypothesise the existence of a local SDSL
with linear growth in lww,x within the SAS of our grid-turbulence experiments.

Also relevant to this discussion is the direct numerical simulation experiment of Kozul
et al. (2020), where isotropic turbulence was added to the free stream of a temporally
evolving horizontally homogeneous TBL. Particularly interesting is that the relative length
scales and turbulence intensities between the turbulence in the free stream and in the
boundary layer were varied at the initiation of the computational experiment. Relevant to
the discussion above, they found that as the length scale of the outer isotropic turbulence
increased well above the thickness of the TBL below, with turbulence intensity fixed, the
impact of the free-stream turbulence on the TBL penetrated deeper towards the surface,
suggesting stronger influence of the surface on the turbulence external to the boundary
layer.

The above discussion suggests that a surface layer will form when the SAS under the
inertia-dominated eddies is sufficiently thin to directly block these eddies at the surface.
However, external forcing at the surface-layer scales can interfere with this process.
Specifically, if topological variations in surface geometry generate near-surface motions
with scales and strength that complete with the surface-layer scales, the forced eddies will
interfere with surface-layer formation. However, if the topologically forced motions are at
scales much larger than surface-layer thickness, as illustrated in figure 1, one anticipates
surface-layer generation.

5.3. The need for future studies
Whereas the current study has lead to a number of interesting conclusions with
generalisations that may apply over wide ranges of wall-bounded turbulent flows, it has
also lead to a number of scientific issues and specific questions that should be addressed
in future studies. For example, as pointed out in the previous section, whereas the
current and other studies have shown linear growth of horizontal coherence lengths of
vertical velocity fluctuations normal to the surface, it is not clear if the same is true for
vertical coherence lengths of vertical velocity fluctuation. It would also be of interest
to quantify the relationship between the structure of the energy-containing eddies that
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interact with the impermeable surface to form the surface layer, and the characteristics
of the surface layer itself, specifically the upper and lower bounds of the surface layer
and the rates of increase in integral scale and vertical velocity variance with z. Whereas
the current study compares very different surface-layer turbulence structures in the shear-
free vs. shear-dominated surface layers, systematic quantification of the SFSL for different
grid-turbulence structures would add to our understanding of surface-layer formation.

Underlying the previous discussion, one asks what are the essential characteristics
of the localised space–time coherent structures that underlie linear growth in the
statistical correlation measures that are used to quantify coherence and coherence length.
Townsend (1976) provided a mathematical framework for a kinematic representation
of localised eddy structure that assumes linear increase in the size of the individual
‘eddies’ with distance from the surface. The Townsend (1976) framework, typically
applied to all three fluctuating velocity components, has evolved into kinematic ‘attached
eddy’ representations as collections of hairpin-like near-wall vortices (Perry & Chong
1982; Marusic & Monty 2019). The focus of attached eddy modelling is generally
on streamwise fluctuating velocity and its spectral prediction, but not always (Perry
et al. 1986). By contrast, the current study identifies the impacts of blockage on the
space–time concentrations of vertical velocity fluctuation as underlying the linear scaling
that defines the surface layer. We argue, therefore, that the modelling of surface-layer
generation should focus on kinematic structure and dynamic evolution of vertical velocity
fluctuations.

In context with the many discussions above regarding SAS formation and ‘thinness,’
research is needed to understand much better the relationship between the formation and
evolution of the SAS in context with the turbulence in the surface-modified layer above.
This is especially true of the relationship between the characteristics of the turbulence
that has been modulated by the surface, the thickness of the SAS, and the initiation of the
surface layer above the SAS. Perhaps the most useful characteristic of the surface layer is
coherence in the vertical underlying the establishment of strong correlations within this
inertia-dominated near-surface region of turbulence fluctuations. These correlations are
potentially useful in the modelling and estimation of surface momentum flux from the
velocity field above.

In a broader sense, LOTW is the backbone concept underlying TBL scaling applications
and the modelling of wall-bounded turbulent flows, both in the engineering and in the
geosciences communities (where LOTW is Monin–Obukhov similarity theory). LOTW is
used widely to test codes that treat turbulence bounded by surfaces, and it is common
that LOTW relationships are used within statistical models and simulations of wall-
bounded turbulent flows, from Reynolds-averaged Navier-Stokes (RANS) to LES. For
these reasons, generalisations of the key statistical properties that underlie LOTW
scaling beyond the simplified canonical flows for which they were developed to wider
ranges of wall-bounded turbulent flows are broadly valuable to modelling and prediction.
Clearer understandings of the structural and dynamical implications of the surface-layer
correlations underlying LOTW allow for broader applicability and higher accuracy in
modelling of more realistic wall-bounded turbulent flows. The current study is in these
directions.
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Appendix A. Integral Length Scale Calculation Expanded
As briefly discussed in § 2.3, the process for calculating the integral length scale has
been refined to minimise the experimental variability in the results while also providing
a consistent method for each component direction. In this section we further discuss our
method of calculating the integral length scale by integrating the two-point correlation
coefficient to a non-zero cutoff value to elaborate upon the systematic errors that are
imposed by using such a method.

In figure 15(a) the normalised correlation coefficient, Rww,x , is plotted with correlation
distance, rx , for increasing wall-normal locations for the large grid case. In theory, the
correlation coefficient would be integrated, with respect to rx , to infinity or the first zero
crossing if oscillatory. In this figure, we see that there is significant variability in the tails
of the correlation curves as they approach zero. The variability is believed to result from
noise in the PIV measurements and the limited sample size used. This variability induces
considerable point to point variation in the zero crossing of the correlation curves and
the resulting integral length scales. To minimise these issues, the limit of the integral is
defined to be the distance where the normalised correlation curve reaches a consistently
specified Rcut value close to, but above, zero as defined by

luαuα,xβ (x) =
∫ rcut

0
Ruαuα,xβ

(
x, rxβ êxβ

)
drxβ , (A1)

where rcut is the correlation distance at which the correlation function crosses the cutoff
value which was set to be Rcut = 0.03 for the data presented in this paper. In figure 15(c)
the streamwise velocity correlations are plotted with correlation distance, rx . In this case
the correlation coefficient does not cross zero for all z heights, but they do all cross the
cutoff value Rcut = 0.03.

In figure 15(b) it is clear that the location of the zero crossing, indicated by the xs, does
not vary systematically with z position and in fact the noise or scatter appears to grow
at smaller z positions. In contrast, when the cutoff value of Rcut = 0.03 is used a clear
systematic variation in the cutoff location becomes apparent as indicated by the circles.
This demonstrates how the non-zero cutoff method can by used to minimise the impact of
the noise in the data by calculating the integration over a limited region where the curve
is more well behaved.

The value of Rcut = 0.03 was selected in this study to minimise the amount of the
correlation curve discarded while staying above the point were there is considerable noise
in the correlation curve, for all component directions. The integral length scale, lww,x , is
plotted with z in the top row of figure 16, for all three cases considered in this paper for
a range of integration cutoff values, while the bottom row is luu,x . As the cutoff value
is increased the integral length scale profile decreases consistently in magnitude, as is
expected from integrating less of the correlation curve. The selected cutoff of Rcut = 0.03
is highlighted in red in the figure to enable a direct comparison. For the turbulence grid
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Figure 15. For the large rectangular grid, correlation coefficient of the vertical velocity (a) and streamwise
velocity (c) in the streamwise direction are plotted for increasing wall-normal positions. The horizontal black
solid line represents the value of R = 0, while the horizontal dotted line is drawn at R = 0.03. In (b,d) , the
cumulative integration of the correlation coefficient, for the vertical and streamwise velocities, respectively,
is plotted at the same z locations with xs representing the integration to the first zero crossing, while circles
represent the integration to the Rww,x = 0.03 cutoff value.

cases, this curve very closely follows the curve calculated with the zero crossing, however,
a small deviation, or bump, is observable at the boundary with the SAS. This bump,
observable in the Rcut = 0 case, is attributed to the variability in the zero crossing observed
in figure 15(a) for the lowest z positions and is thus not considered a physical result. Use of
a cutoff value of Rcut = 0.03 removes this bump in the profile and also smooths the point
to point variability, while maintaining the shape of the zero-crossing profile. The value of
Rcut = 0.03 was found to be the lowest value that completely removed this non-physical
bump. In addition to reducing the error from noise, using the non-zero cutoff value of
Rcut = 0.03 also assists in calculating other integral length scales that may not fully cross
zero at every location. This is particularly important for the integral length scale of the
streamwise velocity in the streamwise direction, luu,x , where the limited field of view
of the PIV measurements do not allow for the resolution of the oscillatory behaviour of
the correlation curve about the zero threshold. In figure 16(d), luu,x for the large grid is
plotted. Breaks in the lines indicate the points that don’t cross the Rcut value. The red line,
indicating the selected Rcut value of 0.03, is the first value where all z heights cross this
cut-off. In the TBL case, the cutoff value of Rww,x = 0.03 more noticeably reduced the
the integral length scale from the zero-crossing case, but it was found to still preserve the
shape of the distribution (figure 16c). Since this under-prediction is systematically applied,
the slope of the linear region is likely impacted, but not the bounds.
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Figure 16. Integral length scales, lww,x (a–c) and luu,x (d–f ), calculated with increasing integration cutoff level
versus wall-normal position for: (a,d) the large grid case, (b,e) the small grid case and (c,f ) the TBL case.
Horizontal dashed green lines indicate the bounds of the surface-layer region as defined in § 3.

Appendix B. Determination of the Surface-Layer Boundaries
This section describes the process implemented to define the upper and lower bounds of
the surface-layer region, δU and δL respectively, from the linear portion of the lww,x (z)
profile. An iterative procedure is implemented to systematically determine the most linear
region of the integral length scale profile and the upper and lower bounds of the surface
layer as described below.

Step 1 An initial guess of the bounds of linear region are set. For the lower boundary the
height of the SAS was used and the second point was selected as a point within the
linear region of the plot.

Step 2 The line of best fit of the data between these bounds is calculated using least
squares linear regression. The resulting linear fit is plotted with the original profile
in figure 17(a).

Step 3 The relative error between the data and the line of best fit is calculated as

ε = − l(z) − l f i t (z)

l f i t (z)
, (B1)

where l(z) is the experimentally calculated integral length scale profile and l f i t (z)
is the line of best fit calculated in step 2. The resulting relative error is plotted in
figure 17(b).
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Figure 17. Surface-layer determination procedure consists of (a) lww,x (z) profile in black with initial guess
boundaries and least squares linear regression in red, (b) normalised error, ε, between linear fit and experimental
data where the dashed vertical lines indicate ±1 % error where the new boundary points are selected (blue
symbols) and (c) lww,x (z) profile with revised boundaries and least squares linear regression in blue and initial
guess of the boundary points shown by the red symbols.

Step 4 New bounds for the linear region are selected at the points where the error becomes
greater than 1 %, ε > 0.01. These points are identified in figure 17 with blue circles.
Vertical dashed lines indicate 1% error.

Step 5 Steps 2–4 are repeated until the upper and lower bounds become stationary. The
second iteration of the procedure is presented in in figure 17(c).
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